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The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting
calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic
fluctuations. While stochasticity in the gating transition of ion channels has been incorporated into many
models, the distribution of calcium is usually described by deterministic reaction-diffusion equations and the
validity of the latter modeling approach has not been questioned. Here this issue is addressed by using two
different models to calculate the frequency of localized calcium signals (calcium puffs) from IP3 receptor
channels. Predicting the puff frequency is a central task of a calcium dynamics model and allows immediate
comparison to experimental studies. The complexity of the full calcium system is here limited to the basic
opening mechanism of the ion channels and, in the mathematical reduction simplifies to the calculation
of a first passage time. Two models are then studied: (i) a hybrid model, where channel gating is treated
stochastically, while calcium concentration is deterministic; and (ii) a fully stochastic model with noisy channel
gating and Brownian calcium ion motion. The second model utilises the recently developed two-regime
method! in order to simulate a large domain with precision required only near the Ca?* absorbing channels.
The expected time for a first channel opening that results in a calcium puff event is calculated. It is found that
for a large diffusion constant, predictions of the interpuff time are significantly overestimated using the model
(i) with a deterministic non-spatial calcium variable. It is thus demonstrated that the presence of diffusive
noise in local concentrations of intracellular Ca?*t ions can substantially influence the occurrence of calcium
signals. The presented approach and results may also be relevant for other cell-physiological first-passage

time problems with small ligand concentration and high cooperativity.
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I. INTRODUCTION

The dynamics of intracellular Ca?* is a major determi-
nant of many cell signaling processes®. In order to ad-
dress a host of different target processes, cells orches-
trate the elevation of Ca?t concentration by a com-
plex machinery of Ca2* transport and binding. Early
modeling approaches considered deterministic equations
based on macroscopic rate equations®4. Later on, it was
found that release of Ca?t from the endoplasmic retic-
ulum (ER) can occur in a localized and highly random
manner®, thus rendering the deterministic modeling ap-
proach for Ca?* dynamics incomplete.

In many cell types, release of Ca?" from the ER oc-
curs through inositol 1,4,5-trisphosphate receptor (IPsR)
channels in the ER’s membrane. The receptors regulate
Ca?*t transport in response to changes of IP3 and Ca?*
concentration mediated by binding sites on the cytoso-
lic side of the ER’s membrane®. While increases in the
concentration of the second messenger IP3 generally pro-
mote release, the dependence on cytosolic Ca?* concen-
tration is biphasic and mediated by two types of binding
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sites. Small increases in Ca?T concentration compared
to rest level concentrations increase the open probability
of IP3R channels. The stimulation Ca?* binding gives
rise to a self-amplifying mechanism called Ca?* induced
Ca2?* release (CICR): Ca?*t released by one or several
channels diffuses in the cytosol and increases the open
probability of neighbouring channels by binding to their
stimulatory binding sites. As the level of Ca?" rises
further, inhibitory binding of Ca?* dominates. Conse-
quently, the open probability decreases significantly as
Ca®t levels reach large values. Taken together, activat-
ing and inhibiting binding processes in combination with
Ca2* diffusion allow for a commonly accepted model for
cooperative openings and closings of receptor channels”.

Elevations of Ca?® concentrations appear either as
quasi-deterministic waves or as localized events over spa-
tial distances on the order of a micrometer”. In many
cells, IP3R channels are distributed in clusters on the
ER’s membrane. It is often found that CICR synchro-
nizes channels within clusters, resulting in events that
were identified with the localized patterns often called
puffs®. In this regime, Ca?" release does not spread to
neighbouring clusters, which are typically separated by
a few micrometers. Recent studies emphasize the role of
sub-cellular Ca2* rises for physiological function® 1.

