Solution (#981) (i) $V = \mathbb{R}^3$, $X_1 = \{(x, x, z) : x, z \in \mathbb{R}\}$, $X_2 = \{(x, y, y) : x, y \in \mathbb{R}\}$. Note that the vector (1, 1, 1) belongs to both X_1 and X_2 and hence $X_1 \cap X_2 \neq 0$. In particular by #984 V is not a direct sum of X_1 and X_2 .

(ii) $V = \mathbb{R}^3$, $X_1 = \{(x, 0, x) : x \in \mathbb{R}\}$, $X_2 = \{(x, y, y) : x, y \in \mathbb{R}\}$. Note that for any (x, y, z) in \mathbb{R}^3 we have

$$(x, y, z) = (z - y, 0, z - y) + (x + y - z, y, y)$$

and so $\mathbb{R}^3 = X_1 + X_2$, Further if (x, y, z) lies in both X_1 and X_2 then

$$x = z, \qquad y = 0, \qquad y = z$$

and so (x, y, z) = 0. Hence $\mathbb{R}^3 = X_1 \oplus X_2$. (iii) $V = \mathbb{R}^3, X_1 = \{(x, 0, x) : x \in \mathbb{R}\}, X_2 = \{(0, x, x) : x \in \mathbb{R}\}$. Now note that the vector (1, 0, 0) lies outside $X_1 + X_2$ for if

$$(1,0,0) = (x,0,x) + (0,y,y)$$

then

$$1 = x, \qquad 0 = y, \qquad 0 = x + y$$

which are contradictory.

(iv) $V = \mathbb{R}^3, X_1 = \{(x, 0, x) : x \in \mathbb{R}\}, X_2 = \{(0, x, x) : x \in \mathbb{R}\}, X_3 = \{(x, x, x) : x \in \mathbb{R}\}.$ Say now that (x, y, z)can be written -) + (0, 1, 1) + (

$$(x, y, z) = (a, 0, a) + (0, b, b) + (c, c, c).$$

Then

$$= a + c, \qquad y = b + c, \qquad z = a + b + c$$

and so it must necessarily follow that

$$a = z - y,$$
 $b = z - x,$ $c = x + y - z$

and it is an easy check that these x, y, z are indeed solutions. Hence $\mathbb{R}^3 = X_1 \oplus X_2 \oplus X_3$.

x