Solution (#984) Let V, X, Y be subspaces of \mathbb{R}^n . Recall that we write $V = X \oplus Y$ if and only if every **v** in V can be uniquely written as $\mathbf{v} = \mathbf{x} + \mathbf{y}$ where **x** is in X and **y** is in Y,

Say that $V = X \oplus Y$. Then certainly V = X + Y. Further if **v** is in $X \cap Y$ then

$$\mathbf{v} = \mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v}$$

are two expressions for \mathbf{v} as a sum of elements of X and Y. By uniqueness it must be the case that $\mathbf{v} = \mathbf{0}$ as required. Conversely say that V = X + Y and $X \cap Y = \{\mathbf{0}\}$. Then every \mathbf{v} in V can be written as $\mathbf{v} = \mathbf{x} + \mathbf{y}$ for some \mathbf{x} is in X and \mathbf{y} is in Y. If

$$\mathbf{v} = \mathbf{x}_1 + \mathbf{y}_1 = \mathbf{x}_2 + \mathbf{y}_2$$

are two such expressions, then

$$\mathbf{x}_1 - \mathbf{x}_2 = \mathbf{y}_2 - \mathbf{y}_1$$

Note that the LHS is an element of X and RHS is an element of Y. Thus the above element is in $X \cap Y$ and so equals **0**. Therefore $\mathbf{x}_1 = \mathbf{x}_2$ and $\mathbf{y}_1 = \mathbf{y}_2$, showing that every **v** in V can be uniquely written $\mathbf{v} = \mathbf{x} + \mathbf{y}$ for some **x** is in X and **y** is in Y,