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Non-linear independent component analysis is combined with dif-
fusion map data analysis techniques to detect good observables in
high-dimensional dynamic data. The widely applicable procedure, a
crucial step in model reduction approaches, is illustrated on stochas-
tic chemical reaction network simulations.
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Evolution of dynamical systems often occurs on two or
more time scales. A simple deterministic example is given

by the coupled system of ODEs

du/dt = α(u, v), [1]

dv/dt = τ−1β(u, v), [2]

with the small parameter 0 < τ � 1 and α(u, v) and β(u, v)
are O(1). For any given initial condition (u0, v0), already at
t = O(τ ) the system approaches a new value (u0, v), where
v satisfies the asymptotic relation β(u0, v) = 0. Although
the system is fully described by two coordinates, the relation
β(u, v) = 0 defines a slow one-dimensional manifold which
approximates the slow dynamics for t � τ . In this exam-
ple it is clear that v is the fast variable while u is the slow
one. Projecting onto the slow manifold here is rather easy:
the fast foliation is simply “vertical”, i.e. u = const. How-
ever, when we observe the system in terms of the variables
x = x(u, v) and y = y(u, v) which are unknown non-linear
functions of u and v, then the “observables” x and y have both
fast and slow dynamics. Projecting onto the slow manifold
becomes nontrivial, because the transformation from (x, y) to
(u, v) is unknown. Detecting the existence of a slow mani-
fold under these conditions and projecting onto it are impor-
tant in any model reduction technique. Knowledge of a good
parametrization of such a slow manifold is a crucial component
of the equation-free framework for modeling and computation
of complex/multiscale systems [1, 2, 3].

In recent years, diffusion maps [4, 5, 6, 7, 8, 9] have been
used to detect low-dimensional, nonlinear manifolds underly-
ing high-dimensional data sets. In this paper we combine
diffusion maps with recent tools from non-linear indepen-
dent component analysis [10] to detect slow variables in high-
dimensional data arising from dynamic model simulations.
The proposed algorithm takes into account the time depen-
dence of the data, whereas in the diffusion map approach the
time labeling of the data points is not included. We demon-
strate our algorithm for stochastic simulators arising in the
context of chemical/biochemical reaction modeling.

Multiscaled chemical reactions: a toy example

Consider the reversible chemical reaction (a dimerization,
which is a part of several biochemical mechanisms [11, 12])

involving two molecular species X and Y

X + X
k1−→←−
k2

Y [3]

where k1 and k2 are the forward and backward rate constants.
The probability that an additional molecule of type Y is pro-
duced from two X molecules (resp. two molecules of X pro-
duced from one molecule of Y ) in an infinitesimally small time
interval [t, t+dt] is k1X(t)(X(t)−1)dt (resp. k2Y (t)dt), where
X(t) and Y (t) are the number of molecules of type X and Y
at time t [13]. The chemical reaction (3) satisfies the stoichio-
metric conservation law

X(t) + 2Y (t) = const, [4]

so that the state vector [X(t), Y (t)] is restricted to a line in the
phase plane. We now couple the chemical reaction (3) with a
slow production of X molecules from an external source

∅ k3−→ X [5]

where equation (5) means that the probability of the produc-
tion of an additional molecule of type X in an infinitesimally
small time interval [t, t + dt] is k3dt; the rate constants and
the initial state are chosen in such a way that the production
process (5) is much slower than the dimerization reactions
(3). This is the case, for example, for the following choice of
parameters:

X(0) = 100, Y (0) = 100, k1 = 1, k2 = 100, k3 = 50. [6]

The average time to produce an additional X molecule is
k−1
3 = 0.02, whereas the average times for the forward and

backward dimerization are (k1X(0)(X(0) − 1))−1 ≈ 10−4

and (k2Y (0))−1 = 10−4. This implies that both X and Y
are fast variables; yet their linear combination X + 2Y is a
slow variable. The conservation law (4) no longer holds since
production was added. Instead, X + 2Y is slowly growing.
To confirm this fact, we simulate the time evolution of the
pair [X(t), Y (t)] using the Gillespie stochastic simulation al-
gorithm (SSA) [13]. In Figure 1, we plot the time evolution
of X, Y and X + 2Y .

