
Solution (#1027) Let A be the adjacency matrix of a bipartite graph with vertices v1, . . . , vn As the graph is bipartite
we can partition the vertex set into disjoint subsets V1 and V2 such that every edge of the graph connects a vertex
in V1 to one in V2. Say that vi1 , . . . , vim are the vertices in V1 and let P be any permutation matrices whose first m
columns are
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We have for any 1 � k � m that
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for some bri as the graph is bipartite. So
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In a similar fashion we have for m+ 1 � k � n that
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Finally as P is orthogonal and A is symmetric then P−1AP = PTAP is symmetric and we have
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for some m× (n−m) matrix B.
The eigenvalues of A are the same as those of P−1AP . If λ = 0 then there is nothing to prove. If λ is a non-zero

eigenvalue of P−1AP this means that there is a vector
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(where v1 is in Rm and v2 is in Rn−m) such that
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So
Bv2 = λv1 and BTv1 = λv2.

Note also that as v �= 0 and λ �= 0 then v1 �= 0 �= v2. We then have
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and so −λ is also an eigenvalue.


