**Solution** (#1010) (i) Say that A and B are simultaneously diagonalizable, Then there exists a matrix P such that  $P^{-1}AP = D_1$  and  $P^{-1}BP = D_2$  are both diagonal. As diagonal matrices commute then

$$(P^{-1}AP)(P^{-1}BP) = (P^{-1}BP)(P^{-1}AP).$$

This simplifies to AB = BA.

(ii) Say now that A and B commute. If  $\mathbf{v}$  is a  $\lambda$ -eigenvector of A then

$$A(B\mathbf{v}) = BA\mathbf{v} = B\lambda\mathbf{v} = \lambda(B\mathbf{v})$$

and so  $B\mathbf{v}$  is also a  $\lambda$ -eigenvector.

(iii) Say now that A and B are commuting diagonalizable matrices. As A is diagonalizable then we have

$$\mathbb{R}_n = E_1 \oplus E_2 \oplus \cdots \oplus E_k$$

where  $E_1, \ldots, E_k$  are the eigenspaces of A. If we take a basis for each eigenspace, then their union is a basis for  $\mathbb{R}_n$  by #992. Further if we make those vectors the columns of a matrix P we have

$$P^{-1}AP = \operatorname{diag}(\lambda_1 I, \lambda_2 I, \dots, \lambda_k I)$$

and as each  $E_i$  is B-invariant we also have

$$P^{-1}BP = \operatorname{diag}(B_1, B_2, \dots, B_k)$$

for certain matrices  $B_1, \ldots, B_k$ . Now B is diagonalizable and so by #706 and #1004  $m_B(x) = m_{P^{-1}BP}(x)$  is a product of distinct linear factors. As

$$p(\text{diag}(B_1, B_2, \dots, B_k)) = \text{diag}(p(B_1), p(B_2), \dots, p(B_k))$$

for any polynomial p(x) then it follows that

$$m_B(B_i) = 0$$
 for each  $i$ 

and in particular  $m_{B_i}(x)$  divides  $m_B(x)$  and so too is a product of distinct linear factors; so again by #1004  $B_i$  is diagonalizable. So there are invertible matrices  $Q_i$  such that  $Q_i^{-1}B_iQ_i$  is diagonal and if we set

$$Q = \operatorname{diag}(Q_1, Q_2, \dots, Q_k)$$

then

$$\begin{array}{lcl} (PQ)^{-1}A(PQ) & = & \mathrm{diag}(Q_1^{-1}(\lambda_1 I)Q_1, \dots, Q_k^{-1}(\lambda_k I)Q_k) = \mathrm{diag}(\lambda_1 I, \dots, \lambda_k I) \\ (PQ)^{-1}B(PQ) & = & \mathrm{diag}(Q_1^{-1}B_1Q_1, \dots, Q_k^{-1}B_kQ_k) \end{array}$$

are both diagonal and A and B are simultaneously diagonalizable.