Since noise that originates from the small copy-number
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of involved ion channels has been recognized as relevant,
stochastic modeling has successfully been applied and
now can explain many of the aspects of Ca?* signals'?1!3.
However, as the computational cost is too large, the
Brownian motion of Ca?* ions has been excluded in most
studies. The most detailed simulations to date treat
Ca®t concentration as well as the concentration of fur-
ther diffusing species as deterministic quantities'*. Be-
cause of their spatial localization, clusters of channels
have been studied with theoretical methods by consid-
ering only a single cluster and ignoring the coupling to
channels outside of the cluster. Recently, puffs have also
been modeled in a hybrid manner by coupling Markov
gating schemes for clustered channels to deterministic
equations for local Ca?t concentration within the cluster
microdomain!?15-17,

The amplitude of diffusive fluctuations in receptor-
Ca?* binding can be discussed as in the classical theory of
concentration sensing in chemoreception'®'?. According
to this argument, the accuracy in measuring a concentra-
tion ¢ by receptors is limited by d¢/c = 1/v/ Dcat, where
D is the diffusion constant of the molecules with concen-
tration ¢, a is the dimension of the receptor or the recep-
tor cluster, and 7 is the time scale of the relevant bind-
ing/unbinding process. Taking typical values of these
parameters (D = 200 ym?s™!, a = 1 pum, ¢ = 0.02 uM
and 7 = 1 s) one obtains dc/c ~ 0.02, which suggests
that diffusive fluctuations can be safely neglected com-
pared to the average concentration. As we will discuss
here, this noise may not always be neglected in the large
diffusion limit.

In this paper, we show that stochastic effects (taken
into account by the detailed modeling of discrete calcium
ions and their Brownian motion) has consequences for
the Ca?* dynamics. Simulation of the detailed stochas-
tic model is enabled by a recently developed multiscale
approach! which is summarized in the Methods section.
We specifically study Ca?* puffs and the period of their
appearance. Puffs have taken a central role in the mod-
eling of intracellular Ca?t dynamics, since an integra-
tive model of local and global release should incorporate
Ca?*t puffs as elementary building blocks of global waves
and oscillations?. In this paper, we show that the noise
contributes to a decrease in interpuff times. The paper
is divided into Sections IT (Methods), IIT (Results) and
IV (Discussion). In the following Section II, we summa-
rize both the mean-field model and the computational
method used to simulate the detailed stochastic model.

Il. THEORY AND SIMULATION METHODS

To simplify our analysis we neglect the binding and un-
binding of IP3 as well as the binding to inhibitory binding
sites. We consider IP3R channels releasing Ca’t from
the ER to the cytosol to consist of K = 4 identical sub-
units with each subunit carrying a binding site that to-
gether assume the activating role for the channel. The

apparent cooperativity in Ca?* binding requires a mini-
mum number N of calcium ions to be bound for opening
of the channels. Although N = 3 is traditionally used
in modelling*, we will also discuss consequences of dif-
ferent values of N € {1,2,...,K}. We will study how
much time passes until the number of activated subunits
reaches N for any of the cluster’s channels, given a suit-
able initial condition on the state of all four binding sites.
This first passage time can be regarded as a realistic ap-
proximation of the real interpuff interval (IPI) since it has
been suggested that opening of any channel in the cluster
triggers a puff?!. Although we do not simulate the in-
hibitory dynamics explicitly, we still take it into account
into the initial state to which the channel is reset after
each puff. Specifically, we let the number of activated
subunits equilibrate to a distribution, constrained by the
requirement that the channel is closed (i.e. the number of
activated subunits is less than N) but otherwise allowing
for all possible numbers of activated subunits to occur.

