Solution (#1027) Let A be the adjacency matrix of a bipartite graph with vertices vy, ..., v, As the graph is bipartite
we can partition the vertex set into disjoint subsets V; and V5 such that every edge of the graph connects a vertex
in Vi to one in Va. Say that v;,,...,v;, are the vertices in V; and let P be any permutation matrices whose first m
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Denote the remaining columns of P as el el o

Lo ,el ..., e; .
m41 m42 n
We have for any 1 < k < m that
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for some b,.; as the graph is bipartite. So

P APef = Y buel.
r=m-41
In a similar fashion we have for m +1 < k < n that
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Finally as P is orthogonal and A is symmetric then P~'AP = PT AP is symmetric and we have
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for some m X (n — m) matrix B.
The eigenvalues of A are the same as those of P~'AP. If A = 0 then there is nothing to prove. If X is a non-zero
eigenvalue of P~' AP this means that there is a vector
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(where vy is in R, and vy is in R,,_,,) such that
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Bvy = A\vy and BTvi = Avs.
Note also that as v # 0 and A # 0 then v; # 0 # vo. We then have
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and so —A\ is also an eigenvalue.

So