This naturally leads to the following question: How to de-
tect the slow variable X + 2Y from data? A priori knowledge
that we seek a linear combination of the original variables
lends itself to fitting the coefficients of such a combination.
Such fitting is however not possible for the general nonlinear
case.
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Short simulation bursts

It is convenient to analyze our approach in the diffusion limit,
for which the simulation is well-approximated by a stochastic
differential equation (SDE). The chemical Langevin equation
for the time evolution of X and Y , which is formally derived
from the corresponding chemical master equation, is given in
the Itô form by [14, 15, 16]

dx = (2k2y − 2k1x(x− 1) + k3) dt [7]

−2
√

k1x(x− 1) dw1 + 2
√

k2y dw2 +
√

k3 dw3,

dy = (k1x(x− 1) − k2y) dt [8]

+
√

k1x(x− 1) dw1 −
√

k2y dw2,

where wi (i = 1, 2, 3) are standard independent Brownian
motions. The approximation (7)-(8) is also characterized by
a time scale separation and possesses the slow variable x+2y;
multiplying (8) by 2 and adding to (7) gives

d(x + 2y) = k3 dt +
√

k3 dw3. [9]

Equation (9) shows that the approximated stochastic dynam-
ics of x + 2y is decoupled from the individual dynamics of x
and y, as expected from (3)-(4).

The Euler-Maruyama method for (7)-(8) suggests that in
a time step Δt, the state vector [x(t), y(t)] propagates to the
random state vector [x(t + Δt), y(t + Δt)]

x(t + Δt) ≈ x(t) + (2k2y(t)− 2k1x(t)(x(t)− 1) + k3) Δt

−2
√

(k1x(t)(x(t)− 1) + k2y(t))Z1 +
√

k3 Z2,

y(t + Δt) ≈ y(t) + (k1x(t)(x(t)− 1) − k2y(t))Δt

+
√

(k1x(t)(x(t)− 1) + k2y(t))Z1,

where Z1, Z2 ∼ N (0, Δt) are independent normally dis-
tributed random variables with zero mean and variance Δt
(Z1 corresponds to the dw1 and dw2 terms in (7)-(8)). This
means that if we were to run many simulations for a short
time step Δt, all starting at [x(t), y(t)], the trajectories would
end up at random locations forming a point cloud in the phase
plane. The point cloud has a bivariate normal distribution,
whose center is located at µ = [μx, μy ]T , given by

μx = x(t) + (2k2y(t)− 2k1x(t)(x(t)− 1) + k3) Δt,

μy = y(t) + (k1x(t)(x(t)− 1)− k2y(t))Δt,

and whose 2-by-2 covariance matrix Σ is

Σ = BBT ,

where

B =
√

Δt

( −2
√

k1x(t)(x(t)− 1) + k2y(t)
√

k3√
k1x(t)(x(t)− 1) + k2y(t) 0

)
.

The shape of the point cloud is an ellipse, because the level
lines of the probability density function

p(x, y) =
1

2π
√

detΣ
exp

{
−1

2
(x − µ)T Σ−1(x − µ)

}

are ellipses (x = [x, y]T ). When there is a separation of time
scales, the ellipses are thin and elongated. For example, for
the set of parameters given in (6), the eigenvalues of Σ for

[x, y] = [100, 100] are σ2
1 ≈ 105Δt and σ2

2 ≈ 10Δt. This
means that the long axis of the ellipse is two orders of magni-
tude longer than the short axis (σ1/σ2 ≈ 102). The eigenvec-
tor corresponding to σ1 is approximately [−2, 1]T , pointing in
the direction of the fast dynamics on the line x + 2y = const.
The second eigenvector is approximately [1, 2]T , pointing in
the direction of the slow dynamics.

The eigen-decomposition of the covariance matrix is sim-
ply the principal component analysis (PCA) of the local point
cloud generated by the short simulation burst. We produce
many short simulation bursts starting at different initializa-
tion points [x, y]. For each burst we perform the PCA and
estimate its covariance matrix Σ(x,y). The principal compo-
nents of Σ(x,y) are the local directions of the rapidly changing
variables at [x, y], whereas components with small eigenvalues
correspond to the slow variables.

