
Planar chemical reaction systems with algebraic and

non-algebraic limit cycles

Gheorghe Craciun1* and Radek Erban2*

1Department of Mathematics and Department of Biomolecular Chemistry, University of
Wisconsin - Madison, 480 Lincoln Dr, Madison, WI 53706-1388, United States.

2Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter Woodstock
Road, Oxford, OX2 6GG, United Kingdom.

*e-mails: craciun@wisc.edu; erban@maths.ox.ac.uk;

Abstract

The Hilbert number H(n) is defined as the maximum number of limit cycles of a planar autonomous
system of ordinary differential equations (ODEs) with right-hand sides containing polynomials of
degree at most n ∈ N. The dynamics of chemical reaction systems with two chemical species can be
(under mass-action kinetics) described by such planar autonomous ODEs, where n is equal to the
maximum order of the chemical reactions in the system. Generalizations of the Hilbert number H(n)
to three different classes of chemical reaction networks are investigated: (i) chemical systems with
reactions up to the n-th order; (ii) systems with up to n-molecular chemical reactions; and (iii) weakly
reversible chemical reaction networks. In each case (i), (ii) and (iii), the question on the number of
limit cycles is considered. Lower bounds on the generalized Hilbert numbers are provided for both
algebraic and non-algebraic limit cycles. Furthermore, given a general algebraic curve h(x, y) = 0
of degree nh ∈ N and containing one or more ovals in the positive quadrant, a chemical system is
constructed which has the oval(s) as its stable algebraic limit cycle(s). The ODEs describing the
dynamics of the constructed chemical system contain polynomials of degree at most n = 2nh + 1.
Considering nh ≥ 4, the algebraic curve h(x, y) = 0 can contain multiple closed components with
the maximum number of ovals given by Harnack’s curve theorem as 1 + (nh − 1)(nh − 2)/2, which
is equal to 4 for nh = 4. Algebraic curve h(x, y) = 0 with nh = 4 and the maximum number of four
ovals is used to construct a chemical system which has four stable algebraic limit cycles.

Keywords: chemical reaction networks, limit cycles, Hilbert number, algebraic limit cycles

1 Introduction

The dynamics of chemical reaction networks under mass-action kinetics is inherently connected with
the investigation of the dynamics of ordinary differential equations (ODEs) with polynomial right-hand
sides [1, 2]. In this paper, we consider chemical reaction networks with two chemical species X and Y.
Denoting the time-dependent concentrations of chemical species X and Y by x(t) and y(t), respectively,
their time evolution is described by a planar system of ODEs

dx

dt
= f(x, y) , (1.1)

dy

dt
= g(x, y) , (1.2)
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where f(x, y) and g(x, y) are polynomials. The ODE systems in the form (1.1)–(1.2) have been inves-
tigated in detail since the pioneering work of Poincaré and Bendixson [3], who showed that the most
complex long term dynamics one can expect to observe in planar systems are multiple limit cycles. Con-
sidering that f(x, y) and g(x, y) are polynomials of degree at most n ∈ N, it is interesting to ask how
many limit cycles ODEs (1.1)–(1.2) can have. While this question in its full-generality is a part of the yet-
unsolved Hilbert’s 16th problem [4], it can be answered when there are additional restrictions imposed
on the right-hand sides of the ODEs [5–7]. A related question is to find (in some sense minimal) exam-
ples of planar polynomial ODE systems (1.1)–(1.2) for low values of n, which have a certain number of
limit cycles or specific bifurcation structure [8–11].

Chemical reaction networks consisting of reactions with order at most n ∈ N can be described by
ODEs in the form (1.1)–(1.2), where f(x, y) and g(x, y) are polynomials of degree at most n, which have
some further restrictions on their coefficients. In Section 2, we define three important classes of chemical
reactions networks: (i) set Sn consisting of reactions of at most n-th order; (ii) set Mn consisting of
reactions which are at most n-molecular; and (iii) set Wn consisting of the networks in Mn which are
weakly reversible [12]. Our main question is to understand the existence of limit cycles in sets Sn, Mn

and Wn, either by finding relatively simple chemical networks with a certain number of limit cycles,
or by proving that certain numbers and configurations of the limit cycles cannot exist. Denoting the
maximum number of limit cycles in sets Sn, Mn and Wn by S(n),M(n) andW(n), respectively, we provide
generalizations of the Hilbert number H(n) to the chemical reaction network theory [13]. In Section 3,
we provide estimates on the values of S(n), M(n) and W(n) for small values of n and in the asymptotic
limit n→∞.

