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Abstract The classical macroscopic chemotaxis equations havequglyi been
derived from an individual-based description of the tartgponse of cells that use
a “run-and-tumble” strategy in response to environmentalsc17,18]. Here we
derive macroscopic equations for the more complex type bbberal response
characteristic of crawling cells, which detect a signatraot directional informa-
tion from a scalar concentration field, and change their lmdtehavior accord-
ingly. We present several models of increasing complexitywhich the deriva-
tion of population-level equations is possible, and we show experimentally-
measured statistics can be obtained from the transportieqdarmalism. We also
show that amoeboid cells that do not adapt to constant Sigral still aggregate
in steady gradients, but not in response to periodic wavas.i$ in contrast to the
case of cells that use a “run-and-tumble” strategy, wheagtadion is essential.

1. Introduction

Motile organisms sense their environment and can resporitdbly (i) directed
movement toward or away from a signal, which is caltegis (ii) by changing
their speed of movement and/or frequency of turning, whéchalledkinesis or
(iii) by a combination of these. Usually these responsedatie called taxes, and
we adopt this convention here. Taxis involves three majonpanents: (i) an ex-
ternal signal, (ii) signal transduction machinery for sduocing the external signal
into an internal signal, and (iii) internal components thegpond to the trans-
duced signal and lead to changes in the pattern of motititgréler to move away
from noxious substances (repellents) or toward food s@ufatiractants) organ-
isms must extract directional information from an extradal scalar field, and
there are two distinct strategies that are used to do thismpls paradigm will
illustrate these.
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Suppose that one is close enough to a bakery to detect the,duldrcannot
see the bakery. To find it, one strategy is to use sensors ahthef each arm that
measure the difference in the signal at the current locatimhuse the difference to
decide on a direction. Clearly humans do not use this styabeq instead, execute
the “bakery walk”, which is to take a sniff and judge the sigiméensity at the
present location, take a step and another sniff, comparsiginals, and from the
comparison decide on the next step.

The first strategy is used by cells that move by crawling tgtotheir envi-
ronment (we call these amoeboid cells), provided they haeeptors in the cell
membrane and are large enough to detect typical differeimncte signal over
their body length. Small cells such as bacteria cannot &fdg make a “two-
point in space” measurement over their body length, ancfbes they adopt the
second strategy and measure the temporal variation in thelsas they move
through the external field (for a review of bacterial sigmansduction see [18]
and references therein). In either case, an important deretion in understand-
ing population-level behavior is whether or not the indisadl merely detects the
signal and responds to it, or whether the individual alteessiwell, for example
by consuming it or by amplifying it so as to relay the signalthe former case
there is no feedback from the local density of individualthe external field, but
when the individual produces or degrades the signal, tlsezeupling between the
local density of individuals and the intensity of the sigrithe latter occurs, for
example, when individuals move toward a signal from neightapcells and relay
the signal as well, as in the aggregation of the cellularslimold Dictyostelium
discoideun(Dd) [38,54].

One of the best-characterized systems that adopts the ripaladk” strategy
is the flagellated bacteriufa. coli, for which the signal transduction machinery
is well characterized [5]E. coli alternates between a more or less linear motion
called a run and a highly erratic motion called tumbling, ethproduces little
translocation but reorients the cell. Since these bacéeei@oo small to detect spa-
tial differences in the concentration of an attractant angbale of a cell length,
they choose a new direction essentially at random at the Eadumble, although
it has some bias in the direction of the preceding run [4]. Runes are typically
much longer than the tumbling time, and when bacteria moegfavorable direc-
tion (i.e. either in the direction of foodstuffs or away from noxiougstances),
the run times are increased further. The effect of altengatihese two modes of
behavior and, in particular, of increasing the run lengtrewimoving in a favor-
able direction, is that a bacterium executes a three-dimmeakrandom walk with
drift in the favorable direction, when observed on a suffitiglong time scale [3,
31]. In addition, these bacteria adapt to constant signaldeand in effect only
alter the run length in response to changes in extracekidaals. Models for sig-
nal transduction and adaptation in this system has beerape[47,2], and a
simplified version of the first model has been incorporatédl &npopulation-level
description of behavior [17,18]. The latter analysis shdwsv parameters that
characterize signal transduction and response in indalidells are embedded in
the macroscopic sensitivity in the macroscopic chemotaxis equation described
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later. Having the bacterial example in mind, we will desigrnithe “bakery walk”
strategy as a “run-and-tumble” strategy in what follows.

The directed motion of amoeboid cells (e.g. Dd or leukogytekich is cru-
cial in embryonic development, wound repair, the immung@oese to bacterial
invasion, and tumor formation and metastasis, is much morepticated than
bacterial motion. Cells detect extracellular chemical amechanical signals via
membrane receptors, and these trigger signal transductiscades that produce
intracellular signals. Small differences in the extragilt signal over the cell are
amplified into large end-to-end intracellular differenttesst control the motile ma-
chinery of the cell and thereby determine the spatial laegion of contact sites
with the substrate and the sites of force-generation ne&agdoduce directed
motion [41,7]. Movement of Dd and other amoeboid cells imeglat least four
different stages [37,44]. (1) Cells first extend localizedtpusions at the leading
edge, which take the form of lamellipodia, filopodia or psgpeodia. (2) Not all
protrusions are persistent, in that they must anchor to thstsate or to another
cell in order for the remainder of the cell to follow [45]. Rrasions are stabilized
by formation of adhesive complexes, which serve as sitemfdecular signaling
and also transmit mechanical force to the substrate. (3},Nefibroblasts acto-
myosin filaments contract at the front of the cell and pull¢b# body toward the
protrusion, whereas in Dd, contraction is at the rear anadyt@plasm is squeezed
forward. (4) Finally cells detach the adhesive contacteatear, allowing the tail
of the cell to follow the main cell body. In Dd the adhesive tzmts are relatively
weak and the cells move rapidly-(20pm/min), whereas in fibroblasts they are
very strong and cells move slowly. The coordination and @mf this complex
process of direction sensing, amplification of spatialedihces in the signal, as-
sembly of the motile machinery, and control of the attachinenthe substratum
involves humerous molecules whose spatial distributioneseto distinguish the
front from the rear of the cell, and whose temporal expresisidightly controlled.
In addition, Dd cells adapt to the mean extracellular sidgmad! [41].

Dd is a widely-used model system for studying signal tractdan, chemo-
taxis, and cell motility. Dd uses cAMP as a messenger foradigg initiated by
pacemaker cells to control cell movement in various stadgeteeelopment (re-
viewed in [38]). In the absence of cAMP stimuli Dd cells extgpseudopods
in more-or-less random directions, although not strictlysince formation of a
pseudopod inhibits formation of another one nearby for stme. Aggregation-
competent cells respond to cAMP stimuli by suppressingiexjpseudopods and
rounding up (the “cringe response”), which occurs withimab20 secs and lasts
about 30 secs [8,52]. Under uniform elevation of the ambd&NIP this is fol-
lowed by extension of pseudopods in various directions antherease in the
motility [54,55]. However, one pseudopod usually domisaéven under uniform
stimulation. A localized application of cAMP elicits therfiege response” fol-
lowed by a localized extension of a pseudopod near the pbapglication of the
stimulus [48]. How the cell determines the direction in whibe signal is largest,
and how it organizes the motile machinery to polarize anderiovthat direction,
are major questions from both the experimental and thexaletiewpoint. Since
cAMP receptors remain uniformly distributed around thd ceémbrane during
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a tactic response, receptor localization or aggregatiorigart of the response
[27]. Well-polarized cells are able to detect and respondnimoattractant gra-
dients with as little as a 2% concentration difference betwthe anterior and
posterior of the cell [35]. Directional changes of a shaligradient induce polar-
ized cells to turn on a time scale of 2-3 seconds [23], whelage changes lead
to large-scale disassembly of motile components and oreafi a new “leading

edge” directed toward the stimulus [22]. Polarity is labilecells starved for short
periods in that cells can rapidly change their leading edgemthe stimulus is
moved [48].