A. Mean-field non-spatial model and its analysis

Calcium channels from the ER to the cytosol are usually
arranged in closely packed clusters consisting of up to 10
channels?'. Here we denote the number of channels as C
and use C' = 9 unless otherwise stated. Each channel has
K = 4 subunits. We assume that IP3 concentrations are
large. We submit, therefore, that the channel opens and
releases Ca’*t in the form of a puff if at least N = 3 of
the four subunits are activated on a single channel in the
cluster. A subunit is activated when a Ca?* ion is bound
to it. The Ca2' ions are also permitted to dissociate
themselves from a subunit and thereby deactivating it.
This chemical reaction is given by

k1
Ca?* + inactive subunit —— active subunit (1)
ko

where k; is the rate of activation per unit of Ca?* concen-
tration per inactive subunit measured in units (uM s)~*
and ko is the deactivation rate per active subunit mea-
sured in units s,

Assuming that Ca?T concentration is large and equal
to c¢g, the mean-field approximation of the probability
that a particular subunit is active at equilibrium can be
estimated as

kico

Pot = ———m—.
© 7 kico + ko

(2)

We define the state of a channel to be the number of sub-
units which are active, i.e. the state of each channel is
taken from the set {0,1,2,..., K}. Assuming that each
subunit is activated and deactivated independently and
the Ca?* concentration in the cytosol remains constant
we can gain an approximation for the probability of a
channel to be in state {i}, : = 0,1,2,..., K, at equilib-
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rium in the form of the binomial distribution

K K—i 1
Pe=(5) 0 ) P ®

Given an initially unopen channel (states {0}, {1}, ...,
{N —1}), the probability that the channel is in state {j}
is given by

Pe¢

J
il P
for j < N —1. Let P(t) = [Py(t), Py(t), ..., Py_1(t)]" be
the vector of probabilities to be in each of the non-open

states as a function of time. Transition rates between
these states are given as follows:

P{7}1{0,1,....,N —1}) = (4)

ko,1 k1,2 kn—2,N-1 kn_1n
== TE Ny P
k1,0 k2,1 kN—1,N—2

where ki,i+1 = (K*’L‘)klco, ki,i—l = ’Lkg and @ denotes the
open channel. Solving the corresponding master equa-
tion, we can express P(¢) by the matrix exponential

P(t) = P(0) exp[A1], (6)

where A is the tridiagonal matrix given by A;; 1 =
kic14y Aii = — [kiit1 + kiji—1) and A; i1 = ki1 4. Esti-
mating the initial probabilities P(0) in equation (6) using
(4), we can compute the probability density of the chan-
nel opening time by

N —

Ju

fuc(r) == 3 S 7). @
=0

where the bar placed over the 7 indicates it is in reference
to a single channel rather than the cluster as a whole. In
this manuscript, reaction system (5) will be simulated
using Monte Carlo simulations which will be used to give
frve, however, in reality this distribution has a rather
complicated analytical form.

A simpler analytical form for the probability density
(7) can be approximated if the probability Py_1(t) is
small. This approximation assumes an exponential dis-
tribution with a constant channel opening rate that is
equal to the initial channel opening rate. Using (5), the
rate at which a particular initially closed channel opens
is given by

Frkyoiy PUN —13[{0,1,...,N —1}).  (8)

where P({N —1}1{0,1,..., N —1}) is given by (4). The
accuracy of this theoretical approximation (8) will be dis-
cussed in Section ITI. The rate at which puffs are initiated
r is given by the rate at which any of the C' channels in
the cluster are opened. Assuming that the opening time
of a channel has an approximate exponential distribution
the rate at which puffs are initiated from a cluster of C
channels is given by

r~Cr. (9)

Using a physically realistic choice of parameters'” k; =
100 (uM s)71, ko = 20571, ¢g = 0.02 uM in equation (8),
we obtain the mean first passage time for the opening of
a single channel 7 = 7~ & 6.083 s. Therefore, according
to (9) the puff initiation time 7 ~ (C7)~! = 0.68 s for
C =09

B. Monte Carlo simulation of the channel states

The simple theoretical formula (9) requires the assump-
tion that the opening time of a channel is distributed
exponentially. In this paper, we will compare (9) with
two types of stochastic simulations. The first one is a
Monte Carlo (MC) simulation of C' reaction systems (5)
for C' channels. The MC simulation of the state of C'
channels assumes steady reaction rates consistent with a
constant concentration cg. Diffusion (and therefore dif-
fusive noise) is not considered in this simulation and is
therefore the least accurate method of the two numerical
techniques. However, it is the most efficient of the two
numerical routines. The simulation activates and deacti-
vates subunits from the C' channels according to (1) until
one channel has N active subunits and the channel opens.
The time for this to occur is stored and an approximate
mean interpuff time F(7) is determined by averaging the
simulation time over many realizations. Since this sim-
ulation technique is efficient we are able to easily obtain
10° simulations giving precise estimates of the distribu-
tion and mean of the variable 7 (under the assumption
of no fluctuations in concentration cy).