An important subset of limit cycles in planar polynomial ODE systems (1.1)–(1.2) are algebraic
limit cycles [7, 14]. An algebraic limit cycle is not only a closed isolated solution of the ODE system,
but it can also be represented as a closed component of an algebraic curve h(x, y) = 0, where h is a
polynomial. In Section 4, we focus on constructing simple chemical systems with algebraic limit cycles.
In particular, we further generalize the numbers of limit cycles S(n), M(n) and W(n) in sets Sn, Mn and
Wn to quantities giving the maximum number of algebraic limit cycles, denoting these generalizations
by Sa(n), Ma(n) and W a(n). If the degree of polynomial h is nh = 2 or nh = 3, then the algebraic curve
h(x, y) = 0 contains at most one closed oval. If nh = 4, then Harnack’s curve theorem implies that the
maximum number of connected components is 4. In Section 5.1, we study an algebraic curve h(x, y) = 0
of degree nh = 4 which has the maximum number of ovals, 4, for some parameter values. We construct
a chemical system which has all four ovals as stable limit cycles. We conclude with the discussion of our
results and the literature in Section 6.

2 Chemical reaction networks in sets Sn, Mn and Wn

We consider chemical reaction systems with two chemical species X and Y which are subject to m ∈ N
chemical reactions

αiX + βiY
ki−→ γiX + δiY , for i = 1, 2, . . . ,m, (2.1)

where αi ∈ N0, βi ∈ N0, γi ∈ N0 and δi ∈ N0 are nonnegative integers, called stoichiometric coefficients,
and ki is the corresponding reaction rate constant which has physical units [time]−1[volume]αi+βi−1.
However, in what follows, we assume that all chemical models have been non-dimensionalized, i.e. the
rate constant ki is assumed to be a positive real number for i = 1, 2, . . . ,m. We define the order of the
chemical reaction system (2.1) by

n = max
i=1,2,...,m

(αi + βi) , (2.2)

i.e. the chemical reaction system (2.1) is of the n-th order, if all individual reactions are of at most n-th
order, where the order of an individual reaction is given as (αi +βi). Assuming mass-action kinetics, the
time evolution of the chemical reaction network (2.1) is given by the reaction rate equations which is a
planar polynomial ODE system in the following form [1, 15]

dx

dt
=

m∑
i=1

ki (γi − αi)xαi yβi , (2.3)

dy

dt
=

m∑
i=1

ki (δi − βi)xαi yβi . (2.4)
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This ODE system is of the form (1.1)–(1.2), where f(x, y) and g(x, y) are polynomials of degree at
most n, where n is the order of the chemical reaction network given by (2.2).

Example. The Lotka-Volterra system can be written as a chemical reaction network in the form (2.1)
with m = 3 chemical reactions and stochiometric coefficients

(α1, β1, γ1, δ1) = (1, 0, 2, 0), (α2, β2, γ2, δ2) = (1, 1, 0, 2), (α3, β3, γ3, δ3) = (0, 1, 0, 0),

i.e. the chemical reactions are

X
k1−→ 2X , X + Y

k2−→ 2Y , Y
k3−→ ∅, (2.5)

where the reaction rate constants k1, k2 and k3 are positive real numbers. The Lotka-Volterra system (2.5)
is a chemical reaction system of the second-order, i.e. equation (2.2) gives n = 2. The corresponding
ODE system (2.3)–(2.4) is a planar quadratic ODE system of the form

dx

dt
= k1 x − k2 x y , (2.6)

dy

dt
= k2 x y − k3 y . (2.7)

Definition 1. Let n ∈ N. We denote by Sn the set of chemical systems (2.1) which are of at most n-th
order, where the order is defined by (2.2).

In what follows, we will use Sn to denote not only the set of the chemical reaction networks, but also the
set of the corresponding ODEs (2.3)–(2.4), which are planar autonomous ODE systems in the form (1.1)–
(1.2), where f(x, y) and g(x, y) are polynomials of degree at most n. They can be expressed in terms of
coefficients as

f(x, y) =
∑

{i,j≥0 | i+j≤n}
ai,j x

i yj and g(x, y) =
∑

{i,j≥0 | i+j≤n}
bi,j x

i yj , (2.8)

where aij , bij are real numbers. The set Sn can then be characterized in terms of restrictions on these
coefficients, which we state as our next lemma.

