Solution (\#1005) Say that A is an upper triangular matrix and say that the diagonal entries of A are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Note that for any $1 \leqslant r \leqslant n$

$$
\left(A-\alpha_{r} I\right) \mathbf{e}_{r}^{T} \quad \text { is in } \quad\left\langle\mathbf{e}_{1}^{T}, \mathbf{e}_{2}^{T}, \ldots, \mathbf{e}_{r-1}^{T}\right\rangle .
$$

So for any $1 \leqslant s \leqslant r \leqslant n$

$$
\left(A-\alpha_{1} I\right)\left(A-\alpha_{2} I\right) \cdots\left(A-\alpha_{r} I\right) \mathbf{e}_{s}^{T}=\mathbf{0}
$$

as shown in the solution of $\# 998$. It follows that

$$
\left(A-\alpha_{1} I\right)\left(A-\alpha_{2} I\right) \cdots\left(A-\alpha_{n} I\right) \mathbf{e}_{s}^{T}=\mathbf{0} \quad \text { for } 1 \leqslant s \leqslant n
$$

By \#1001 we know that $m_{A}(x)$ divides $\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)$. As the latter polynomial is a product of linear factors then so is any polynomial that divides it. Hence $m_{A}(x)$ is a product of linear factors.

As similar matrices have equal minimal polynomials $(\# 706)$ then a triangularizable matrix has a minimal polynomial which is a product of linear factors.