We wish to piece together the locally defined components
into globally consistent coordinates. The toy model (3)-(5)
presents no special difficulty, because the principal compo-
nents of Σ(x,y) are approximately [−2, 1] and [1, 2] everywhere
(independent of [x, y]). In general, however, the slow variable
may be some complicated non-linear function of the state vari-
ables. In such cases, it is not trivial to find a globally consis-
tent slow coordinate.

Anisotropic diffusion maps

To integrate the local information into global coordinates we
use anisotropic diffusion maps (ADM), introduced in [10].
Suppose u = u(x, y) = x + 2y (resp. v = v(x, y) = −2x + y)
are the slowly changing (resp. the rapidly changing vari-
ables). Together they define a map g : (x, y) 
→ (u, v) from
the observable state variables x and y to the “dynamically
meaningful” coordinates u and v. Alternatively, the inverse
map f ≡ g−1 : (u, v) 
→ (x, y) is given by x = x(u, v) and
y = y(u, v). The point cloud in the observable (x, y)-plane,
generated by the short bursts, is the image under f of a similar
point cloud in the inaccessible (u, v)-plane. The slow mani-
fold (curve) in the (x, y)-plane can be thought of as the im-
age of u-axis, f(u, 0) = [x(u, 0), y(u, 0)]. The ellipses in the
(u, v)-plane are also thin and elongated, and they share an im-
portant property: they all have the v-axis as their long axis
and the u-axis as their short axis, due to the separation of
time scales. The ratio between the eigenvalues of Σ defines
a small parameter 0 < τ 2 � 1 that measures the time scale
separation. In other words, the change in u in a small time
step Δt is typically τ times smaller the amount of change in v.
The parameter τ = τ (u) can also be a function of u, allowing
the possibility of different variability of the rapid dynamics
for different values of u. This suggests to define the scaled
variable vτ = τv. This scaling contracts the elongated ellipse
in the (u, v)-plane into a circle in the (u, vτ )-plane.

Now that we showed how to identify ellipses in the observ-
able space that are images of circular disks in the inaccessible
space, we are in position to use the result of [10], that relates
the anisotropic graph Laplacian in the observable space with
the (isotropic) graph Laplacian in the inaccessible space. We
formulate our method in a general setting. Then we apply it
to the toy example.

The construction of the ADM is performed as follows.
Suppose x(i) ∈ R

M , i = 1, . . . , N , are N data points in
an M -dimensional data space. For every data point x(i) =
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[x
(i)
1 , x

(i)
2 , . . . , x

(i)
M ], i = 1, . . . , N , we generate an ensemble

of short simulation bursts initialized at the data point, i.e.
x(0) ≡ [x1(0), x2(0), . . . , xM (0)] = x(i). We collect the
statistics of the simulated trajectories after a short time pe-
riod Δt. In particular, we compute the averaged position
μ(i) = [μ

(i)
1 , . . . , μ

(i)
M ]

μ
(i)
j =

〈
xj(Δt) |x(0) = x(i)

〉
, j = 1, . . . , M, [10]

and the elements of the covariance matrix

Σ(i) = {σ(i)
jk }Mj,k=1

by

σ
(i)
jk =

1

Δt

[〈
xj(Δt) xk(Δt) |x(0) = x(i)

〉
− μ

(i)
j μ

(i)
k

]
[11]

where the notation 〈·〉 stands for statistical averaging over
many simulated trajectories. For each data point x(i), we cal-

culate Σ(i)−1
, the inverse of the covariance matrix. We define

a symmetric Σ-dependent squared distance between pairs of
data points in the observable (x, y)-space

d2
Σ(x(i), x(j)) = [12]

=
1

2
(x(i) − x(j))T

((
Σ(i)

)−1

+
(
Σ(j)

)−1
)

(x(i) − x(j)).