Lemma 1. Consider an ODE system in the form (1.1)–(1.2), with f and g given by (2.8). Then a
necessary and sufficient condition for belonging to the set Sn is that the coefficients of f and g in (2.8)
satisfy the following condition

a0,i ≥ 0 and bi,0 ≥ 0 for i = 0, 1, 2, . . . , n. (2.9)

Proof. This is a classical result [16]. We include a short proof here, since the construction in this proof
will be used again later. Consider some term of the form ai,j x

i yj that is one of the monomials within
f(x, y) in (2.8). In particular, we have i + j ≤ n. We will exhibit a reaction that gives rise to this term
ai,j x

i yj , and no other terms; in other words, this reaction generates the system

dx

dt
= ai,j x

i yj and
dy

dt
= 0.

Indeed, if ai,j < 0 it follows that i ≥ 1 (because a0,i ≥ 0), and then this term can be obtained by using
the reaction iX + jY → (i− 1)X + jY , if we choose its reaction rate constant to be k = −ai,j . Similarly,
if ai,j > 0, this term can be obtained by using the reaction iX + jY → (i + 1)X + jY , by choosing its
reaction rate constant to be k = ai,j .

We can proceed similarly for monomials of g(x, y), by using reactions of the from iX + jY → iX +
(j− 1)Y and iX + jY → iX + (j+ 1)Y . We conclude that, by using the reaction network which consists
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of the reactions described above (i.e., one reaction for each monomial of f(x, y), and one reaction for
each monomial of g(x, y)), we can obtain the system (1.1)-(1.2).

Conversely, we can see in (2.3)–(2.4) that if ai = 0 then ki(ci − ai) ≥ 0 and, similarly, if bi = 0 then
ki(di − bi) ≥ 0. This implies that any polynomial dynamical system that is generated by a chemical
reaction network satisfies the inequalities (2.9).

The Lotka-Volterra system (2.5) is an example of a chemical reaction network in set S2, because every
reaction is of at most second-order. Moreover, we observe that not only each reaction in (2.5) has at
most two reactants, but is also has at most two products. We will denote the set of such networks as
M2 and call them bimolecular reaction networks. In general, we define the set of n-molecular reaction
networks Mn as follows.

Definition 2. Let n ∈ N. We denote by Mn the subset of Sn which corresponds to chemical reaction
networks (2.1), where each chemical reaction has at most n reactants and n products, i.e.

max
i=1,2,...,m

max
{

(αi + βi), (γi + δi)
}
≤ n . (2.10)

The set of n-molecular reaction networks Mn can again be characterized in terms of the coefficients as
stated in the next lemma.

Lemma 2. Consider an ODE system in the form (1.1)–(1.2), with f and g given by (2.8). Then a
necessary and sufficient condition for belonging to Mn is to satisfy inequalities (2.9) together with

ai,n−i + bi,n−i ≤ 0 for i = 0, 1, 2, . . . , n. (2.11)

Proof. Consider an ODE system (1.1)–(1.2), with f and g expressed in coefficients (2.8) that satisfy (2.9)
and (2.11). In particular, according to Lemma 1, this system belongs to Sn, which implies that it can be
realized by a reaction network where all the reactions are of the form iX+jY → pX+qY with i+j ≤ n.
We need to show that we can also choose these reactions such that p+ q ≤ n.

Note that we know from the proof of Lemma 1 that we can obtain the same monomial terms by using
reactions such that (p, q) = (i± 1, j) or (p, q) = (i, j ± 1), and therefore p+ q ≤ i+ j + 1. This gives us
the desired conclusion if i+ j ≤ n− 1. Consider now the case i+ j = n, i.e. j = n− i. If i > 0, n− i > 0
and ai,n−i ≥ bi,n−i, then we can realize the system

dx

dt
= ai,n−ix

iyn−i and
dy

dt
= bi,n−ix

iyn−i (2.12)

by using the following two chemical reactions

iX + (n− i)Y
ai,n−i−bi,n−i

2−−−−−−−−−−→ (i+ 1)X + (n− i− 1)Y

and

iX + (n− i)Y
−ai,n−i−bi,n−i

2−−−−−−−−−−−→ (i− 1)X + (n− i− 1)Y.