The MC algorithm initializes the states of the C' chan-
nels by assigning the state {j} independently to each
channel according to the probability (4) for being in the
state {j}, given that the channel is closed. Then the
Gibson-Bruck algorithm?? for simulating C' continuous-
time Markov chains (given by (5)) is used until one of
the channels is in state {N}.

C. Spatial stochastic modelling

The constant concentration ¢y = 0.02 pM of Ca’*t in
the cytosol is relatively small, because it corresponds to
12 Ca?*t ions per 1 pum3. At small concentrations the
frequency of ion interactions with the channels are infre-
quent and highly noisy. This noise manifests itself in a
time fluctuating concentration that is experienced by the
channels with a distribution that has a mean of ¢y. To
analyse quantitatively how this noise effects the rate 7,
one has to consider detailed spatio-temporal stochastic
simulations of Ca?* ions. There are two main meth-
ods for the simulation of stochastic reaction-diffusion
processes?3: off-lattice Brownian dynamics methods?*
and on-lattice methods?®. The former of these methods
allows for a greater amount of microscopic detail and
is usually prefered in situations where microscopic de-
tail play a role in the model and/or the concentration of
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molecules is low. The latter of these methods only ac-
cepts motion of molecules between lattice points and is
therefore limited by the resolution of the lattice. How-
ever, the implementation of on-lattice methods tends to
be more efficient and so find use when concentrations are
large and well-mixed on a microscopic level. Since it is
important in the case of Ca?* ion channels to know where
each molecule of Ca?* reacts with calcium channels and
because the concentration of molecules is small, we find it
prudent to use an off-lattice Brownian dynamics simula-
tion (at least in the regions close to the channel). In order
to improve the efficiency of Brownian dynamics, we use a
multiscale approach! introduced in the following Section
1ID.

D. Two regime method

Consider the 1 x 1 x 1 pm?® box that sits inside the cy-
tosol such that the cluster of ion channels lies centralized
on the bottom facet. Molecules inside this box can be
simulated according to Brownian motion. That is, after
defining a time step At, the n-th molecule updates its
location according to the formula

X, (t+ At) = X, (t) + V2DALE,,, (10)

where D is the diffusion constant, X,, = (2, Yn, 2,)7 is
the three-dimensional location of the molecule and &, is a
vector of three independent normally distributed random
numbers with a mean of zero and unit variance.

To simulate reversible binding (1), we define three
parameters?®: radius of interaction R = 30 nm, disso-
ciation radius ¢ = R/2 = 15 nm and the reaction rate A.
At each time step, Ca®* ions will bind to an empty bind-
ing site with a probability AAt whenever their distance
from the site is less than?” R. In order that A correctly
represents the reaction (1), it is given implicitly by the
equation

o 4o D (R)\ — tanh (R)\))
~ tanh (R))cosh (Ry — o)) — sinh (Ry — 7))’

where Ry = Ry\/A/(2D) and oy = o4y/A\/(2D). Note
the v/2 on the denominator for Ry and oy is due to the
fact that volume of interaction around the channels is
only half that of the full sphere considered by Lipkova
et al.?6 because they lie on the boundary of the domain.
Each Ca?t ion that is activating a subunit dissociates
and deactivates that subunit with a probability of ko At.
The dissociated Ca?* ion is placed on the sphere of radius
o around the channel it was bound to. We set the default
diffusion constant to be D = 220 ym?s~! and set the time
step to At = R%/(20D) s. The factor of 1/20 was found
to be sufficient to satisfy the requirement of equation (11)
(that is vV2DAt <« R) such that the numerical reaction
rate was within 1% of the defined reaction rate of k; =
100 (uM s)~1L.

