Solution (#974) Let P, (x) denote the nth Legendre polynomial defined on the interval —1 < z < 1. Then P,(z) is

a solution of
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Then by IBP twice we have
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Swapping the roles of m and n we then see
nn+1)P, - P, =m(m+1)P, - Pp,.
If n # m, say n > m, then n(n + 1) > m(m + 1) and hence P, - P,,, = 0.
Now by Rodrigues’ Formula we have

P,(x) = ﬁdi; {(352 - 1)71 '
So Logn [(x2 B 1)”} d {(xQ — 1)”} dx.
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If we apply IBP we find that the RHS equals
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However note that as (z2 — 1)® = (z — 1)"(z + 1)" then, by Leibniz’s theorem for the derivatives of products,
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for 0 < k < n as at least one factor of z — 1 and = + 1 will still remain. Hence after applying IBP n times we arrive at
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Now (22 — 1)" is a polynomial of degree 2n whose leading coefficient is 1. Hence
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Say now we set x = sint as a substitution in the integral. Then
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So we now have
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