Solution (#987) Let V be a subspace of \mathbb{R}^n such that

$$V = X_1 \oplus X_2 \oplus \cdots \oplus X_k.$$

This means that every \mathbf{v} in V can be uniquely written as

 $\mathbf{v} = \mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_k$ where \mathbf{x}_i is in X_i .

Say now that \mathcal{B}_i is a basis for X_i , for each *i*, and define

$$\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_k$$

For any \mathbf{v} in V we may write

$$\mathbf{v} = \mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_k$$
 where \mathbf{x}_i is in X_i .

As \mathcal{B}_i is a basis for X_i then each \mathbf{x}_i can be expressed as a linear combination of the elements of \mathcal{B}_i . By the above it follows that \mathbf{v} is a linear combination of the elements of \mathcal{B} . That is, \mathcal{B} spans V.

Say now that

$$\sum_{j} \alpha_{j} \mathbf{b}_{j} = \mathbf{0}$$

where the \mathbf{b}_j are elements of \mathcal{B} . Each \mathbf{b}_j is an element of some \mathcal{B}_i and so the above sum can be separated into sums

$$\sum_{i=1}^{k} \sum_{i} \alpha_{j}^{i} \mathbf{b}_{j}^{i} = \mathbf{0}$$
$$\sum_{i} \alpha_{j}^{i} \mathbf{b}_{j}^{i}$$

The individual sum

lies in X_i and as

$$\mathbf{0} = \mathbf{0} + \mathbf{0} + \dots + \mathbf{0}$$

is the only way to express 0 as a sum of elements in each X_i , it follows that

$$\sum_{i} \alpha_j^i \mathbf{b}_j^i = \mathbf{0}$$

for each *i*. Finally as \mathcal{B}_i is a basis for X_i then each $\alpha_j^i = 0$ by independence. Hence \mathcal{B} is also independent.

Finally note that $|\mathcal{B}_i| = \dim X_i$ for each *i* and that \mathcal{B}_i and \mathcal{B}_j are disjoint for each $i \neq j$. (Any vector **v** belonging to both could be written in two different ways as a sum of elements in X_1, X_2, \ldots, X_k .) Hence we have

$$\dim V = |\mathcal{B}| = \sum_{i=1}^{k} |\mathcal{B}_i| = \sum_{i=1}^{k} \dim X_i$$

as required.