Note that for the toy model (3)-(5) the distance dΣ is a second
order approximation of the Euclidean distance in the inacces-
sible (u, vτ )-space

d2
Σ(x(i), x(j)) ≈ (u(i) − u(j))2 + τ 2(v(i) − v(j))2. [13]

Because τ is a small parameter, dΣ is controlled by the differ-
ence in the slow coordinate. The approximation (13) is also
valid in higher dimensions, where they may be more than one
slow coordinate (u) and several fast coordinates (v) and the
ellipse is replaced by an ellipsoid. In such cases,

d2
Σ(x(i), x(j)) ≈ ‖u(i) − u(j)‖2 + τ 2‖v(i) − v(j)‖2. [14]

Therefore, the ADM based on the “dynamic proximity” dΣ

approximates the Laplacian on the slow manifold. We con-
struct an N ×N weight matrix W

Wij = exp

{
−d2

Σ(x(i), x(j))

ε2

}
, [15]

where ε > 0 is the single parameter of the method. The el-
ements of the matrix W are all less than or equal to one.
Nearby points (i.e., their projection on the slow manifold is
close) have Wij close to one, whereas distant points have Wij

close to zero. Next, we define a diagonal N×N normalization
matrix D whose values are given by the row sums of W

Dii =

N∑
k=1

Wik.

We then compute the eigenvalues and right eigenvectors of the
row stochastic matrix

A = D−1W. [16]

As discussed in [17, 5, 18, 19], the leading eigenvectors may
be used as a basis for a low dimensional representation of the
data. To compute those eigenvectors, we use the fact that

A = D−1/2SD1/2 where S = D−1/2WD−1/2 is a symmetric
matrix. Hence, A and S are similar and thus have the same
spectrum. Since S is symmetric, it has a complete set of eigen-
vectors qj , j = 0, . . . , N − 1, with corresponding eigenvalues

λ0 ≥ λ1 ≥ . . . ≥ λN−1. [17]

The right eigenvectors of A are given by

uj = D−1/2qj . [18]

Since A is a Markov matrix, all its eigenvalues are smaller
than or equal to one, with largest eigenvalue λ0 = 1 and a
corresponding trivial eigenvector u0 = [1, 1, . . . , 1]. We define
the low (n-)dimensional representation of the state vectors by
the following ADM

Ψn : x(i) →
[
u

(i)
1 , u

(i)
2 , . . . , u(i)

n

]
; [19]

that is, the point x(i) is mapped to a vector containing the
i-th coordinate of each of the first n leading eigenvectors of
the matrix A. The variables u

(i)
1 , u

(i)
2 , . . . , u

(i)
n (which are

defined on the data points) are the candidate slow variables
that we were looking for.

Application of ADM to the toy example

We use N = 2000 data points x(i) ≡ [xi
1, x

i
2] = [X(i), Y (i)],

i = 1, . . . , 2000, uniformly sampled from the illustrative tra-
jectory of Figure 1 (in fact, the trajectory in Figure 1 is vi-
sualized using these 2000 data points). For every data point
x(i) = [X(i), Y (i)], i = 1, . . . , 2000, we run 107 replicas of
stochastic simulations initialized at the data point for time
Δt = 10−4. We estimate μ

(i)
j and σ

(i)
jk , i = 1, . . . , 2000,

j = 1, 2, k = 1, 2 by (10)–(11) as an average over 107 re-
alizations. For each data point x(i) = [X(i), Y (i)], we also
calculate the inverse covariance matrix and the symmetric Σ-
dependent squared distance d2

Σ(x(i), x(j)) by (12). We con-
struct a 2000×2000 weight matrix W by (15) for ε = 0.1 and
a matrix A by (16). We compute the leading eigenvectors uj

of A by (18). In Figure 2, we plot our data set where the
points are colored according to the first nontrivial eigenvector
u1. We see that the eigenvector u1 gives a good description of
slow dynamics of this system. The slow dynamics is given by
function X +2Y as can be seen in the right panel of Figure 1.
The plot of u1 vs. X +2Y is shown in middle panel of Figure
2. We again confirm that we obtained a good slow descrip-
tion of the system. Finally, plotting the eigenvector u1 vs. X
confirms that X is not a good slow variable (right panel of
Figure 2).