There are a number of models for how cells extract directiamfarmation
from the cAMP field. Fisheet al. [19] suggest that directional information is
obtained by the extension of pseudopods bearing CAMP rersephd that sensing
the temporal change experienced by a receptor is equivialeseinsing the spatial
gradient. However, Dd cells contain a cCAMP-degrading ereyom their surface,
and it has been shown that as a result, the cAMP concentriatioeases in all
directions normal to the cell surface [10]. Furthermoreren@cent experiments
show that cells in a steady gradient can polarize in the time®f the gradient
without extending pseudopods [41]. Thus cells must relyrelgton differences
in the signal across the cell body for orientation. Moreotee timing between
different components of the response is critical, becausdl anust decide how to
move before it begins to relay the signal. Analysis of a mdoethe cAMP relay
pathway shows that a cell experiences a significant diffexémthe front-to-back
ratio of CAMP when a neighboring cell begins to signal [10high demonstrates
that sufficient end-to-end differences for reliable orainn can be generated for
typical extracellular signals. An activator-inhibitor ahel for an amplification step
in chemotactically sensitive cells was also postulated. [@Bplification of small
external differences involves a Turing instability in thetigator-inhibitor system,
coupled to a slower inactivator that suppresses the primetiyation. While this
model reproduces some of the observed behavior, there imobdmical basis for
it; it is purely hypothetical and omits some of the major kmgwocesses. A model
that takes into account some of the known biochemical stapsbben proposed
more recently [32] and more detailed models that incorgosagnal transduction
and actin dynamics are under development, but to discuse tihedetail would
take us too far afield.

The objective of this paper is to derive equations for theytagion-level be-
havior of amoeboid cells such as Dd or leukocytes that inm@tie details about the
individual-based response to signals. We present sevexdglnwith the increased
complexity for which the derivation of population-levelwtions is possible. We
show how experimentally-measured statistics can be adddiom the transport
equation formalism. The paper is organized as follows. Brgmainder of this
section we discuss the classical description of chemotmdssummarize an ap-
proach to the derivation of macroscopic equations and aioul-level statistics
from individual-based models that incorporate internalalaes. In Section 2, we
establish the general setup for models of amoeboid cellsvemtesent individual-
based models which capture the essential behavioral resparfi eukaryotic cells.
In Section 3 we derive the macroscopic moment equations fremmicroscopic
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model and the dependence of the mean speed on the signatktierstudied.
Finally, we provide conclusions and the discussion of tlesented approachesin
Section 4.

1.1. Macroscopic descriptions of chemotaxis

The simplest description of cell movement in the presendeotti diffusive and
tactic components results by postulating that the flux déges given by

j=-DVn+ nu,, (1)

wheren is the density of cellaa,. is the macroscopic chemotactic velocity ands
the diffusion constant. The taxis is positive or negativeoading asu.. is parallel
or anti-parallel to the direction of increase of the chemtitasubstance'. Keller
and Segel [28] postulated that the chemotactic velocityvisrgbyu,. = x(S)V.S
and then (1) can be written as

j=-DVn+nx(S)VS (2

wherex(S) is called the chemotactic sensitivity. In the absence dfdieision or
death the resulting conservation equation for the cell iengx, ) is

% =V - (DVn —nx(S)VS) 3)
and this is called a&lassical chemotaxis equatiobdnless the distribution of the
chemotactic substance is fixed, (3) is coupled to an evaiwiguation for this
substance, and perhaps other governing variables.

Other phenomenological approaches to the derivation ottieenotactic ve-
locity have been taken. For example, by approaching tagia & mechanical point
of view, Pate and Othmer [42] derived the velocity in term$ooes exerted by an
amoeboid cell. Starting from Newton’s law, neglecting tr@reffects, and assum-
ing that the motive force exerted by a cell is a function ofdkteactant concentra-
tion, they showed how the chemotactic sensitivity is relatethe rate of change of
the force with attractant concentration. In this formwatithe dependence of the
flux on the gradient of the attractant arises from the diffiesein the force exerted
in different directions due to different attractant conications. Experimental sup-
port for this comes from work of [53], who show that as manyyzk®pods are
produced down-gradient as up, but those up-gradient are swwcessful in gen-
erating cell movement. We shall use a version of the mechbapproach to taxis
in a model described in the following section.

The first derivation that directly relates the chemotacétoeity to properties
of individual cells is due to Patlak [43], who used kineti@diny arguments to
expresai, in terms of averages of the velocities and run times of irtlial cells.
This approach was extended by Alt [1], who showed that foraasbf receptor-
based models the flux is approximately given by (2). Thesecguhes are based
on velocity-jump processes, which lead to transport equatof the form

SR V)V Vplxv,t) = —Ap(x,v.) A | T(v v )ploe vV (@)
14
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wherep(x, v, t) is the density of cells at positior € 2 C R"™, moving with
velocity v € V. C R™ attimet > 0, A is the turning rate and kern&l(v, v’)
gives the probability of a change in velocity from to v, given that a reorienta-
tion occurs [39]. External signals enter either throughradatieffect on the turning
rate A and the turning kernél’, or indirectly via internal variables that reflect the
external signal and in turn influeneeand/orT". The first case arises when exper-
imental results are used to directly estimate parametetisarequation [20], but
the latter approach is more fundamental. The reduction Jofo(¢he macroscopic
chemotaxis equations for the first case is done in [24,40]@hd

Some statistics of the density distribution in the first ¢cagieerein the external
field modifies the turning kernel or turning rate directlynaasily be derived and
used to interpret experimental data. To outline the promedue consider two-
dimensional motion of amoeboid cells in a constant chentiotgradient directed
along the positiver; axis of the plane, i.e.

VS =|VS| e, where we denoted e; = [1,0]. (5)

Moreover, we assume that the gradient only influences the angle distribu-
tion T'; details of the procedure are given in [39]. We assume fopbaity that
the individuals move with a constant speed.e. a velocity of an individual can
be expressed ag(¢) = s[cos(¢),sin(¢)] where¢ € [0,27). We assume that
T(v,v') =T(¢,¢") is the sum of a symmetric probability distributidti¢, ¢') =
h(¢ — ¢') = h(]¢ — ¢'|) and a bias ternk(¢) that results from the gradient of the
chemotactic substance. Since the gradient is directedjalmn positiver; axis,
we assume that the bias is symmetric abput 0 and takes its maximum there.
Thus we writeT (¢, ¢’) = h(¢ — ¢') + k(¢) whereh andk are normalized as
follows.

2m 2T
| ndo =1 | mops=o ©)
0 0
Let p(x, ¢,t) be the density of cells at positian € R2, moving with velocity
v(¢) = s[cos(¢), sin(¢)], ¢ € [0,2m), attimet > 0. The statistics of interest are

the mean location of celX (), their mean squared displacem@(t), and their
mean velocityV (¢), which are defined as follows.

xt)= - [ [0 dsox
D20 = [ [ I 1) v
Vi = [ [ Vot on asax
B0 = 5 [ [ viommixsn oo

whereNj is the total number of individuals present ait) is an auxiliary vari-
able that is needed in the analysis. Two further quantitias arise naturally are
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the taxis coefficienf, which is analogous to the chemotactic sensitivity defined
earlier because it measures the response to a directigmall sand the persistence
indexiy,. These are defined as

27 ™
X = / k(o) cos ¢ do and g =2 / h(¢) cos ¢ do. (7
0 0

The persistence index measures the tendency of a cell tincenn the current
direction. Since we have assumed that the speed is constantust also assume
thaty andi), satisfy the relatiory < 1 — 14, for otherwise the former assumption
is violated €f. (10)).

One can now show, by taking moments of (4), using (6) and sytnieseof i
andk, that the moments satisfy the following evolution equadif89].

dX av
dD> B,

whereo = A(1 — %4). The solution of (8) subject to zero initial data is

X(t) = sCy <t - )\io(l - e)“’t)> e, V(t) = sCr(1—e e, (10)
whereC; = x/(1 — v4) is sometimes called the chemotropism index. Thus the
mean velocity of cell movement is parallel to the directidnttee chemotactic
gradient and approachds,, = sCre; ast — oo. Thus the asymptotic mean
speed is the cell speed decreased by the factor

A measure of the fluctuations of the cell path around the eeplecalue is
provided by the mean square deviation, which is defined as

20 _ L o _ 2 20 2
PO =50 [ [ Ix=XOF oo dotx = D= X . (1)

Using (8) — (9), one also finds a differential equationdér Solving this equation,
we find

252 1 /5

and from this one can extract the diffusion coefficient as

2 2

D=221-02).

