Solution (\#987) Let V be a subspace of \mathbb{R}^{n} such that

$$
V=X_{1} \oplus X_{2} \oplus \cdots \oplus X_{k}
$$

This means that every \mathbf{v} in V can be uniquely written as

$$
\mathbf{v}=\mathbf{x}_{1}+\mathbf{x}_{2}+\cdots+\mathbf{x}_{k} \quad \text { where } \mathbf{x}_{i} \text { is in } X_{i}
$$

Say now that \mathcal{B}_{i} is a basis for X_{i}, for each i, and define

$$
\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \cdots \cup \mathcal{B}_{k}
$$

For any \mathbf{v} in V we may write

$$
\mathbf{v}=\mathbf{x}_{1}+\mathbf{x}_{2}+\cdots+\mathbf{x}_{k} \quad \text { where } \mathbf{x}_{i} \text { is in } X_{i} .
$$

As \mathcal{B}_{i} is a basis for X_{i} then each \mathbf{x}_{i} can be expressed as a linear combination of the elements of \mathcal{B}_{i}. By the above it follows that \mathbf{v} is a linear combination of the elements of \mathcal{B}. That is, \mathcal{B} spans V.

Say now that

$$
\sum_{j} \alpha_{j} \mathbf{b}_{j}=\mathbf{0}
$$

where the \mathbf{b}_{j} are elements of \mathcal{B}. Each \mathbf{b}_{j} is an element of some \mathcal{B}_{i} and so the above sum can be separated into sums

$$
\sum_{i=1}^{k} \sum_{i} \alpha_{j}^{i} \mathbf{b}_{j}^{i}=\mathbf{0}
$$

The individual sum

$$
\sum_{i} \alpha_{j}^{i} \mathbf{b}_{j}^{i}
$$

lies in X_{i} and as

$$
\mathbf{0}=\mathbf{0}+\mathbf{0}+\cdots+\mathbf{0}
$$

is the only way to express $\mathbf{0}$ as a sum of elements in each X_{i}, it follows that

$$
\sum_{i} \alpha_{j}^{i} \mathbf{b}_{j}^{i}=\mathbf{0}
$$

for each i. Finally as \mathcal{B}_{i} is a basis for X_{i} then each $\alpha_{j}^{i}=0$ by independence. Hence \mathcal{B} is also independent.
Finally note that $\left|\mathcal{B}_{i}\right|=\operatorname{dim} X_{i}$ for each i and that \mathcal{B}_{i} and \mathcal{B}_{j} are disjoint for each $i \neq j$. (Any vector \mathbf{v} belonging to both could be written in two different ways as a sum of elements in $X_{1}, X_{2}, \ldots, X_{k}$.) Hence we have

$$
\operatorname{dim} V=|\mathcal{B}|=\sum_{i=1}^{k}\left|\mathcal{B}_{i}\right|=\sum_{i=1}^{k} \operatorname{dim} X_{i}
$$

as required.