Oscillating half-moons

Next, consider the system of stochastic differential equations

du = a1 dt + a2 dw1, [20]

dv = a3(1− v) dt + a4 dw2, [21]

where ai, i = 1, 2, 3, 4, are constants and ẇi, i = 1, 2 are in-
dependent δ-correlated white noises (Wiener processes). We
consider (20)–(21) together with the following nonlinear trans-
formation of variables

x = v cos(u + v − 1), y = v sin(u + v − 1). [22]
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We will assume that the observables x and y are the actual
observables, while u and v are unknown. We choose the val-
ues of parameters as: a1 = a2 = 10−3, a3 = a4 = 10−1.
The illustrative trajectory which starts at [x(0), y(0)] = [1, 0]
is plotted in the left panel of Figure 3. The trajectory is
colored according to time. We run simulations for a longer
time 8 × 104, which accounts for about 12-13 periods, and
record 2000 data points at equidistant time intervals of length
8×104/2000 = 40. This data set is plotted in the middle panel
of Figure 3. Again, points are colored according to time. We
clearly see that there is no correlation between time and the
slow variable (which is u MOD 2π) because of oscillations.

To apply the ADM, we run 106 replicas of stochastic sim-
ulations initialized at each data point x(i) = [x(i), y(i)] for a

time step Δt = 0.1 and estimate μ
(i)
j and σ

(i)
jk , i = 1, . . . , 2000,

j = 1, 2, k = 1, 2 by (10)–(11) as an average over 106 realiza-
tions. For each data point x(i) = [x(i), y(i)], we also calculate
the inverse covariance matrix and the symmetric Σ-dependent
squared distance d2

Σ(x(i), x(j)) by (12). Next, we have to
choose the value of parameter ε. To do that, we construct
the ε-dependent 2000 × 2000 weight matrix W ≡ W(ε) by
(15) for several values of ε. Then we compute

L(ε) =

N∑
i=1

N∑
j=1

Wij(ε). [23]

The function L(ε) is plotted in the right panel of Figure 3 (it
is a log-log plot) [20]. It clearly has two constant asymptotes
when ε → 0 and ε → ∞; as we expect, these asymptotes
are smoothly connected, by an approximately straight line of
slope d in a log-log plot, where d is the dimension of the slow
manifold. Thus, the log-log plot of L(ε) suggests to choose
ε where the log-log graph of L(ε) appears linear. We choose
ε = 6. We form A (by (16)) and compute its few leading
eigenvectors uj by (18). The first nontrivial eigenvector u1

then describes the slow dynamics of the system. The data set
(colored by the values of u1) is plotted in Figure 4 (left panel).
We see that the ADM provides a good description of the slow
dynamics. Plotting u1 against the observable x confirms that
the latter is not a good observable (middle panel of Figure
4). The slow variable is given as a nonlinear transformation
of x and y which can be computed by inverting (22) locally.
It is basically a function of u MOD 2π. The eigenvector u1

is plotted against the slow variable u MOD 2π in the right
panel of Figure 4. We again confirm that we recovered the
slow dynamics correctly.

Inherently non-linear chemical reactions

We consider the following set of chemical reactions

X
k1−→ X + Z, Y + Z

k2−→ Y, [24]

∅ k3−→ Y, Y
k4−→ ∅, [25]

∅ k5−→ X. [26]

The first two reactions (24) are production and degradation of
Z (catalyzed by X and Y , respectively). The production and
degradation of Z is assumed to be happening on a fast time
scale. Reactions (25) are production and degradation of Y .
They are assumed to occur on an intermediate time scale (i.e.

slower than the fast time scale, but faster than the slow time
scale). The reaction (26) is production of X which is assumed
to be slow. We choose the values of the rate constants as

k1 = 1000, k2 = 1, k3 = 40, k4 = 1, k5 = 1. [27]