Similarly, if i > 0, n − i > 0 and ai,n−i ≤ bi,n−i, then we can realize ODE system (2.12) by using two
reactions iX + (n− i)Y → (i− 1)X + (n− i+ 1)Y and iX + (n− i)Y → (i− 1)X + (n− i− 1)Y .

Finally, if i = 0, then we know that a0,n ≥ 0, and we can realize ODE system (2.12) by using two
reactions nY → X + (n − 1)Y and nY → (n − 1)Y with reaction rate constants a0,n and −a0,n − b0,n,
respectively. The case where i = n is analogous to the case i = 0.

The Lotka-Volterra system (2.5) is an example of a chemical reaction network belonging to both S2
and M2. It is a conservative system admitting periodic solutions, but it has no limit cycles. In Section 3,
we will start our investigation of the existence and number of limit cycles of chemical reaction networks
in sets Sn and Mn. We will observe that ODE systems in M2 do not have any limit cycles, but there are
reaction systems in S2 with limit cycles. There are also other important properties and classes of chemical
reaction networks, including weakly reversible chemical systems [12, 17]. To define weak reversibility,

4



(a) (b) (c)

Fig. 1 Schematics of planar E-graphs associated with (a) Lotka-Volterra chemical system (2.5); (b) chemical system (2.13);
(c)chemical system with six reactions given by (2.13) and (2.13).

we embed the chemical reaction network (2.1) as a planar E-graph (i.e. Euclidean embedded graph,
see [18, 19]) where the nodes have coordinates (αi, βi) and (γi, δi) and each reaction corresponds to the
edge (αi, βi) −→ (γi, δi). For example, the planar E-graph corresponding to the Lotka-Volterra chemical
system (2.5) has three edges

(1, 0)→ (2, 0), (1, 1)→ (0, 2), (0, 1)→ (0, 0)

and it is schematically shown in Figure 1(a). We say that a chemical reaction network is weakly reversible
if every edge of the associated planar E-graph is a part of an oriented cycle. Clearly, Lotka-Volterra
system is not weakly reversible.

Example. Consider the first-order chemical reaction network

∅ 1−→ X , X
1−→ Y , Y

1−→ ∅ . (2.13)

Its associated planar E-graph is visualized in Figure 1(b), schematically showing three edges (0, 0) →
(1, 0), (1, 0) → (0, 1) and (0, 1) → (0, 0) corresponding to the three reactions of chemical system (2.13).
Since every edge of the associated planar E-graph is a part of an oriented cycle, chemical reaction net-
work (2.13) is weakly reversible. The ODE system (2.3)–(2.4) corresponding to the chemical system (2.13)
is a planar linear ODE system

dx

dt
= 1 − x , (2.14)

dy

dt
= x − y . (2.15)

Multiplying the right-hand side of the ODE system by polynomial (1 +x2y), we obtain the ODE system

dx

dt
= (1 + x2y)(1 − x) ,

dy

dt
= (1 + x2y)(x − y) ,

which are the reaction rate equations for the chemical system consisting of reactions (2.13) and additional
three reactions:

2X + Y
1−→ 3X + Y , 3X + Y

1−→ 2X + 2Y , 2X + 2Y
1−→ 2X + Y . (2.16)

The associated planar E-graph is visualized in Figure 1(c). This example illustrates that the multiplication
of the right-hand side of the reaction rate ODEs by a polynomial with positive coefficients results with
multiple copies of the original associated E-graph. This will be further used in Section 4, where we study
weakly reversible systems with algebraic limit cycles. Moreover, the chemical system consisting of six
reactions (2.13) and (2.16) in Figure 1(c) provides another example of a weakly reversible system.
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n W(n) M(n) S(n) H(n)

2 = 0 = 0 ≥ 3 ≥ 4

3 ≥ 3 ≥ 3 ≥ 6 ≥ 13

4 ≥ 6 ≥ 6 ≥ 13 ≥ 28

as n→∞ ≥ O(n) ≥ O(n2log(n)) ≥ O(n2log(n)) ≥ O(n2log(n))

Table 1 Some values and estimates from below on numbers W(n), M(n), S(n) and H(n), see Lemmas 5, 6, 7 and 8.