Ao
Therefore if the effect of an external gradient can be qtiedtiexperimentally
and represented as the distributib(y), the macroscopic diffusion coefficient,
the persistence index, and the chemotactic sensitivitbeasomputed from mea-
surements of the mean displacement, the asymptotic speeti@mean-squared
displacement.
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However, it is not as straightforward to derive directly timacroscopic evo-
lution equations based on detailed models of signal trastemuand response.
Suppose that the internal dynamics that describe signakttien, transduction,
processing and response are described by the system

dy
& = {9 (12)
wherey € R™ is the vector of internal variables arfflis the chemotactic sub-
stance § is extracellular cAMP for Dd aggregation). Models that dése the
cAMP transduction pathway exist [34,50,49], but for ddsicig chemotaxis one
would have to formulate a more detailed model. The form of #yistem can be
very general but it should always have the “adaptive” proptrat the steady-state
value (corresponding to the constant stimulus) of the gmuate internal variable
(the “response regulator”) is independent of the absolaheevof the stimulus, and
that the steady state is globally attracting with respetiiégpositive cone aR™.
We showed earlier that for non-interacting walkers therimiédynamics can

be incorporated in the transport equation as follows [1ELA(x, v,y,t) be the
density of individuals in 2N + m)—dimensional phase space with coordinates
[x,v,y], wherex € R" is the position of a celly ¢ V' c R" is its velocity and
y € Y C R™ isits internal state, which evolves according to (12). Thalation
of p is governed by the transport equation

8p / /

a+vx vp+Vy -fp p—i—//\ T(v,v,y)px, vy, t)dv' (13)
where, as before, we assume that the random velocity chamgeke result of a
Poisson process of intensily(y). The kernell'(v, v/, y) gives the probability of
a change in velocity fronv’ to v, given that a reorientation occurs. The keriiel
is non-negative and satisfies the normalization condiflpﬁ(v,v’,y)dv = 1.
To connect this with the chemotaxis equation (3), we havestivel an evolution
equation for the macroscopic density of individuals

wa:LK}@wJﬁww. (14)

The problem turns out to be tractable for systems that eretuh-and-tumble”
motion, such a&. coli. To illustrate this, assume for simplicity that the motisn i
restricted to 1D, the signal is time-independent, the speisdconstant, and the
turning phase is neglected; the general cases are treatgere [17,18]. Let™
(resp.p™) be the density of individuals moving to the right (respt)lethen (13)
leads to a “telegraph process” described by the hyperbgpdiem

ap %" Z 3y, Lfily. S)pt] =Ay) [-pT +p7], (15)

Op~  Op” N~ O - -
%—S%‘F;a_yi[fi()’vs)p =2 [P 7] (16)
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The essential components of the internal dynamics in theebhiatcontext are fast
excitation, followed by slower adaptation and return tolasal turning rate, and
these aspects are captured in the system [38]

dyi  g(S(z)) — (y1 +y2) dys  g(S(x)) —y2
== - and T (17)

Hereg encodes the first step of signal transductins the chemoattractant, and
7. andr, are time constants for excitation and adaptation, respeygtiThe com-
ponenty; adapts perfectly to constant stimulie., the steady state response is
independent of the magnitude of the stimukisTo obtain a macroscopic limit
equation for the total density(z, t) we incorporate the variableg into the state
and derive a system of four moment equations for variousitiesand fluxes [17].
Assuming that the turning rate has the foify) = Ao — by, for Ay > 0,0 > 0,
we show that this system reduces to the classical chematguigtion for large
times

bs?7,g'(S()) ,
ma_x‘[A0<1+2Aora><1+2AonJ (x’") (18)

o

on 0 <52 on

where the chemotactic sensitivity is given explicitly inntes of parameters that
characterize signal transduction and response. We hayeused the simplified
dynamics (17) to obtain the macroscopic chemotactic seitgitout this model
captures the essential aspects for bacterial taxis [430].7An open problem is
how one extracts the elementary processes of excitatioradagtation from a
complex network of the type used for signal transductioR.iroli. Finally, let us
note that the global existence results for (13) which is ¢edivith the evolution
equation for the extracellular signal were recently givefli4].

Equation (18) was derived for cells such as bacteria, thattie “run-and-
tumble” strategy, and our objective in this paper is to atieensimilar reduction
of the transport equation to a chemotaxis equation for moreptex amoeboid
eukaryotic cells. In the following section we introduce general setup for study-
ing amoeboid taxis. Then we study several “caricature” @rt@on” models for
amoeboid chemotaxis with the objective of deriving macopscpopulation-level
equations in each case. We start with a model which can capiteresting fea-
tures of eukaryotic motility without introducing additiahinternal state variables,
and then add internal state variables to the model.

2. Amoeboid taxiswith internal variables

A fundamental assumption in the use of velocity-jump preeeg39] to describe
cell motion is that the jumps are instantaneous, and thexeifie forces are Dirac
distributions. This approximates the case in which vergediorces act over very
short time intervals, and even if one incorporates a regsiingmbling phase, as
was done in [40], the macroscopic description of motion ishamged. This is
appropriate for the analysis of bacterial motion (and oflystems that use a “run-
and-tumble” strategy), as summarized above, since theteff¢he external signal
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is to change the rotational behavior of the flagella, and swfar as it is under-
stood, to affect the force generation mechanism itself. él@s the situation is
very different when analyzing the movement of crawling gelor here the con-
trol of the force-generation machinery is an essential comept of the response.
While amoeboid cells such as Dd extend pseudopods “randamtlye absence of
signals, the direction of extension is tightly controlledhe presence of a directed
external signal, and the direction in which forces are eddn the substrate is
controlled via the location of contacts with the substrateerefore it is appropri-
ate to incorporate the force-generation machinery as paneanternal state, and
as a first step we condense this all into a description of hevidlte exerted by a
cell on its surroundings (andce-versa depends on the external signal. In reality
amoeboid cells are also highly deformable, and a completeréical treatment
of taxis at the single cell level has to take this into accotihts is currently under
investigation but will not be pursued here; instead we omyalibe the motion of
the centroid of the cell. However, the following framewosksiufficiently general
to allow distributed internal variables within a cell.

Hereafter we usg as it appears in (19) to denote the chemical variables in-
volved in signal transduction, control of actin polymetiea, etc, and we denote
the force per unit mass on the centroid of a cel/Bik, v, y). Therefore the inter-
nal state equations are given by

dy
Y —6(y.5) 19)

and the velocity evolves according to

(jtl_‘t’ =F(x,v,y). (20)
HereG : Y x S — Y is in general a mapping between suitable Banach spaces and
F:RY xRN x Y — RY whereN = 1,2, or 3 is the dimension of the physi-
cal space. This generality is needed because the vagatda include quantities
that depend on the location in the cell or on the membranewdrich may, for
example, satisfy a reaction-diffusion equation or anodvetution equation.

The cell is therefore described by the position and velooityts centroid,
and the internal statg € Y. In some important cases described later there is a
projectionP : Y — Z C Y from Y onto a suitable finite-dimensional subspéate
obtained for example by considering the first few modes iniakle basis fofy,
such that

PG(y,S)) = G(z,S) and F(x,v,y)=F(x,v,z), where z=7Py.
(21)

HereG(-,S) : Z — ZandF(-,-,-) : RV x RY x Z — R are mappings between
finite-dimensional spaces. The first equality defines thetfan G, though it may
of course be difficult to find whe@ is nonlinear. The functioR is explicitly given
by the second equality when the reduction is possible.

Given a suitable choice of the projecti®) we can reduce the infinite-dimen-
sional system (19) — (20) to the following set of ordinaryfeiéntial equations in
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finite dimensions for the description of individual cells.

dz
P G(z, S) (22)
z—‘t’ =F(x,v,z) (23)

Next, letp(x, v, z,t) be the density of individuals which are at poitwith ve-
locity v and with the vector of reduced internal variablesthen the transport
equation fop(x, v, z, t) can be written in the form
%—i—vx-vp—i—vv-Fp—l—Vz-Gp = —/\(z)p—i-/ ANz)T (v, v, z)p(x, Vv, z, t)dv’.

' (24)
A crucial assumption for using the transport equation fdisnais that the pro-
jectionP exists; at present we do not know how to extend this framewmn
infinite-dimensional manifold. Examples of models for whithe projectionP
can be found will be given in the following sections, and iagh cases we can use
(24) as the starting point for obtaining macroscopic equmsti As described ear-
lier, the right-hand side models the instantaneous chaofygisection of motion,
and in the present context we use this to describe the smetilfitions due to ran-
dom “errors” in the sensing of the signal and possibly to aririnic mechanism
for random exploration of the local environment. Tranquiind Lauffenburger
[51] developed a model of amoeboid movement that focusesfagdly on the
stochastic component.

A natural question is what can be done if a suitable projeciads not eas-
ily computed, or if the explicit form ofz is impossible to obtain because of the
complexity of the mapping. In some cases it may still be possible to describe
the macroscopic-level dynamics by the evolution of a fewvslariables, and by
using computational equation-free methods which are atlgréeing developed,
to obtain populational level quantities without expligitleriving the macroscopic
equations (see [29, 16, 15] and references there), usingretie full model of the
amoeboid cell or the best available reduction of it.

In the remainder of the paper we give examples of the reduaifo(19) —
(20) to the form (22) — (23) and the derivation of macroscagjoations via the
transport equation (24), in order to understand how the [ation-level dynamics
depends on the characteristics of the individual behaWerstart with a motivat-
ing example in which we further reduce the system (22) — (3Ba¢suming that
dim Z = 1 and that the functiofx transduces the signal directhe.,z = S.

