Solution (\#1010) (i) Say that A and B are simultaneously diagonalizable, Then there exists a matrix P such that $P^{-1} A P=D_{1}$ and $P^{-1} B P=D_{2}$ are both diagonal. As diagonal matrices commute then

$$
\left(P^{-1} A P\right)\left(P^{-1} B P\right)=\left(P^{-1} B P\right)\left(P^{-1} A P\right)
$$

This simplifies to $A B=B A$.
(ii) Say now that A and B commute. If \mathbf{v} is a λ-eigenvector of A then

$$
A(B \mathbf{v})=B A \mathbf{v}=B \lambda \mathbf{v}=\lambda(B \mathbf{v})
$$

and so $B \mathbf{v}$ is also a λ-eigenvector.
(iii) Say now that A and B are commuting diagonalizable matrices. As A is diagonalizable then we have

$$
\mathbb{R}_{n}=E_{1} \oplus E_{2} \oplus \cdots \oplus E_{k}
$$

where E_{1}, \ldots, E_{k} are the eigenspaces of A. If we take a basis for each eigenspace, then their union is a basis for \mathbb{R}_{n} by $\# 992$. Further if we make those vectors the columns of a matrix P we have

$$
P^{-1} A P=\operatorname{diag}\left(\lambda_{1} I, \lambda_{2} I, \ldots, \lambda_{k} I\right)
$$

and as each E_{i} is B-invariant we also have

$$
P^{-1} B P=\operatorname{diag}\left(B_{1}, B_{2}, \ldots, B_{k}\right)
$$

for certain matrices B_{1}, \ldots, B_{k}. Now B is diagonalizable and so by $\# 706$ and $\# 1004 m_{B}(x)=m_{P^{-1} B P}(x)$ is a product of distinct linear factors. As

$$
p\left(\operatorname{diag}\left(B_{1}, B_{2}, \ldots, B_{k}\right)\right)=\operatorname{diag}\left(p\left(B_{1}\right), p\left(B_{2}\right), \ldots, p\left(B_{k}\right)\right)
$$

for any polynomial $p(x)$ then it follows that

$$
m_{B}\left(B_{i}\right)=0 \quad \text { for each } i
$$

and in particular $m_{B_{i}}(x)$ divides $m_{B}(x)$ and so too is a product of distinct linear factors; so again by $\# 1004 B_{i}$ is diagonalizable. So there are invertible matrices Q_{i} such that $Q_{i}^{-1} B_{i} Q_{i}$ is diagonal and if we set

$$
Q=\operatorname{diag}\left(Q_{1}, Q_{2}, \ldots, Q_{k}\right)
$$

then

$$
\begin{aligned}
& (P Q)^{-1} A(P Q)=\operatorname{diag}\left(Q_{1}^{-1}\left(\lambda_{1} I\right) Q_{1}, \ldots, Q_{k}^{-1}\left(\lambda_{k} I\right) Q_{k}\right)=\operatorname{diag}\left(\lambda_{1} I, \ldots, \lambda_{k} I\right) \\
& (P Q)^{-1} B(P Q)=\operatorname{diag}\left(Q_{1}^{-1} B_{1} Q_{1}, \ldots, Q_{k}^{-1} B_{k} Q_{k}\right)
\end{aligned}
$$

are both diagonal and A and B are simultaneously diagonalizable.