Definition 3. Let n ∈ N. We denote by Wn the subset of Mn which corresponds to chemical reaction
networks (2.1) that are weakly reversible.

Considering an arbitrary chemical reaction network, it belongs to Sn where n is the order given by (2.2).
Moreover, the corresponding ODEs satisfy the property that they can be obtained as reaction rate
equations of a chemical system in Mn+1. We formulate this result as our next lemma.

Lemma 3. We have (a) Wn ⊂Mn ⊂ Sn for all n ∈ N ,
(b) M2 ⊂ S2 ⊂M3 ⊂ S3 ⊂M4 ⊂ S4 ⊂ ... .

Proof. (a) This is a direct consequence of Definitions 1, 2 and 3 of Wn, Mn and Sn.
(b) We show that Sn ⊂Mn+1, as follows. Recall that in the proof of Lemma 1 above we have been able
to obtain the polynomial right-hand side of a chemical system in Sn by using only reactions of the form
iX+jY → (i−1)X+jY , iX+jY → (i+1)X+jY , iX+jY → iX+(j−1)Y , or iX+jY → iX+(j+1)Y ,
with i+j ≤ n. Note now that for these types of reactions the largest stoichiometric coefficients are either
i+ 1 and j, or i and j + 1, and we have i+ 1 + j = i+ j + 1 ≤ n+ 1. This implies that any system that
belongs to Sn also belongs to Mn+1.

3 Generalization of the Hilbert number to sets Sn, Mn and Wn

Let H(n) be the maximum number of limit cycles for planar ODE systems in the form (1.1)–(1.2), where
f and g are polynomials of degree at most n given by (2.8). Then H(n) is often called the Hilbert number,
because it can be used to formulate Hilbert’s 16th problem [4]. By constructing polynomial ODE systems
with a specific number of limit cycles, lower bounds on the Hilbert number H(n) have been obtained: for
example, a quadratic system with 4 limit cycles [8], a cubic system with 13 limit cycles [9] and a quartic
system with 28 limit cycles [20] have been constructed in the literature, giving H(2) ≥ 4, H(3) ≥ 13 and
H(4) ≥ 28. On the other hand, one can show that quadratic systems which can be written as chemical
systems corresponding to bimolecular systems M2 cannot have limit cycles [5, 6]. To formulate our results
and put them into context with the literature, we first define the corresponding generalizations of the
Hilbert number H(n) to subsets of the polynomial ODE systems corresponding to sets Sn, Mn and Wn.

Definition 4. We denote by S(n) the maximum number of limit cycles of ODEs in the set Sn, by M(n)
the maximum number of limit cycles of ODEs in the set Mn of n-molecular chemical reaction networks,
and by W(n) the maximum number of limit cycles of ODEs in the set Wn of weakly reversible chemical
reaction networks.

Some inequalities between numbers W(n), M(n), S(n) and H(n) are stated as our next lemma.

Lemma 4. We have (a) W(n) ≤M(n) ≤ S(n) ≤ H(n) ≤ S(n+ 2) for all n ∈ N ,
(b) S(n) ≤M(n+ 1) for all n ∈ N .

Proof. (a) The first two inequalities follow directly from Lemma 3(a). To prove H(n) ≤ S(n + 2), we
observe that any n-degree polynomial ODE system (1.1)–(1.2) can be transformed into a chemical system
of at most (n + 2)-th order by shifting all limit cycles to the positive quadrant [0,∞) × [0,∞) and by
multiplying both right-hand sides by xy. Since this corresponds to the rescaling of time in the original
system, both the original system and the transformed system in Sn+2 will have the same number of limit
cycles. This implies that H(n) ≤ S(n+ 2).
(b) This inequality follows directly from Lemma 3(b). Note that these inequalities also trivially hold for
n = 1, because there are no limit cycles in linear systems, i.e. W (1) = M(1) = S(1) = H(1) = 0.
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Some lower bounds on numbers W(n), M(n), S(n) and H(n) can be established. They are summarized
in Table 1 and stated in lemmas below.

Lemma 5. The ODEs in set M2 cannot have any limit cycles, i.e. we have M(2) = 0 and W (2) = 0.