This choice of rate constants guarantees that the reactions
(24) are the fastest, the reactions (25) happen on a slower
time scale, and the reaction (26) is the slowest. The model
(24)-(26) is approximated by the ODE system for the O(1)
variables x = X/100, y = Y/40 and z = Z/2500 as fol-
lows: dx/dt = k5/100, dy/dt = k3/40 − k4y, dz/dt =
100k1x/2500 − 40k2yz. Using the parameter values (27), we
obtain dx/dt = x/100, dy/dt = 1−y, dz/dt = 40(x−yz). The
quasi-equilibrium approximation in the z-equation (fastest) is
z = x/y, which implies the “half-moon shaped” profile (hy-
perbola + noise) dynamics in the Y -Z plane. The variable y
changes on a faster time scale than x. Roughly speaking, the
fluctuations in y lead to the dynamics in z according to the
formula z = x/y where x changes very slowly, as illustrated
in Figure 5. We initialize the system at [X(0), Y (0), Z(0)] =
[100, 40, 2500] and simulate the time evolution using the Gille-
spie stochastic simulation algorithm. Figure 5 shows the time
evolution of X (top left panel), Y (top middle panel) and Z
(top right panel). The same trajectory plotted in the Y -Z
plane is given in the bottom panels of Figure 5. We plot 2000
data points lying on this trajectory colored by time (bottom
left panel). In the bottom middle panel of Figure 5, we pro-
vide the similar Y -Z plot where the data points are colored
according to the value of X.

The set of 2000 data points (plotted in the bottom right
panel of the Figure 5) is the input of the diffusion map ap-
proach. To emphasize the strength of our approach, the data
points are ordered randomly in the inputting data set. In our
model, the slow variable X is a non-decreasing function of time
t – see Figure 5 (top left panel). Consequently, the data set
recorded from the stochastic simulation is ordered according
to the slow variable. In more complicated chemical examples
(e.g. problems with oscillations [22]), or the oscillating half-
moons from the previous example, there is no obvious relation
between the “dynamic proximity” of data points and the or-
der in which they are recorded. Our approach works in more
complicated situations, because the ADM is independent of
the order of the inputting data points.

We use short bursts of time Δt = 5 × 10−4 (which cor-
responds to approximately 100 Gillespie SSA time steps) of
stochastic simulations initialized at the N = 2000 data points
from Figure 5 (bottom right panel). For every data point
X (i) = [X(i), Y (i), Z(i)], i = 1, . . . , N , we run 106 replicas of
stochastic simulations initialized at the data point to estimate
the covariance matrix Σ(i). We use ε = 1. In the right panel
of Figures 6, we plot our data set (given in Figure 5 (bottom
right panel)) and we color the data points according to the
first nontrivial eigenvector u1. We see that the eigenvector u1

gives a good description of slow dynamics of the system (24)-
(26). The slow dynamics can be described by the variable X
as can be seen in the top left panel of Figure 5. The plot of
u1 vs. X is shown in the middle panel of Figure 6. We again
confirm that we obtained a good description of the slow dy-
namics of the system. Finally, plotting the eigenvector u1 vs.
Y confirms that Y is not a good slow variable (right panel of
Figure 6).
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Summary

Finding a reduced model for dynamical systems with a large
number of degrees of freedom is of great importance in many
fields. Dimensional reduction methods often use similarity
measures between different states of the dynamical system
to reveal its low dimensional structure. Those methods are
limited when the similarity measure does not take into ac-
count the time labeling of the states. We encode the time de-
pendence into an anisotropic similarity measure using short
bursts of local simulations. The resulting leading eigenvec-

tors of the anisotropic diffusion map approximate the eigen-
functions of the Laplacian over the manifold corresponding to
the dynamically meaningful slowly varying coordinates. We
demonstrated the usefulness of the ADM in analyzing dynam-
ical systems by its successful recovery of meaningful coordi-
nates in the particular case of multiscale chemical reactions.
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Fig. 1: The time evolution of X, Y and X + 2Y given by the stochastic simulation of the chemical system (3) and (5).
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Fig. 2: The data set with each point colored according to u1 (left panel). Vector u1 as a function of X + 2Y (middle panel).
Vector u1 as a function of X (right panel).
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Fig. 3: The short illustrative trajectory of (20)–(22) which starts at [x(0), y(0)] = [1, 0]. The trajectory is colored according to
time (left panel). The representative data set sampled at equal time steps from a longer stochastic simulation. The points are
colored according to time (middle panel). Plot of L(ε) given by (23) (right panel).
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