Solution (#1035) (i) Denote the transition matrix as M and say p = (p1,...,px) is a stationary distribution. Then
PM = p and so pM™ = p for any n. We will assume without loss of generality that p; = 0. Then
pM"el =pel =p; =0.

So

poesM"el + psesM™el + ...+ p,e, M"el =0.
However each of these terms are non-negative and so we have — in particular — that

pieiM"e{:O for i =2,3,... k.
Not all of po,...,pr can be zero (as they add to 1) and so there is at least one ¢ such that it is impossible to get from
the second state to the first state
eiM"e] =0.
It is then impossible to move from state ¢ to state 1 in any finite time. It follows in an irreducible chain that each
pi > 0.
(ii) Say now that we have independent stationary distributions

p=(p1,...,pr) and P =(P1,...,P).
If any of the p; or P; are zero then we know from (i) that the chain is not irreducible. So assume the p;, P; are all
positive. Now for any real X it follows that
(Ap+ (1 —=NP)M =Xp+ (1 - NP.
As p and P are independent then p # P. The vectors
Ap+ (1=MP
constitute the line in R* connecting p and P. However the above vector will not have non-negative entries for all

values of A, though this will be the case for 0 < A < 1. We take A\ to be the smallest A\g > 1 such that one (or more)
of its entries becomes 0. The vector
)\0p + (1 — )\0)P

is still a probability vector with non-negative entries adding to 0, represents a stationary distribution, and one of its
entries is zero. It follows then that the Markov chain is not irreducible.

(iii) The converse — that a unique stationary distribution implies irreducibility — is not true. For example, consider
the two state Markov chain with transition matrix

0 1
(b 1)

Then the only stationary distribution is (0, 1) but the chain is not irreducible as it is impossible to move out of the
second state to the first state.



