
Solution (#974) Let Pn(x) denote the nth Legendre polynomial defined on the interval −1 � x � 1. Then Pn(x) is
a solution of
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Then by IBP twice we have

−n(n+ 1)Pn · Pm = −n(n+ 1)

� 1

−1

Pn(x)Pm(x) dx

=

� 1

−1

d

dx

�
(1− x2)P ′n(x)

�
Pm(x) dx

=
�
(1− x2)P ′n(x)Pm(x)

�1
−1
−

� 1

−1

(1− x2)P ′n(x)P
′

m(x) dx

= −

� 1

−1

(1− x2)P ′n(x)P
′

m(x) dx.

Swapping the roles of m and n we then see

n(n+ 1)Pn · Pm =m(m+ 1)Pn · Pm.

If n �= m, say n > m, then n(n+ 1) > m(m+ 1) and hence Pn · Pm = 0.
Now by Rodrigues’ Formula we have
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If we apply IBP we find that the RHS equals
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However note that as (x2 − 1)n = (x− 1)n(x+ 1)n then, by Leibniz’s theorem for the derivatives of products,
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for 0 � k < n as at least one factor of x− 1 and x+1 will still remain. Hence after applying IBP n times we arrive at
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Now (x2 − 1)n is a polynomial of degree 2n whose leading coefficient is 1. Hence
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So we now have
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Say now we set x = sin t as a substitution in the integral. Then
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