k1

(11)

A pertinent question that remains is; how do the
molecules behave over boundaries?®*? It might be argued
that since the domain is much larger than the cluster of
channels we may consider the domain to be closed from
the rest of the cytosol and implement reflective bound-
ary conditions not just on the membrane containing the
channels but also those facets that represent the trunca-
tion of the cytosol space. This reasoning does not result
in a physically realistic simulation. Firstly, as molecules
are absorbed by subunits of the ion channels, naturally
this creates a void in which molecules are expected to be
suplemented by the Ca?* ions in the cytosol. For exam-
ple, if 12 molecules are initialized in the 1 x 1 x 1 pym?
domain then over the course of the simulation some of
these may be absorbed. If, for example, 4 are absorbed
the effective concentration of free Ca2* ions in the closed
box would no longer be at ¢y. Moreover, reflective bound-
aries would also not account for fluctations of the number
of molecules inside the box 1 x 1 x 1 um? above the ER’s
membrane. One way to fix this problem would be by
increasing the size of the simulated domain. However,
increasing the size of the domain from 1 x 1 x 1 um?® to
Lx Lx L pm3 increases the expected number of molecules
in the domain by a factor of L3 which makes Brownian
dynamics simulations slower by the factor of L3. It is
important to note that whilst we demand a large domain
to get the correct amount of noise in the concentration
near the channels, microscopic detail of the Ca?* ions is
not of interest sufficiently far from the channels. There-
fore, we can apply the two regime method (TRM) which
allows for the Brownian dynamics model described here
to be used in the region of interest whilst a more efficient
on-lattice model is used in the rest of the computational
domain'. We couple, therefore, a small 1 x 1 x 1 pum? off-
lattice model box, the “region of interest”, with a larger
5x5x 5 pum? on-lattice domain consisting of 1x 1 x1 pm3
compartments according to the TRM'. A diagram of the
TRM model domain is shown in Figure 1.

The increase in computational time of this TRM model
compared with that of the closed off-lattice 1m?3 domain
model by itself was approximately 2 instead of a factor
increase of the order of 100 that could be expected if the
Brownian dynamics model were to be used over the same
domain.

Il. RESULTS

Let us define fryo(7), frrm(r) and fr(7) to represent
the probability distribution for the interpuff time 7 that
is derived from MC simulations, TRM simulations and
the theoretical result given in formulae (8)—(9), respec-
tively, for C = 9. We will implement the f notation to
indicate the case C' = 1. In Figure 2, we plot the distri-
butions farc(7), frram (T) and fr (7).

Distributions fisc(7) and frrar(7) were determined
using the ksdensity function in Matlab’s statistics tool-
box. The ksdensity function computes a probability
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compartments (on-lattice)

5 um

___Ca”"ion (off-lattice)

channel cluster

FIG. 1. Representation of the TRM model domain (top
panel). Blue bozes model Ca** ions on-lattice and the red box
models Ca®t ions off-lattice. The bottom panel shows details
of the red box.
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FIG. 2. Probability distributions and means for the inter-

puff time for C = 1 given by theoretical estimates fr(7T)
(black dashed line), 106 MC simulations farc(7) (red solid
line) and 10> TRM simulations f_TRM('T') (blue solid line).
The error expected by the lack of TRM simulation data is
indicated by the histogram showing actual simulated proba-
bilites over intervals of time and blue dashed lines indicating
the subsequent standard error in the mean. Parameters used:
N =3, ki =100 (uM s)™*, ko =20 5%, ¢o = 0.02 uM and
D =220 pum?s™" (for TRM simulations only).