2.1. A motivating example

To illustrate how the effect of acceleration of the cell catee into the macro-
scopic equations, we consider the example of motion of aiodie plane in
response to a wave of a chemotactic substance. The typsabmse of Dd or
leukocytes to a pulse-like wave of the chemoattractant eadiaded into several
phases depending on the position of the cell relative to @nevi21]. In Figure 1
we distinguish five different phases - denoted (A) — (E). Bethe wave arrives
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direction
‘ ‘ < of wave

Phase (B)

Phase (A)

Phase (E)
Phase (E)

Fig. 1. The notation for the different phases of the wave of chemaaadint seen by a cell at
a fixed spatial position, as a function of time. The horizbaxgs is the time and the vertical
axis is the amplitude of the signal.

at the cell, there are no directional cues in the environraendtthe cell extends
pseudopods in all directions — Phase (E). When the waveearthe cell experi-
ences an increasing temporal gradient at all points of itfase and can detect a
front-to-back spatial gradient over its length (where frdanotes the direction of
the oncoming wave), which causes it to polarize in the dioecdf the oncoming
wave. This is Phase (A) in Figure 1. In Phase (B) lateral pspad formation is
suppressed and the cell moves more-or-less directly tanhrlaggregation cen-
ter at a speed of 10-20m/min. In natural cAMP waves the cAMP concentration
at the peak of the wave is high enough that in Phase (C) the stelb translocat-
ing and depolarize. In Phase (D) the temporal gradient isnag although the
spatial gradient is positive in the outgoing direction, dhe cell begins to form
pseudopods in all directions. This is presumably due to sidaptation to the de-
creasing cAMP signal, and as we shall see, if it is too fastc#ils may reverse
direction and follow the outgoing wave. In Phase (E), thenead extracellular sig-
nal present and there is not net movement of cells. This lzesseis not described
in [21] but it is of interest to include this to describe the tton in the absence
of a stimulus. Formal rules used in the context of an indigidoased model of
Dd aggregation show that population-level aspects of chaxmsuch as stream
formation can be reproduced if the foregoing phases aregpipimcorporated [9].
How to incorporate the response characteristics that methese behaviors into
a continuum description is the question addressed here.

The following example is not meant to provide a realisticadiggion of taxis,
but rather to motivate the analysis done later. In a coarsegbr-level description
of movement in response to signals, information carried H®y eéxternal signal
detected by a cell is transduced through the intracellitarading network, and
during deterministic turns the velocity of the cell followlse external gradient
with some delay. We write Newton’s law for the motion of thetreid as

dv  g(VS)—-v

@~ (o) (25)

where we assume that the relaxation (or adaptation) tind8) is a functional
of S. The termg(V.S) can be interpreted in terms of the force generated from
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the extracellular signal, or more precisely, as the miaopscchemotactic veloc-

ity. Typically g(V.S) vanishes at zero, is monotone increasing, and saturates for
largeVS. The dependence of,(S) on .S could arise, for instance, from different
responses of the intracellular dynamics to increasing awtedsing signals; or
from alterations in the adhesion sites between cell andtsatbsIn earlier work

the turning behavior was incorporated via rules [9], rathen via an equation of
motion such as (25).

To demonstrate that this model can capture some of the s&digtures of Dd
aggregation in response to cAMP waves from a pacemakerrcem@gresent the
results of cell-based numerical simulations that use (8bjHe velocity, given a
suitable choice of, (S). We consider a two-dimensional disk (corresponding to a
Petri dish) of radiu$ mm, and we specify a periodic source of CAMP waves at
the center of the domain. The period of the waves is seventasntheir speed
is 400um/min, and the maximal speed of a cell is abou20 per minute, all of
which are chosen to approximate natural waves in a Dd agtioegizeld. More
precisely, we choosg(V.S) = soVS/(cs+ ||VS||) wheresy = [20um/min], and
cs measures the sensitivity of the signal transduction mdsharn the numerical
examples we choose a wave with maxim|jWiS|| equal tol mm~! andc, =
10~*mm~1. Initially the cells are distributed uniformly and we intiggte under
what conditions the cells aggregate at the source of the smalvehemoattractant
S. We consider the following two choices for the dependence,6f) on the
external field.

(1) 7,(S) is a constant independent of the sigral Figure 2). In this case there
is no aggregation, and in fact, cells move to the boundar@ftetri dish. This is
not surprising, because cells move in the direction of tkegiasing gradient of the
attractant, and cells first move toward the source and thenatound. Although
the wave is symmetric, the cell movement creates a cellidappler effect” in
that there is an asymmetry in the time the cell detects thaidwdirected gradient
at the front of the wave versus the time it sees the receding wEhus in every
cycle it moves away from the source longer than it moves tdviarand cells
eventually accumulate at the boundary.

t=4000 min

4 -2 0 2 4 mm -4 -2 0 2 4 mm

Fig. 2. Simulation of 5000 cells that move according t(25) when the relaxation time
7, (.9) is constant. We plot the positions of cells at 0 (left) and att = 4000 min (right).
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(2) In this case the relaxation time is specified as a functiohetime derivative

of S at the position of the cell, e., 7,(S) = 7,(S:). 7, is chosen so that cells turn
rapidly when the temporal derivative is positive and slowligen it is negative.

In our numerical example, we simply put = 0.5 min for S; > 0, andr, = 5

min for .S; < 0. The results are shown in Figure 3; here one sees that the cell
aggregate at the source of the waves.

These cases show that reorientation that is adaptive wsther to the tempo-
ral gradient of the signal suffices to produce aggregatisnwas found earlier in
formal cell-based rules [9] and used previously in macrpgcdescriptions based
on the classical chemotaxis equation [46, 25].

t=200 min

0 2 4 mm -4 -2 0 2 4 mm

Fig. 3. Simulation of cells which move according(2b) when the relaxation time, (S) =
74 (St) is chosen so that, is small (0.5 min) wher$; is positive and large (5 min) when
S; is not positive. The positions @f000 cells at different times are plotted.
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Next we address the derivation of a macroscopic descrigtmm the trans-
port equation, using the direct effect of the signal on thaihg given by (25).
We denote byp(x,v,t) the density of individuals which are at poigt ¢ R?
and have velocityy € V C R? at timet. Here,V is a set which is deter-
mined by the external signal and by system (25). We also asshat there is
a signal-independent component to the turning for whichkévaelT is given by
T(v,v'") = (27v9)15(|v — v/| — vg), wherev, > 0 represents the magnitude
of the random component &f. The cells add a small random component to their
velocity at a rate\. Now p(x, v, t) satisfies the transport equation

9p g(VS) —v\ ]
ap + Ve vV Kiﬂj(S) p| = (26)
_ A _ A _ ! !
Ap(x, v, t) + e /‘/6(|v v'| —vo)p(x, v, t)dv'.

We define the macroscopic densityand macroscopic flukvia

n= [ pixv.tyv, i= [ vpbxv.tv, (27)
1% 1%

and by integrating (26) over, and multiplying (26) byv and integrating ovev,
we obtain the following evolution equations ferandj:

on .
E—FVX-J—O (28)
0j .1 o

The convective flux;, = fv vvEp(X, v, t)dv that appears in (29) introduces a
higher-order moment, and in earlier work on bacterial chixis we could justify
the closure hypothesig, = ns2d;x/(2\0), Wheres is the speed of a bacterium
and )\, the baseline turning frequencygf([18]). Since the speed is not constant
during “runs” in the amoeboid case, we must use a differept@gch here. By
constructing the evolution equation fgy, and assuming that it relaxes rapidly in
time, i. e, neglecting its time derivatives, and neglecting the thlirder velocity
moments, we find that th& x 2 tensor; has components

2
L‘x)/\vomﬁk + % (9iJk + grJi) » fori,k=1,2. (30)
This leads to two possible closures, (i) by keeping only teerder moment
(the term involving n), or (ii) by keeping both the zero-orded first-order contri-
butions. We use the first of these here and find that the sy&8jn-((29) becomes

jik (X7 t) =

on .
0j 7o (S)A\vd 1 -~ J
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In this form we identify the macroscopic chemotactic velpeind the chemotactic
sensitivity as
1 g(Vs)
X = :
(S) VS

where the latter only makes sense if we assumegf®tS) = ¢g(VS)VS. Ifin
additiong saturates for large arguments, the velocity saturatestenddnsitivity
goes to zero in the presence of large gradients, as one sbxpdat.