Proof. See Póta [5], Tyson and Light [21], Schuman and Tóth [6] for the proof of M(2) = 0. Using
Lemma 4, we have W (2) ≤M(2), which implies W (2) = 0.

Lemma 6. We have S(2) ≥ 3, S(3) ≥ 6, S(4) ≥ 13, M(3) ≥ 3, M(4) ≥ 6, W (3) ≥ 3 and W (4) ≥ 6.

Proof. See [22] for S(2) ≥ 3. Results S(3) ≥ 6 and S(4) ≥ 13 have been established in the literature
on Kolmogorov systems [23, 24]. A planar cubic (resp. quartic) ODE system with six (resp. thirteen)
limit cycles in the positive quadrant has been presented in [23] (resp. [24]). Applying Lemma 1 to these
systems, we conclude that there is a chemical system in S3 with six limit cycles and a chemical system in
S4 with thirteen limit cycles, giving S(3) ≥ 6 and S(4) ≥ 13. Using Lemma 4(b), we get M(3) ≥ S(2) ≥ 3
and M(4) ≥ S(3) ≥ 3. Finally, we can add reactions with very small values of rate constants to make
the corresponding systems (weakly) reversible. Such small perturbations will not change the existence of
hyperbolic limit cycles [25, 26], giving W (3) ≥ 3 and W (4) ≥ 6.

Lemma 7. We have H(2) ≥ 4, H(3) ≥ 13, H(4) ≥ 28 and H(n) ≥ O(n2log(n)) as n→∞.

Proof. See [8] for H(2) ≥ 4, [9] for H(3) ≥ 13, [20] for H(4) ≥ 28 and [4] for the asymptotic inequality
H(n) ≥ O(n2log(n)) as n→∞.

Lemma 8. We have S(n) ≥ O(n2log(n)), M(n) ≥ O(n2log(n)) and W (n) ≥ O(n), as n→∞. .

Proof. The first two asymptotic inequalities follow from Lemma 4 and Lemma 7. The last one is a
consequence of our results in Section 4 where we study the number of algebraic limit cycles, W a(n),
in weakly reversible systems, which satisfies W (n) ≥ W a(n) together with the asymptotic inequality
W a(n) ≥ O(n), as n→∞.

The analysis of ODE systems with limit cycles which are used to achieve lower bounds in Table 1 often
cannot be supported by illustrative numerical simulations, because some parameter values are negligible
(beyond the machine precision) when compared to other parameter values. However, there are also
chemical systems in the literature with multiple limit cycles, where the phase plane can be computed
using standard numerical methods. For example, the third-order system in S3 with three limit cycles,
two stable and one unstable, is presented in [27], or a 3-molecular chemical system in M3 with two
limit cycles, one stable and one unstable is studied in [28]. In the following sections, we will restrict our
investigations to algebraic limit cycles. We will present both the generalization of Table 1 in Section 4,
but we also introduce a general approach in Theorem 3 in Section 5 to obtain chemical systems, where
we will be able to calculate their phase planes with multiple (algebraic) limit cycles and present some
illustrative numerical results.

4 Chemical systems with algebraic limit cycles

The generalizations of the Hilbert number H(n) to subsets of polynomial ODE systems corresponding
to sets Sn, Mn and Wn have been given in Definition 4. In this section, we will focus on algebraic limit
cycles [7, 14]. An algebraic limit cycle is not only a closed isolated solution of the ODE system, but it
can also be represented as a closed component of an algebraic curve h(x, y) = 0, where h is a polynomial
of degree nh. Since the flow of the planar ODE system (1.1)–(1.2) is tangent to the algebraic curve, we
have

∂h

∂x
(x, y) f(x, y) +

∂h

∂y
g(x, y) = s(x, y)h(x, y) , (4.1)

where s(x, y) is a polynomial, called cofactor of h. First, we generalize the definitions of S(n), M(n) and
W (n) to functions counting only algebraic limit cycles.