density estimate from a sample. The estimate is based
on a normal kernel function, using a window parameter
(‘width’) that is a function of the number of points in the
sample. The density is evaluated at 100 equally-spaced
points covering the range of the data in the sample?”.
In all three cases, the mean is indicated. Non-spatial
MC simulations were averaged over 10° realizations. The
TRM simulations are more computationally intensive

2
b I I I
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5 — MC: E(7)=0.807+0.001s
o 15 -
=
8 \
@
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FIG. 3. Probability distributions and means for the inter-

puff time for C = 9 given by 10° MC simulations farc(T)
(red solid line) and 10° TRM simulations frra (1) (blue solid
line). The error expected by the lack of TRM simulation data
is indicated by the histogram showing actual simulated proba-
bilites over intervals of time and blue dashed lines indicating
the subsequent standard error in the mean. Parameters used:
N =3,k =100 (uM s)™*, ko =20 s7%, ¢o = 0.02 uM and
D =220 um?s™ ! (for TRM simulations only).

than the MC simulations since they have to find the ac-
tivation and deactivation events by simulating Ca?* ions
in a three dimensional spatial domain. The number of
simulations that could be run for finding expected values
of 7 were typically of the order of thousands. Since the
TRM was only run for 10 simulations, standard error is
incorporated into the mean with dashed blue lines and a
histogram representing the actual obtained probabilities
within intervals of time is also plotted. Figure 3 shows
the comparison in the distributions farc(7) and frra(7)
that result from a cluster of C' = 9 channels. The ratio
of expected times 7 does not seem to vary much if the
number of channels C' is increased and this is because the
distributions are close to exponential distributions.

The assumption (8) is such that the likelihood for a
channel to be in states {0}, {1}, ..., {N — 1} is con-
stant with respect to time given that the channel has
not opened. Indeed, knowing the probability for a chan-
nel to be in the state {N — 1} will give the instan-
taneous rate for the channel to open (i.e. to obtain
the state () in the reaction system (5)). However, the
state () of the channel is an absorbing state and there-
fore the relative probabilities to be in states {0}, {1},
..., {IV — 1} change over time according to formula (6).
Thus, whilst it is expected that the MC simulation re-
sults in dfyc(7)/d7|r—0 = dfr(F)/dF|.—o, it is also ex-
pected that the rate for a channel to open is less than
the rate predicted by (9) as time progresses. Therefore
dfryrc(7)/d7| >0 > dfr(7)/d7|;~o which results in an ex-
pected T that is larger for the MC simulations than that
predicted by (8)—(9). This is in agreement with our MC
simulations. Whilst the approximation (8) predicts that
E(7) = 6.083 s, it was found that one million non-spatial
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MC simulations give E(7) = 6.730 s.

Figure 4 shows the plot of opening rates versus con-
centration along side the second derivative of this curve,
estimated by (8). At low concentrations of Ca?™, there is
a high amplitude noise in the instantaneous local concen-
tration that is experienced by the channels. To analyze
the effect of this noise and how it is affected by diffusion
we use the TRM model and compare the results to the
non-spatial MC simulations. Initially the noise represents
some local concentration that is distributed with a mean
of ¢g. The initial instantaneous rate for a channel to open
can be considered by (8) given the initial fluctuation in
co. This rate is expected to be greater than predicted
in (8) and MC simulations for N > 1. This is because
for N > 1 equation (8) is a convex function of ¢y and an
increase in the expected rate 7 from that of MC simu-
lations is therefore a consequence of Jensen’s inequality.
Note that if N = 1, equation (8) is linear with respect to
co and therefore TRM simulation results should be the
same as non-spatial MC simulation results. Interestingly,
for real Ca?" ion channels (N = 3) the convexity (second
derivative) of the opening rate versus concentration has a
local maximum near the concentration of ¢y = 0.02 M.
This would imply that the biological parameters are near
optimal values to emphasize the difference that diffusive
noise plays in determining the rate at which the calcium
channels will open. Figure 4 indicates that for V > 1 the
rates become rapidly smaller as N increases but these
rates always have a convex relationship with concentra-
tion. These rates have been determined by (8) which
approximates the rates that are expected as a result of
MC simulations. It is therefore not surprising that the
diffusive noise that is modelled in the TRM simulations
reduces the expected time 7 compared with that of the
non-spatial MC simulations.