One sees that at this level of closure, the relaxation ratieeofiux on the right
hand side of (32) is signal dependent, but if we were to supgwtr, (S) = 7o
is independent of then the system (31) — (32) can be written as the second order
equation

U, = g(VS)

9’n  On TN

T T
which is the hyperbolic form of the classical chemotaxisapn. In this form
the macroscopic diffusion coefficiedt = 73 \vZ /4 depends on both the random
turning rate) and the relaxation time, for the directed turning. However, f(.S)
is signal dependent the system (31) — (32) does not redus8}ce(nd this suggests
that one cannot expect to obtain the classical form of thenchaxis equation
when internal states are taken into account explicitly. i@ndther hand, as we saw
in the simulations above, one cannot avoid the “back-ofaténe paradox” without
either a signal-dependent [9,12] or an explicit dependence of the chemotactic
sensitivity on the rate of change of the signal [46,25]. Letnate that we can
treat similarly a modification of (25) where we allow the fertw depend directly
on the time derivative of the signal. This can be done by @péag(VS) with
g(VS, Sh).

To illustrate the consistency of the macroscopic equa®®) ith the micro-
scopic model for a static attractant gradient, let us cardite cell-based numer-
ical simulations ofV, individuals whose velocity is governed by (25). We denote
the positions of individuals as;(t), i = 1, ..., Np. Then the quantities of interest
are the mean position of individuals and the mean squareatienj and for the
discrete-cell analysis these are defined as

An =V - (ng(V9)), (33)

1 1 X
X() =5 Lox()  and o) =5 Y k() - X (39
i=1 i=1

By multiplying (33) byx and integrating ovek, then computing the variance,
much as in Section 1.1, we find that for long times the macnoiscdescription
predicts that

X(t)=g(VS)t and  o*(t) = 72 L. (35)

To compare the theoretically-derived results (35) withdak-based computations,
we choosey = 1 min,A=1min" %, vy =1 pm/min, Ny = 10* cells,g = wld,
wherew = 20 um?/min, andV S is given by (5) with||[V.S||= 1 um~!. We place
all cells at[0,0] and set their velocities to O initially, compute their sulpsent
motion, and plot the first componentXf(¢) ando?(t) (as given by (34)) in Figure
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slope=1 umV

6 8

(a) (b)

[

N

o
o]

-
N}
o

slope=20 pm/min

i

o

o
o

PN
o o
N

mean position (><1 coordinate) [um]
N o]
o o

mean square deviation o2 [pmz]
I

o

o
o

4 6 8 2 4
time [min] time [min]

o

Fig. 4. Time evolution of statistic34) obtained from the cell-based simulatiq@a) First
component ofX (¢) as a function of timeb) Mean square displacement(t) as a function
of time.

4. We see that after an initial transient period both quigstiyrow linearly with
time, and the slopes are asymptotically equal to the slopdiqied theoretically
using (35).

2.2. The infinite-dimensional model and its finite-dimenaioeduction

As discussed earlier, analysis Bfcoli chemotaxis shows that the microscopic
behavior can be translated into the macroscopic parametedsit is desirable
to do the same for amoeboid chemotaxis. However, as notdidretaie internal
state may now live in a Banach space, and a reduction to fiimtertions is
necessary. We start with the description of excitationpéation dynamics on the
cellular membrane to model directional sensing and redueedsulting system.
For simplicity we suppose that a cell is a disk of radilug he state of a cell will
be described by the positionand velocityv of its centroid, and several internal
variables on the membrane. The membrane of the cell can loeilnes as the set

M = {d[cos(f),sin(0)] | 6 € [0,27)}. (36)

The local state at each point of the membrane will be spedifiethe (infinite-
dimensional) internal state variabley(6,t) = [y1(0,1),y2(0,t)]T, 0 € [0,2m),
whose evolution is governed by the “excitation-adaptdtmartoon model (17).

In the formalism of equations (19) — (20) this means that therhal statey(¢) :
[0,27) — R? can be viewed as an element of the Banach space of integrable
2m-periodic vector function¥ and evolves according to

% (0.0)= 560,17~ Ty(o.) (37)
for 6 € [0,27) andt > 0. Here
S(6,t) = S(x+de(6),t), e()=lcos,sinf)", T=[r" 7",

and
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They-variables correspond to those in (19), and we project tteefiaite dimen-
sions by considering the first Fourier modeygfand the first two Fourier modes
of yo, the latter multiplied by the constaitd. Thus we define the average internal
variables as

2m

a(t) = (1(0). 2(0)" = 3= [ y(0.00. (39
2

alt) = (). ()" = 2= [ e(O)a(o. )0 (39

To derive equations for the reduced finite-dimensional Bgtternal variables(¢)
andq(t), we use the approximation

S(0,t) ~ S(x,t) +de(d) - VS, (40)
and therefore have

%(e’t):S(x,t)—l—de(@)-VS—yz(H,t)’ 41)

Ta

for @ € [0,27) , ¢t > 0. Multiplying (41) by 1,cos(8) or sin() and integrating the
resulting equations with respectfiowe obtain

dzo  S(x,t) — 22

E = —Ta (42)
dq VS(x,t) —q
dt Ta ’ (43)

Thusz, relaxes to the signaf(x, ) andq relaxes to the directional information
of S, both with the decay rate,. To interpretz;, we assume fast excitation €.,

7. = 0). Then using the fact that, = S — y, and integrating (41) with respect to
6, one finds that

%:g—f(x,t)+v~v,§(x,t)—i—:. (44)
By integrating this one sees that tracks the Lagrangian derivative 6f taken
along the cell's trajectory, with a memory determinedy the smallerr, the
faster the cell forgets the history of this derivative. Takegether, the four vari-
ables(z1, 22, ¢1, g2) contain information about the rate of change of the signal
along the trajectory), the local value of the signat{), and the gradient of the
signal @). To this set we will add the polarization axis= (u1,us) in the next
section, and the result will be the smallest set of variatiles is able to capture
the phenomena described earlier. Consequently, the siriplpothesis is that cel-
lular motility depends only on these six variable®., thez used in (22) has six
components.
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2.3. The motility model

The next step is to build this model for the internal dynaniide a description
of cellular movement in order to reproduce some of the expental behaviors
observed for eukaryotic chemotaxis. As we saw in SectionRdlor leukocytes
respond to the waves of chemoattractant by moving towarddlece of waves,
and the five different stages of the wave with different bédval responses of
the cell are schematically shown in Figure 1. These and warather cell types
also polarize after sufficient exposure to a directionahald26]. In order to build
directional sensing, polarization and response to waveestire model, we dis-
tinguish three distinct states of cells: (1) polarizedselhich are motile (MPC),
(2) polarized cells which are resting €., non-motile, denoted RPC), and (3) non-
polarized cells which are resting (RUC). The signal tramsidm machinery for
all types is described by the membrane-based model (36) )+ {87 difference
between the types is in their motility behavior.

We describe a motile polarized cell (an MPC) by its positigrits velocity v
and its internal statg, as before. However, instead of defining the force directly
in terms of the signal, as was done in (25), we assume thadtbe is proportional
to the projected internal variabtg(defined by (39)), which tracks the gradient of
the signal €f. (43)). Thus we write the equations of motion for a cell as

dx dv. yq-v

— =, R
dt dt Td

: (45)

In a steady gradient of the signalrelaxes toV.S on the time-scale,, andv
relaxes toyq on the time-scale; thus the models predicts steady motion in a
constant gradient. One expects that in gengrat 7,. However, as we saw earlier,
to explain the back-of-the-wave behavior [21] the respdnsthe wave must be
biased toward moving when the signal is increasing in tinsanahe front of the
wave. It is known that Dd cells and leukocytes stop trandingaand lose their
polarity in Phase (C) of a wavef( Figure 1), which introduces an asymmetry into
the response, and to capture this we introduce a restirg #taesting cell (either
an RPC or an RUC) is described by its positwrand its internal statg < Y,
and these cells may also have a polarization axis (u1,u2). We assume that
the position of a resting cell is fixed and that the internatesevolves according
to (37).

Finally, we must postulate how transitions between theetistates depend on
the signal €f. Figure 5). We assume that the motile cells retain their ftylapon
stopping, and that the transition rate from the motile torésing polarized state
depends onr; as shown in Figure 5. A moving cell “computes” the directibna
vectorq and the average around the perimeter of the internal varigbwhich is
z1, according to (43) and (44). The interpretation of Figurenl the justification
for the postulated dependence of the transition rates legtwtates on; are as
follows.

() If the Lagrangian derivative of the signal along a cell’'gdcdory is negative,
thenz; decreases ankl, the transition rate from the motile state to the resting
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R

RUC

MPC <= RPC
Kz

Fig. 5. The allowed transitions between cell states. The transitages depend on the in-
ternal statez; as follows:ka1 = A1 — b121, k12 = A2 +b221, k13 = A3 +b32z1, k32 = Ao.

polarized state, increases. The resting polarized cefpsdppolarization equal to
the velocity vector before it stopse., u = v after the transition.