Definition 5. We denote by Sa(n) the maximum number of algebraic limit cycles for ODEs in the
set Sn, by Ma(n) the maximum number of algebraic limit cycles for ODEs in the set Mn of n-molecular
chemical reaction networks, and by W a(n) the maximum number of algebraic limit cycles for ODEs in
the set Wn of weakly reversible chemical reaction networks.
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n Wa(n) Ma(n) Sa(n) Ha(n)

2 = 0 = 0 ≥ 1 ≥ 1

3 ≥ 0 ≥ 1 ≥ 1 ≥ 2

4 ≥ 1 ≥ 1 ≥ 3 ≥ 4

as n→∞ ≥ O(n) ≥ O(n2) ≥ O(n2) ≥ O(n2)

Table 2 Some values and estimates from below on numbers Wa(n), Ma(n), Sa(n) and Ha(n), see Lemma 10,
Lemma 11, Lemma 12 and Theorem 1.

Lemma 4 establishing inequalities between numbers W(n), M(n), S(n) and H(n) can also be formulated
for numbers W a(n), Ma(n), Sa(n) and Ha(n) counting only algebraic limit cycles.

Lemma 9. We have (a) W a(n) ≤Ma(n) ≤ Sa(n) ≤ Ha(n) ≤ Sa(n+ 2) for all n ∈ N ,
(b) S(a)(n) ≤M (a)(n+ 1) for all n ∈ N .

Proof. The proof follows the same argument as the proof of Lemma 4, where we replace limit cycles by
algebraic limit cycles.

Some lower bounds on numbers W a(n), Ma(n) and Sa(n) are given in Table 2 and in Lemmas 10, 11
and 12.

Lemma 10. We have Ha(2) ≥ 1, H(a)(3) ≥ 2, Ha(4) ≥ 4, Sa(2) ≥ 1, S(a)(3) ≥ 1, Sa(4) ≥ 3,
M (a)(2) = 0, Ma(3) ≥ 1, M (a)(4) ≥ 1 and W (a)(2) = 0.

Proof. See [29] for Ha(2) ≥ 1, H(a)(3) ≥ 2 and Ha(4) ≥ 4. Since Lemma 5 gives M(2) = 0 and W (2) = 0,
we also have M (a)(2) = 0 and W (a)(2) = 0 when we restrict to algebraic limit cycles in sets M2 and W2.
To show Sa(2) ≥ 1, we need to find a quadratic chemical system with an algebraic limit cycle. Consider
the quadratic system [30]

dx

dt
= 2x2 − xy +

3

2
, (4.2)

dy

dt
=

5

2
x2 − xy − y +

17

4
. (4.3)

Using Lemma 1, the ODE system (4.2)–(4.3) belongs to S2. Moreover, it is easy to verify that it has an
algebraic limit cycle in the positive quadrant, which is the ellipse given by [30]

h(x, y) = 10x2 − 12xy + 4y2 + 20x− 16y + 19 = 0 (4.4)

with the cofactor s(x, y) in equation (4.1) given as s(x, y) = x − 2. Consequently, we have Sa(2) ≥ 1.
Using Lemma 9, we conclude

1 ≤ S(a)(2) ≤M (a)(3) ≤ S(a)(3) ≤M (a)(4). (4.5)

Finally, to show Sa(4) ≥ 3, consider quartic algebraic curve h(x, y) = 0 given by

h(x, y) = x2y2 − 9

103
(
x3y + xy3

)
+

6

104
(
x3 + y3

)
+

2

50

(
x2y + xy2

)
− 2xy +

934

103
, (4.6)

which has three ovals in the positive quadrant. We visualize them in Figure 2(a). Next, we consider the
line y = 7x , which does not intersect the three ovals of h(x, y) = 0, as it is shown in Figure 2(a). Then,
we can apply [31, Theorem 1] to deduce that the ODE system

dx

dt
= h(x, y) + (y − 7x)

∂h

∂y
(x, y) , (4.7)

dy

dt
= h(x, y) + (7x− y)

∂h

∂x
(x, y) , (4.8)
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Fig. 2 (a) The quartic algebraic curve h(x, y) = 0 given by (4.6) has three (blue) ovals in the positive quadrant. The red
line is given by 7x− y = 0. The red line does not intersect the (blue) ovals of h(x, y) = 0 in the positive quadrant. We use
log scale on the x-axis and y-axis.
(b) The chemical reaction network corresponding to the blue edges of the planar E-graph realizes the ‘unperturbed’ ODE
system (4.11)–(4.12), while the ε-perturbations are shown by the red edges.
(c) The weakly reversible network that consists of the blue edges (with some modified rate constants) together with the red
edge provides a weakly reversible realization of the perturbed system (4.16)–(4.17).

is a polynomial system of degree 4 which has the three ovals of h(x, y) = 0 in the positive quadrant
as hyperbolic algebraic limit cycles. Using Lemma 1, we observe that the ODE system (4.7)–(4.8) is in
set S4. Therefore, we conclude that Sa(4) ≥ 3.