Figure 5 shows the comparison between the expected
interpuff times 7 of the non-spatial MC and spatial TRM
simulations for variations in V. It shows that for N =1
there is no observable difference in F(7) between the two
numerical methods, as expected. There is a minor dif-
ference in the expected interpuff time for N = 2, due to
the fact that whilst the theoretical result (8) is a convex
function of concentration for N = 2, it is not sufficiently
convex at small concentrations to observe large differ-
ences in the expected interpuff time. The increase in the
curvature of (8) is more apparent when N increases to 3
and 4 and the noise that is modelled in the concentration
of ions in the TRM regime gives noticeably smaller inter-
puff times. The reason for the rapid increase in F(7) as
N increases is due to the significantly smaller probabil-
ity Pact when the ion concentration is ¢g = 0.02 uM (see
(2))-

Using (8), we were able to make a heuristic argument
for why expected interpuff times are reduced in the pres-
ence of diffusive noise. We did not consider the dynamic
behavior of the channel opening rate 7(t) due to temporal
fluctuations resulting from the size of the diffusion con-
stant. It was rather assumed that the system of chan-

[

(=]

wv
Rate of channel opening (red lines)

Rate of channel opening (blue lines)

0 0.01 0.02 0.03 0.04 0.05 0.06
Concentration (uM)

12000 1800
—N=1
T . B
—N=3 '

9000 [ = = ‘N=4 1 1350

6000 AN

900

3000 S~. 450

Rate second derivative (blue lines)
Rate second derivative (red lines)

PN

"""" 0
0 0.01 0.02 0.03 0.04 0.05 0.06
Concentration (uM)

FIG. 4. A. Channel opening rate estimate given by (8) versus
concentration for N = 1 (blue solid line), N = 2 (blue dashed
line), N =3 (red solid line) and N = 4 (red dashed line).

B. The second derivative of the channel opening rate estimate
shown in A with respect to concentration for N = 1 (blue
solid line), N = 2 (blue dashed line), N = 3 (red solid line)
and N = 4 (red dashed line) showing positive convezity for
all concentrations. The dashed gray line indicates the approz-
imate steady intracellular concentration (used in simulations)
of co = 0.02 uM. All blue lines correspond with a y-axis on
the left side of the plot and red lines correspond with a y-axis
on the right side of the plot.

nel states would react instantaneously to their average
steady states given temporal fluctuations in concentra-
tion. It is therefore important to note how the temporal
fluctuation in concentration may effect the interpuff time
by looking at the expected interpuff times as a function
of the diffusion constant. This relationship is shown in
Figure 6 for interpuff times of a cluster of nine chan-
nels and a single channel. If diffusion is sufficiently large
D > 20 pm?s~! then the expected interpuff time is rela-
tively stable to changes in the diffusion constant and the
expected interpuff time is less than that expected using
a Monte Carlo simulation of the channel states and as-
suming constant rates of activation. We found this to be
the case both for the cluster of nine channels and a sin-
gle channel thereby excluding effects due to the coupling
of these channels. Furthermore, all expected interpuff
times were found to have exponential distributions. This
means that our chosen initial conditions on the states of
the channels are close to the quasi-steady state of the sys-
tem and that transient effects are not artificially reducing
the expected time for a puff. If the diffusion constant is
sufficiently small, the rate a channel opens is significantly
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FIG. 5. Ezpected interpuff times E(T) for variations in the
required number of subunits N that need to be active for a
channel to open and initiate a puff measured using 10 MC
simulations (red bars) and 10> TRM simulations (blue bars).
Parameters used: C =9, ky = 100 (uM )™, ko = 20 s 7,
co = 0.02 pM and D = 220 pum?s™! (for TRM simulations
only).
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FIG. 6. The ratio of the expected interpuff times computed
using the TRM and using the Monte Carlo channel state
simulation for different values of the diffusion constant D
(found from 10> TRM simulations for each value of D). The
solid line indicates the ratio equal to 1. Parameters used:
N = 3, C = 9 (hollow squares), C = 1 (filled circles),
Ey =100 (uM s)™ !, ke =20 st and co = 0.02 pM.