(i) If a cell is resting and there is an increase in the signalp theincreases
and it is more likely to move. If the cell is unpolarized, thiém initial velocity
(polarization) is zero and the timg reflects the time delay needed for polarization
of the cell. If the cell was already polarized then its ifitialocity is equal to the
polarization vectoi, e.,. we setv = u, and the time delay; reflects the relaxation
time for turning, if it is necessary.

(iii) A resting polarized cell looses its polarity at a rate and thus polarized cells
which do not receive a stimulus for a long time lose their gla

Next we demonstrate that the model can successfully sobvbdbk-of-the-wave
problem [12,21]j. e, cells will aggregate at the source of the attractant waves.

2.4. Aggregation when resting states are incorporated

The internal dynamics modglwritten in terms of (19) is given by (36) — (37), and
every cell is described by its positionc R?, its velocityv € R?, its polarization
axisu € R? and its internal state functign € Y. To computez; andq, the radius
of a cell is set tal = 7.5 um, and we discretize the cell boundary (36) using

meshpoints,

.-
0,=—L  for j=1,2,....m—1,m.
m

Then the state of each cell is described by 4)-dimensional vector

(X7V7y(91),y(92),-- 7y(9m)) (46)

Here,v denotes the velocity for an MPC and the polarization axisaforRPC.
We can simply set this equal to 0 for RUCs, which are then desdrbym +

2 variables. The internal state variablg®,) evolve according ton equations
of the form (37), which are uncoupled because there is nepan along the
membrane. The evolution of andv is described in Section 2.3. At each time
step we use thg(¢;) to numerically approximate integrals (38) — (39) and thgreb
computez;, which is needed for the computation of the transition réietsveen
different states as shown in Figure 5, appdvhich is necessary for the integration
of (45). Throughout we use: = 50, and therefore every cell is described by a
54—dimensional state vector (46).
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As was done for Figures 2 and 3, we consider a two-dimensidisklof ra-
dius5 mm, and we specify a periodic source of CAMP waves at the cefithe
domain. The period of the waves is seven minutes, their sige®® ;m/min, and
the waves are scaled so that the maxim[Wib|| is 1 mnt 1. Initially the cells are
distributed uniformly. We use the following base transitimtes and sensitivities
in the transition rates;; given in Figure 5:

M=X=X=1min"!, XN=02min"! and by =by=b3=b (47)

Later the parametérwill be varied ¢f. Figures 6 and 7). The time constants are
chosen as

7. =0 (fast excitation) 7o = 0.5 min, T4 = 2 min. (48)

The two parameters which have yet to be specifiechaireequation (45) and.
The parametety simply rescales the speed of cells. We know from experiments
that the maximal speed of a cell is about2® per minute, which can be used to
fit the value of the parametet We found that fory = 0.08 mm?/min, the average
speed of cells on the steepest part of the wave front is betd@gm per minute
and 20um per minute in all simulations. Hence, we usgd- 0.08 mm?/min to
compute the plots shown in Figures 6 and 7.

The parametel specifies how strongly the turning rates dependpand we
tested three possibilitigs= 0, b = 1 min~! andb = 2 min~!. If b = 0 the transi-
tion ratesk;; are independent of;, and the time evolution of the cell positions is
shown in Figure 6. We see that in this case there is ho aggoegathich is similar
to what was shown earlier in Figure 2 where we considered igetwithout the
internal dynamics and with a constant relaxation time. Témputational results

t=1000 min

4 -2 0 2 4 mm 4 -2 0 2 4 mm

Fig. 6. The cell distribution as a function of time for= 0. Positions 05000 cells at times
0 min and1000 min for periodic waves of chemoattractant.

for b = 2 min~! are shown in Figure 7, where the aggregation time is compara-
ble to the eight hours observed experimentally. The regoits = 1 min~' are
similar - the only difference is that the aggregation is foresults not shown).
Using (47), we see that the transition rates (which depend poan be expressed

in units of Mim! askis = ki3 = 1 4 bz andky; = 1 — bzy. Sincebz; is
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approximately in rangé-0.35,0.35] min—! for b = 1 min—! and in the interval
[—0.7,0.7] min~! for b = 2 min~!, it implies that the turning rates are in the inter-
val [1—0.35,1+0.35] min—! for b = 1 min—! and in the intervall —0.7,1+0.7]
min—! for b = 2 min—!. As will be seen in Section 3, the moment approach used
there is justified whemz; is small,i. e, for small bias of the turning rates. The
error may increase significantly for largdecause the higher order moments may
not be negligible.

t=100 min

t=300 min

t=1000 min

2 4 mm -4 mm

Fig. 7. The cell distribution as a function of time fér= 2 min~!. Positions 0000 cells
at times0 min, 100 min, 200 min, 300 min, 500 min and1000 min for periodic waves of
chemoattractant.

In these figures, as in the preceding ones related to aggrag#tere is no
stream formation such as is observed during aggregatiordofHere cells always
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move radially inward toward the source because the wavama@sed and are ax-
isymmetric. In the presence of signal relay, as in Dd, it wasas earlier [33] that
signal relay combined with a random initial distributiona#ls plays an essential
part in stream formation.

3. Transport equations

Next we show that the microscopic model for signal detectiansduction and
movement can be embedded in a system of transport equatidnthence into
a system of moment equations for macroscopic quantitieshdoend, note that
every cell with the sam, v, z1,q and same polarization state will follow the
same rules for movement, so it is natural to introduce degfiigitctionsp?, p?, p3
as follows:

e pl(x,v, 21, q) is the density of moving cells at positionwith velocity v and
internal moments, q;

e p%(x,u,21,q) is the density of resting polarized cells at positiorwith po-
larization axisu and internal moments;, q. To simplify the form of resulting
transport equations, we denote the polarization axis asv in what follows;

e p3(x, 21, q) is the density of resting unpolarized cells at positioand with
internal moments, q.

Hereafter we assume excitation is fasg,, 7. = 0, and we use the approximation
given at (40) for the signal. The evolution of internal vatesq, z; is therefore
given by (43) — (44). In order to simplify the following eqigis forp', p? and
p3, we define an operataf by

or 1 0 0SS =
ET—a-f—vq'|:T—a(vs—q)7°:|+a—21|:(§—g)7{|, (49)
then the transport equations for, p? andp? are
1 1 1 1 8 1
Lp' = —Vi-vp' =Vy- | =(ya=v)p'| = 7 [(v-VS)p']
Td 82’1

— (A1 = brz1)pt + (A2 + ba21)p? + 6y (A3 + b3z1)p®, (50)
Lp* = (M — b1z21)p" — (Mg + baz1)p? — Aop?, (51)

Epg = )\0/ deV — (/\3 + bgzl)pg. (52)
14
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whered, is the Dirac function. Next we define the macroscopic desssitif parti-
cles in different states as follows:

wiet) = [ [ peviana)dvdada, (53)
v Jrs

n2(x,t):// ]92(x,v,21,q)dvdzldq7 (54)
v JRr3

wxt) = [ pxa)dada, (55)
]R3

n(x,t) = nl(x,t) + n?(x,t) + n3(x,t), (56)

wheren(x,t) is the total density of cells. Here and hereafter the supiptsc
denotes a quantity associated with thespecies, foi = 1,2, 3. If an evolution
equation inn(x,t) alone could be found the problem would be reduced to the
classical case. However we will see that this is not possibtgeneral. First, we
define some additional moments that arise in the usual manmmr (50)-(52)
during derivation of moment equations. More precisely, e the evolution
equations for (53) — (56) and for the following moments

jf,k (x,1) :/ / urp' (X, v, 21, q)dvdz; dg, 1=1,2; k=1,2; (57)
v JRr3

n;k (X7 t) = / / qkpi(X,V, 21, Q)ddeldq 1= 17 27 k= 17 27 (58)
Vv JR3

ni(x,t) :/ / zlpi(x,v,zl,q)dvdzldq 1=1,2; (59)
v JRs

”2k (x,1) = /}R3 (Mo?’(x7 z1,q)dz1dq, k=1,2; (60)

nict) = [ st a)dada (61)
RS

Multiplying (50)-(52) by1, vy, v2, q1, g2 Or z and integrating with respect to, q
andz;, we obtain the evolution equations for moments (53) — (6h)s ystem of
partial differential equations is not closed - it contaioe® higher order moments
of the following form

7 ki, ks ks ka _ks, i
My kg ks, ka, ks (Xv t) :/ /3 v11v22q13q24215p (vavzlvq)dqudzlv
V. JR

mil ko, ks (X7 t) = 5 Qiﬁ QSQ Z{C%pl (X7 Vv, 21, q)dqdzlv
R

wherei = 1,2, k., « = 1,2,3,4,5, are nonnegative integer, and the superscript

ko on terms in the integral denotes tkg-th power of the corresponding vari-

able. The simplest way to close the moment equations is hingdb zero all

higher-order moments which do not appear in (53) — (61). Mwezisely, we use
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i i - 1 — 1 — 1 —
the following closure assumptiol: = mj 1 990 = M30.0.00 = M0,2000 =

m},o,l,o,o = m(lJ,l,l,o,o = m%,0,0,l,O = Mp1,01,0 = ™M1,0,00,1 = M0,1,001 —
M0,1.01 = M90011 = Mh0002 = M3 0001 = M01001 = Mio1,01 =
M3 0011 = M30.002 = m?m =mj,, = m302 = 0. This closure assump-
tion can be justified for shallow gradients of the signal [17]

Under this assumption, we multiply (50)-(52) Ry v1, v, ¢1, ¢2 OF 2z, we
integrate with respect to, q andz;, and we discard the higher-order moments;
the result is the following closed system of 16 macroscogicgions.

