
Solution (#998) (i) Let U be an upper triangular n×n matrix with diagonal entries α1, α2, . . . , αn. Note that xI−U
is upper triangular and hence cU (x) = det(xI − U) is the product of the diagonal entries of xI − U . Hence

cU (x) = (x− α1)(x− α2) · · · (x− αn).

(ii) Note that the first column of U is α1e
T
1
and so the first column of U − α1I is zero. Hence we have

(U − α1I)e
T
1
= 0.

Considering the second column of U, note
UeT

2
= [U ]12e

T
1
+ α2e

T
2
.

So
(U − α2I)e

T
2
= [U ]12e

T
1

and so
(U − α1I)(U − α2I)e

T
2
= (U − α1I)

�
[U ]12e

T
1

�
= [U ]12(U − α1I)e

T
1
= 0.

Continuing in this vein we can see that

(U − αiI)e
T
i is in the span �eT

1
, eT
2
, . . . , eTi−1�;

(U − αi−1I)(U − αiI)e
T
i is in the span �eT

1
, eT
2
, . . . , eTi−2�;

and so on to

(U − α2I) · · · (U − αiI)e
T
i is in the span �eT

1
�;

(U − α1I)(U − α2I) · · · (U − αiI)e
T
i = 0.

(iii) Let 1 � j � i. As polynomials in U commute then

(U − α1I)(U − α2I) · · · (U − αiI)e
T
j = 0

as
(U − α1I)(U − α2I) · · · (U − αjI)e

T
j = 0.

Hence taking i = n we have that

cU (U)e
T
j = (U − α1I)(U − α2I) · · · (U − αnI)e

T
j = 0

for each j = 1, . . . , n. This being true on a basis we then have cU (U) = 0 by linearity. That is the Cayley-Hamilton
theorem for upper triangular matrices.
(iv) Now let A be an n× n matrix (real or complex). By #996 we know that there is a complex n× n matrix P such
that P−1AP = U is upper triangular. By #919 we know that cA(x) = cU(x). By #618 and (iii) above we then have

cA(A) = cA(PUP
−1) = PcA(U)P

−1 = PcU (U)P
−1 = P (0)P−1,

and so the Cayley-Hamilton theorem follows for all n× n matrices.