reduced because the momentary activation of a subunit
often leaves a relative void of ions to further activate
other subunits. This void is filled slowly since diffusion
is slower.

IV. DISCUSSION

In this paper we have tested a basic assumption of many
studies on Ca?" signaling, which is that the Ca?™ con-

centration, locally or globally defined, can be regarded
as a deterministic quantity. We have asked whether the
properties of collective release from channels change if
Ca2* ions are treated as discrete entities with Brownian
motion trajectories. We have found that the time inter-
vals between stochastically occurring Ca2* puffs decrease
by about 20 %. This result is obtained under standard
assumptions on the gating dynamics of an IP3R channel

and diffusion constant D = 220 ym?s~!.

The interpuff interval is here interpreted as a waiting
time for a first-channel opening. The real IPI depends
on other properties as well such as the refractory period
after the termination of a puff. Those refractory periods
have been studied recently and were found to be rather
small*. Comparing our finding with experimental values
we see that in mammalian neuroblastoma cells Smith and
Parker®! find periods of about 5 s, much larger than in
our estimates. Our results have clarified, that the effect
of diffusive noise does not explain directly the deviations
of non-spatial MC modeling and experiments. On the
contrary, incorporation of discrete Ca?T ions increases
the deviation for large diffusion constant and makes the
search for a possible mechanism explaining the disparities
more urgent. For small diffusion constant, however, the
interval increases strongly compared to the non-spatial
result. It is interesting to note that a small Ca?*t diffu-
sion constant may be obtained in cells with large concen-
trations of Ca?* binding proteins. Here, binding of Ca?*
ions to the proteins reduces the effective Ca?t diffusion
constant in deterministic reaction-diffusion equations®?
and it remains to be studied if our result for small diffu-
sion constant is relevant in this context.

Our results clearly contrast earlier studies that neglect
noise from calcium ion discreteness. While many authors
simply assume that such deterministic modeling is valid,
there is also evidence from numerical simulations. Hake
and Lines, for instance, have concluded that Ca?t dy-
namics in small cellular compartments is well described
by deterministic Ca?" diffusion and stochastic binding to
receptors®3. Our problem differs from the setup analyzed
by Hake and Lines since we consider a larger, practically
cell-wide domain. A second, perhaps more significant
difference to their study is that we consider a more com-
plex channel gating model, i.e., we determine the wait-
ing times until several ions have bound to the channel.
Therefore, and although we here analyzed a strongly sim-
plified model for calcium puffs, our result casts serious
doubt on the usefulness of deterministic Ca?t equations
for more complex dynamical models of calcium signals.

The fundamental mechanism for decreased interpuff in-
tervals due to the presence of Ca?* diffusion is caused by
the critical number of active subunits required for a puff.
The number of active subunits has to be collected over
time. This collection has to stochastically occur rapidly
to reach the critical number of active subunits before the
stochastic deactivation of the subunits stops the collec-
tion and forces the channel to start collecting again from
scratch. At low diffusion rates, after each absorption of
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Ca?", the lack of sufficient diffusion of surrounding Ca?*
decreases the collection rate and ultimately significantly
increases the interpuff time. If this diffusion rate is suf-
ficiently large there is a tendency for the spatial noise to
decrease the interpuff time (compared to non-stochastic
models) since the increase in the openning rate that is
due to stochastically larger local concentrations is greater
than the decrease in the openning rate due to stochasti-
cally lower local concentrations.
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