
Solution (#1035) (i) Denote the transition matrix as M and say p = (p1, . . . , pk) is a stationary distribution. Then
pM = p and so pMn = p for any n. We will assume without loss of generality that p1 = 0. Then
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However each of these terms are non-negative and so we have — in particular — that
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= 0 for i = 2, 3, . . . , k.

Not all of p2, . . . , pk can be zero (as they add to 1) and so there is at least one i such that it is impossible to get from
the second state to the first state

eiM
neT1 = 0.

It is then impossible to move from state i to state 1 in any finite time. It follows in an irreducible chain that each
pi > 0.
(ii) Say now that we have independent stationary distributions

p = (p1, . . . , pk) and P = (P1, . . . , Pk).

If any of the pi or Pi are zero then we know from (i) that the chain is not irreducible. So assume the pi, Pi are all
positive. Now for any real λ it follows that

(λp+ (1− λ)P)M = λp+ (1− λ)P.

As p and P are independent then p �= P. The vectors

λp+ (1− λ)P

constitute the line in Rk connecting p and P. However the above vector will not have non-negative entries for all
values of λ, though this will be the case for 0 � λ � 1. We take λ0 to be the smallest λ0 > 1 such that one (or more)
of its entries becomes 0. The vector

λ0p+ (1− λ0)P

is still a probability vector with non-negative entries adding to 0, represents a stationary distribution, and one of its
entries is zero. It follows then that the Markov chain is not irreducible.
(iii) The converse — that a unique stationary distribution implies irreducibility — is not true. For example, consider

the two state Markov chain with transition matrix �
0 1
0 1

�
.

Then the only stationary distribution is (0, 1) but the chain is not irreducible as it is impossible to move out of the
second state to the first state.