0 ajt 95l
(;; + 8151:1 + 8]:1:2 = —\nt + 2on? + A3n® + binl + byn? 4 ban?, (62)
1 2
on? 1 2 1 2
W = A\n — ()\2 + )\o)n - blnz - b2nz7 (63)
3
36% = Aon® — Agn® — byn, (64)
djl 1 . ) .
6tk B T_d [’Yntllk _jik} = _/\1-711;k + /\QJSM k=12, (65)
8j3k -1 -2
ot = Ajy, — Qe+ Xo)is,, k=12, (66)
onl 1 08 1
on? 1 08 1
G gt bl = g = (Aol k=12, (68)
on3 1 08 1
azk _ T_a—xkn -+ T—n3 = /\Q?’Lglc — )\3”2}6, k= 1,2, (69)
onl 08

z

2
8t_§ g

on? 89S , 1 , 1 2
at _ En —+ T—anz = )\1715 - ()\2 + /\O)nzv (71)

= —Ainl + Xon? 4+ Agnd,  (70)

on: 9S 5 1 4 9 3
5 o —i—T—anZ = Aon; — A3n; (72)

Note that the sum of equations (62) — (64) is the standardrogtyt equation for
n,i.e,
on  0jy, | O,
ot + 0x1 0xo

—0. (73)
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The system (62) — (72) can be written more compactly by defittie following
vectors and matrices.

n =(n!,n,n3)7T n, = (n!,n2,n%)7"

z? z) z

ng = (nqlvnqz)T = ("élanglnglanézangzangz)T
C 4o o o\
5= Goirdoa)" = b, 300 Gy do) " V= <8—:101’8—:v2>
-1 Ao A3 Y o
0 AO _)\3 1 2 0
b1 by b3 10 10
B=|-b —b 0 J=100 Jl:{oo} (75)
0 0 —b3 00

We further define the tensor product of &nx s, matrix X = {xik}ffk’fl with an
s3 x s4 matrix’Y = {y;;}7%7 to be the(sys3) x (s254) matrix

.CC171Y ILQY $1752Y
XY = .
T, 1Y g, 2Y ... Tg, 5, Y
Then (62) — (72) can be rewritten in the form

g—?—F(VT@J)j:AnJanZ, (76)

On, 0S 1 T :
o _EH(A_T_QIP,)nﬁ(v S®J)j, (77)

g _ (Ve o (A - i13) n, for k=1,2, (78)
Ta

ot Ta
AR 0 1 .
6tk = T—dJank + <A1 — T—dJ1>Jvk for k=1,2. (79)

whereinly is k x k identity matrix. This system can in turn be written more com-
pactly as the system

U
%—t +DU = A(x,t)U (80)
wherein
0 0 00
n

0 0 0O
u=| ™|, D= , Q=vT®J, (81)

n.q 00 00O

J 0 0 0O
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and
r A B 0 0 7
oS 1 T
N ol (A - EIP,) 0 (VST @J
A ® I3 0 L ® (A— i:[3) 0
a Tll
1
0 0 1,037 Lo <A1——J1
L Td Td i

(82)
We should note that discarding higher-order moments caundidi¢d for the small
signal gradient case in which the second moments of intearédbles are suffi-
ciently small compared to lower- order moments [17]. It igortant to note that
the second order velocity moments ; o ¢ o, 3.0.0.0.0 &AM 5 o 0. o Were also
set to zero because we do not have an obvious moment closuhefo similar to
what was used in the bacterial case [18], where the Cattggmoximations could
be used.

To obtain a better approximation of these moments we canvidhe reasoning
that lead to the closure (30) earlier. To illustrate this ule modify the taxis model
by adding a random component to the cellular movement, namelchange the
transport equation (50) to the following equation fdr

1 0
Lplz_vx'vpl_vv' |: ('YQ—V)p1:| _a_zl[(v'vs)pl}

Td
At / T(v,v)p (Vi 21, q, A — (A — buz)pt (83)
Vv
+(Xe + bzzl)p2 + 0y (A3 + b321)p3

where the turning kernel is given By(v, v') = (2rvg) 16 (|v—v'|—vg) similarly

as before, andy and\ are positive constants. The rationale behind this kernel is
to incorporate some noise into the system, apdpecifies the “strength” of this
noise. If we follow the previous procedure, we would obtdia same system of
equations (80), which are independentugf This is not suprising - we already
saw in Section 2.1 that equation (33) contains the diffuséom if the apropriate
closure assumption is derived from (30) and used for thermbooder velocity
moments. Similarly as in (30), we can multiply the transpartiations (84) and
(51) by viuy, k,1 = 1,2, and neglect time derivatives of the convective fluxes,
third-order velocity moments and mixed velocity-internedments to obtain

)\Td(/\() + /\2)’08

1 1 1
= = t
mM30,0,0,0 = 7%0,2,0,0,0 A0 + A2) 2Td/\0/\1" (x,t),

(84)

1 _
mMi11,0,00 = 0.
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Using the moment closure (84) for the convective momenturdfy!, we obtain
the following system of moment equations (compare with X80)

%—Ij +DU=A(x,t)U (85)
HereA(x,t) is given by (82) andJ = (n,n.,nq,j)” is asin (81), buD is now
given by

2
where o= ATa(do + A2)vg (86)

D= .
4()\0 + /\2) + 274 o1

0 0
~ 0 0
0 0
0

o © © ©
©o ©o o 2

aQT

3.1. Analysis of the statistics of motion

To illustrate the validity of reducing the transport eqoatto the system of hy-
perbolic equations, we compute the dependence of the meaxd g cells on the
strength of the underlying signal.

Multiplying equation (73) byx and integrating with respect of, we obtain
the equation for the mean speeg, (¢) of the cellular population in the following

form .
_9 |1 _J
Vo (t) = g [n—o /R2 xn(x, t)dx} = (87)
where
n():/ n(x,t)dx and _]_1:/ it (x, t)dx. (88)
R2 R?

Here,nq denotes the total number of cells in the systemjnsithe spatial average
of the fluxj' = [j2,,2,]. Consequently, to estimate the average speed of cells at

a given time we have to estimajte/n.

To do this we use a one-parameter family of time-indepeniitezar distribu-
tions of extracellular signab defined by (5), parametrized ByV .S ||. Then the
matrix A(x,t) = A(]| VS||) is independent ok andt, and we can integrate
equation (80) with respect toto obtain

ou — —

— = A(||VS])U where U= U(x,t)dx. (89)

ot R2
Solving system (89) folJ, we can estimate the value of mean speed of the cells
as

0 —

Vav(t) = J— = _[]%,
no Ui4+Us+Us

and we see that,, (¢) will asymptotically approach the velocit?S given by

o _ P13
o+ s

v

(90)



Taxis Equations for Amoeboid Cells 29

@ (b)
E 120
g5l transport equations =
£ O stochastic simulation @ 100
é 30 g slope=6 um/min
= g 80
3 g
¢ 20 - 60
215 =
) S 40
3 10 3
B S 20
g
£ 0

0 0.2 0.4 0.6 0.8 1 5 10 15 20
signal size [|0S|| [mm™}] time [min]

(=)

Fig. 8. (a) Comparison ofvg; computed by90) (solid curve) with results obtained by

stochastic simulations (circles) for different values|&t.S||. (b) Average position of indi-

viduals (given by stochastic simulation) as a function wietifor||V.S||= 0.2 mm™*.

where is a solution of
A([[VS|)y = 0.

