Solution (#1027) Let A be the adjacency matrix of a bipartite graph with vertices v_1, \ldots, v_n As the graph is bipartite we can partition the vertex set into disjoint subsets V_1 and V_2 such that every edge of the graph connects a vertex in V_1 to one in V_2 . Say that v_{i_1}, \ldots, v_{i_m} are the vertices in V_1 and let P be any permutation matrices whose first mcolumns are

$$\mathbf{e}_{i_1}^T, \mathbf{e}_{i_2}^T, \dots, \mathbf{e}_{i_m}^T$$

 $\mathbf{e}_{i_1}^T, \mathbf{e}_{i_2}^T, \dots, \mathbf{e}_{i_m}^T.$ Denote the remaining columns of P as $\mathbf{e}_{i_{m+1}}^T, \mathbf{e}_{i_{m+2}}^T, \dots, \mathbf{e}_{i_n}^T.$ We have for any $1 \leq k \leq m$ that

$$AP\mathbf{e}_k^T = A\mathbf{e}_{i_k}^T = \sum_{r=m+1}^n b_{rk}\mathbf{e}_{i_r}^T = \sum_{r=m+1}^n b_{rk}P\mathbf{e}_r^T$$

for some b_{ri} as the graph is bipartite. So

$$P^{-1}AP\mathbf{e}_k^T = \sum_{r=m+1}^n b_{rk}\mathbf{e}_r^T.$$

In a similar fashion we have for $m+1 \leqslant k \leqslant n$ that

$$P^{-1}AP\mathbf{e}_k^T = \sum_{r=1}^m b_{rk}\mathbf{e}_r^T.$$

Finally as P is orthogonal and A is symmetric then $P^{-1}AP = P^{T}AP$ is symmetric and we have

$$P^{-1}AP = \left(\begin{array}{cc} 0_{mm} & B \\ B^T & 0_{nn} \end{array}\right)$$

for some $m \times (n-m)$ matrix B.

The eigenvalues of A are the same as those of $P^{-1}AP$. If $\lambda = 0$ then there is nothing to prove. If λ is a non-zero eigenvalue of $P^{-1}AP$ this means that there is a vector

$$\mathbf{v} = \left(egin{array}{c} \mathbf{v}_1 \ \mathbf{v}_2 \end{array}
ight)$$

(where \mathbf{v}_1 is in \mathbb{R}_m and \mathbf{v}_2 is in \mathbb{R}_{n-m}) such that

$$P^{-1}AP\left(\begin{array}{c} \mathbf{v}_1 \\ \mathbf{v}_2 \end{array}\right) = \left(\begin{array}{cc} 0_{mm} & B \\ B^T & 0_{nn} \end{array}\right) \left(\begin{array}{c} \mathbf{v}_1 \\ \mathbf{v}_2 \end{array}\right) = \left(\begin{array}{c} B\mathbf{v}_2 \\ B^T\mathbf{v}_1 \end{array}\right) = \left(\begin{array}{c} \lambda\mathbf{v}_1 \\ \lambda\mathbf{v}_2 \end{array}\right).$$

So

$$B\mathbf{v}_2 = \lambda \mathbf{v}_1$$
 and $B^T \mathbf{v}_1 = \lambda \mathbf{v}_2$.

Note also that as $\mathbf{v} \neq \mathbf{0}$ and $\lambda \neq 0$ then $\mathbf{v}_1 \neq \mathbf{0} \neq \mathbf{v}_2$. We then have

$$P^{-1}AP \begin{pmatrix} \mathbf{v}_1 \\ -\mathbf{v}_2 \end{pmatrix} = \begin{pmatrix} 0_{mm} & B \\ B^T & 0_{nn} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ -\mathbf{v}_2 \end{pmatrix} = \begin{pmatrix} -B\mathbf{v}_2 \\ B^T\mathbf{v}_1 \end{pmatrix} = \begin{pmatrix} -\lambda\mathbf{v}_1 \\ \lambda\mathbf{v}_2 \end{pmatrix} = -\lambda \begin{pmatrix} \mathbf{v}_1 \\ -\mathbf{v}_2 \end{pmatrix}$$

and so $-\lambda$ is also an eigenvalue.