Using parameter values (47) — (48) with= 1 min~! and~y = 0.08 mm?/min,
we can compute the asymptotic average spegdoy (90) for different values of
[IVS|l. The solid curve in Figure 8(a) showss, as a function of|V.S||.

The theoretical result (90) can be verified by stochasticukitions, and to
that end we consider an ensemble of 500 cells. We discréte®&dundary (36)
of each cell usingn = 50 mesh points. Hence, the state of each cell is described
by 54-dimensional vector (46) similarly as in Section 2.4eTinternal dynamics
modely written in terms of (19) is given by (36) — (37). The radius afall is set
tod = 7.5 pm and we use parameter values (47) — (48) with 1 min~* and
v = 0.08 mm?/min. The initial conditions are the same for all cells: néyrel
cells begin at positiox = 0, their initial velocities satisfy = 0, their internal
variables are equal 1 around the entire membrane, and cells are initially unpo-
larized. The average position of cells as a function of timigiven in Figure 8(b)
for |[VS||= 0.2 mm~L. Since cells are initially unpolarized and resting, théiahi
cellular flux is zero. If we wait for a sufficiently long timéhe average speed of the
cells relaxes to a constant, and when we estimate this fragHiione simulations,
we obtain the values which are shown as circles in Figure 8@nparing data in
Figure 8(a), we see that the theoretical result (90) givesragood approximation
of the mean asymptotic speed estimated from simulationis. ddmonstrates the
fact that one can extract population level information fribr@a moment equations
derived earlier.

Finally, we note that the previous analysis can be repeatg@5). The differ-
ence between (80) and (85) is the additional noise in ther|atthich leads to the
system (85). However, this noise will only influence theufon constant and the
average speed of the population will be unchanged.

3.2. Further reduction of moment equations

One can further reduce the size of the system of moment ennsa80) by sup-
posing that the internal dynamics evolve much faster thamgés in cytoskeleton
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and movement. Considering the excitation time= 0 and that the adaptation
time 7, < 74, we can assume the quasi-equilibrium in the equationafoand
n, in (80),i.e,
1 [0S T .
n, =7, (Is — 7,A) En—i—{(VS) ®J}J (91)
and
ng = [l ® (I — 7,4)] ' [VS @] (92)

Substituting formulas (91) — (92) into (80), we can formadgrive the reduced
system of 7 moment equations fmiandj only. These equations are derived under
the assumption that, is small. Passing formally to the limit, — 0in (91) —
(92), we obtaim, — 0 andng — V.S ® n. As one would expect in light of the
discussion following (45), the reduced equations prediov@ment up a steady
gradient, but not in a periodic wave fey = 0.

Another approach to eliminate the internal dynamics is suag the quasi-
equilibrium assumption directly in (43) — (44), i.e.

q(x,t) = VS(x,t) and  z(x,t) & Ta%—f(x, t) + 1oV - VS(x,t).
Denotingp!(x, v) the density of motile cells at position € R? with velocity
v € V C R?, p?(x,v) the density of resting polarized cells at positierwith
polarization axisv andn?(x) the density of resting unpolarized cells, we can
write transport equation fas', p? andn3. Again 7 moment equations far and
j can be derived. Such equations were derived and analys@thésdimensional
case in [13]. It was shown that in some parameter regimes;eitheced system
approximates the simulation with a reasonable precisier.[$3] for details. The
precision of the approximation depends on the parametaesathosen.

Finally one can ask whether the method developed in [17 fb8],educing
a hyperbolic system similar to (80) to the classical chexistaquations, can be
applied here as well. In the context of chemotaxis based au@dnd-tumble”
strategy we were able to analytically compute the eigemsmhnd eigenvectors
of A(x,t), and it was shown that they are independent of the chemotigtial.
By exploiting the facts that the spectral gaps are signédjendent, and that rea-
sonably simple formulas for eigenvectors are availableredeiced the hyperbolic
system of moment equations to the classical chemotaxisigésn in the bacte-
rial case [17,18]. In the case of system (80), the resulliog sigenvalues are, for
general values of parameters, very complicated functibtissgparameters, and in
particular they depend on the signal. To illustrate this,caasider the linear sig-
nal distribution (5) that leads to (89), we consider pararsfrom Section 3.1 and
plot the real parts of the eigenvaluesAf||V.S||) as functions of|V.S|| in Figure
9. One sees there that the eigenvalues vary significantlytiv signal strength.

Further analysis is needed to better define the conditiodemwhich the hy-
perbolic system can be reduced further. In that vein, we thatieignoring the term
Zle(VS)ijgi in equation (70) leads to the matri (|| V.S||) which has signal-
independent eigenvalues. Thus the possibility of furteduction clearly depends
on the closure assumptions.
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Fig. 9. The real parts of the eigenvalues Af(||VS||) for (a) || VS| € [0,1] mm™*; (b)
[IVS|l€ [0,10] mm™*.

4, Discussion and conclusions

The goal in this paper was to derive macroscopic equationthécollective be-
havior of amoeboid cells based on models for individuakldsehavior. In pre-
vious work we developed a moment closure approach to thepgmahequation
for a velocity jump process that describes cell motion fdtscéhat use a “run-
and-tumble” strategy [17,18]. Here we demonstrated thatapproach can also
be applied to the more complex processes involved in the meneof crawling
cells, and showed that one can predict important macrosobgiracteristics from
knowledge of the individual-level properties of these £élie focused on chemo-
taxis in Dd as the model system because much is known abausyktem, but
the general approach can be applied to any type of extrdaetlignal, including
those that arise from all receptor-based interactions @llangth its environment.
Here we summarize the approach and discuss its advantagjéiméations.

In Section 2 we introduced the general model (19) — (20) fett@havior of an
individual eukaryotic cell. Since this model is often infaxdimensional, we have
to first reduce it to the finite-dimensional form (22) — (23)slich a reduction is
possible, we can apply the transport equation framework f@4the reduced set
of variables. In this case we can derive the appropriate mbegiations (80) and
use them to study the macroscopic collective propertiesits,as we illustrated in
Section 3.1 where we studied the dependence of the averagd spthe cellular
population on the strength of the extracellular signal.

Therefore the crucial assumption for a model which can kaégkin the frame-
work developed here is that the projecti®nfrom (21) exists and the equations
(22) — (23) can be easily written. If this is not the case, iyrba still possible to
reduce the individual-level dynamics to a low-dimensiatedcription of an indi-
vidual cell. The behavior of these coarse (intracellul@ervables (on the level of
a cell) can be studied by computational equation-free nusthdich are currently
being developed [29, 15]. The similar computational methcah be then used to
study the population-level properties of the amoeboidscedling either the full
model of an individual cell or the best available reductidit {29, 16].

The moment closure reduction of the transport equation heeel can be jus-
tified for small signal gradients [17], but in the case of Eagignal gradients, the
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higher order moments may not be negligible and cannot beuwdied. Similar mo-
ment methods can be used for any model assuming that theahgynamics is
close to its quasi-equilibrium. If the original internalrymics model is nonlinear,
it can be linearized around its equilibrium value for smahal gradients and the
moment approach can be applied. Hence, the reader showauidinear model
as an example of the linearization of more complex nonlipeaiolems. Of course,
the linear model is clearly not valid for large signal gradg but this is not the
parameter regime studied in this paper. However, even sormegby-nonlinear
models for internal dynamics produce simple input-outpehdyior that can be
captured by a linear model with possibly signal-dependenameters [18], and
thus the results presented here may have broader appitigalén the deriviation
would suggest if applied strictly.

An alternative to the moment approach used here might be & plrabolic
scaling as in [18], but we have not pursued this in light of thet that we do
not understand when the hyperbolic system reduces to a garamuation, as
we observed earlier. One could also consider a direct agitc of a hyperbolic
scaling to the transport equation, but we have not pursusdhére.

In the case of a constant external signal gradient we weestalolerive explicit
expressions for various statistics of the motion from thpdwpolic system derived
from the transport equation. We also discussed the pretimbavior of models
for experimental conditions such as spatio-temporal waftehemoattractant. It
is known that eukaryotic cells such as Dd or leukocytes agajeeat the source of
the waves, and the models studied here include the procasssdsas adaptation,
that are necessary to reproduce this behavior.

The models described here are all based on deterministiscetiular signals
and deterministic signal transduction pathways, althcaighmall random compo-
nent was added to the choice of direction. The effects ofhststic fluctuations
in signal detection and processing on movement were intrediin [11], where
stochastic differential equations are postulated to moelemovement on the time
scale of the molecular processes that govern locomotiomeSmncrete estimates
of the probable role of noise in the signal seen be a Dd celeweaade in [38].
However a much more detailed analysis of stochastic effacth components of
the movement response is needed.
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