In Lemma 10, we have presented a second-order chemical system in S2 with the algebraic limit cycle given
as ellipse (4.4). The corresponding ODE system (4.2)–(4.3) has quadratic polynomials on the right-hand
side. Another quadratic polynomial dynamical system with an algebraic limit cycle is [14]

dx

dt
= 2

(
1 + 2x − 2 c x2 + 6x y

)
, (4.9)

dy

dt
= 8 − 3 c − 14 c x − 2 c x y − 8 y2 . (4.10)

As explained in [14], for any c ∈ (0, 1/4) the ODE system (4.9)–(4.10) has an invariant algebraic curve,
which is a limit cycle [7]. The ODE system (4.9)–(4.10) is not a chemical system because of the term
−14cx in equation (4.10). However, we can use this quadratic system for c = 1/8 to construct a cubic
mass-action system that has an algebraic limit cycle. For this we note that the limit cycle of the quadratic
system (4.9)–(4.10) is contained in the set (0,∞) × (−1,∞), and therefore if we shift this system one
unit in the y-direction, and then multiply its right-hand side by a factor of y, we obtain

dx

dt
= 2

(
1 + 2x − 2 c x2 + 6x (y − 1)

)
y,

dy

dt
=
(
8 − 3 c − 14 c x − 2 c x (y − 1) − 8 (y − 1)2

)
y .

Then, the cubic system above is a mass-action system; moreover, it has an algebraic limit cycle, because
its trajectory curves are the shifted versions of the trajectory curves of the system (4.9)–(4.10). Such
a construction provides an alternative way for us to show that S(a)(3) ≥ 1, which we have previously
established in the proof of Lemma 10 by using inequalities (4.5).

In Section 3, it has been relatively straightforward to establish that weakly reversible chemical systems
can give rise to limit cycles by using small perturbations of non-reversible chemical systems. This is not
the case, when we consider algebraic limit cycles, because a small perturbation can change an algebraic
limit cycle to a non-algebraic one. In our next lemma, we show that weakly reversible chemical systems
can have algebraic limit cycles by constructing a quartic weakly reversible two-species system. The
question of whether cubic weakly reversible two-species systems can give rise to algebraic limit cycles
remains open, leaving us with inequality W (a)(3) ≥ 0 in Table 2. In our construction we rely on a general
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approach for constructing weakly reversible systems that have a curve of equilibria; this approach has
been introduced in [17].

Lemma 11. We have W a(4) ≥ 1.

Proof. We will construct a weakly reversible system that has an algebraic limit cycle, as follows. We
start with a weakly reversible system constructed in [17, Example 4.3], given by

dx

dt
=
(
x2 + xy2 + y − 4xy

)
(1− x), (4.11)

dy

dt
=
(
x2 + xy2 + y − 4xy

)
(x− y). (4.12)

The common factor
h(x, y) = x2 + xy2 + y − 4xy (4.13)

results in a curve of positive steady states within the positive quadrant. Note that the polynomials on the
right-hand side of the ODE system (4.11)–(4.12) have degree 4. They can be obtained by multiplying the
linear system (2.14)–(2.15) by (4.13). In Figure 1(c), we illustrated that the multiplication of the linear
system (2.14)–(2.15) by positive monomials results in copies of the network. Generalizing this observation
to the ODE system (4.11)–(4.12), we can realize it by the chemical reaction network shown in blue in
Figure 2(b) or Figure 2(c). We now consider a perturbed version of the ODE system (4.11)–(4.12), also
of degree 4, given by

dx

dt
=
(
x2 + xy2 + y − 4xy

)
(1− x) − ε x y

∂h

∂y
(x, y) , (4.14)

dy

dt
=
(
x2 + xy2 + y − 4xy

)
(x− y) + ε x y

∂h

∂x
(x, y) , (4.15)

which implies

dx

dt
=
(
x2 + xy2 + y − 4xy

)
(1− x) − ε x y

(
2xy + 1− 4x

)
, (4.16)

dy

dt
=
(
x2 + xy2 + y − 4xy

)
(x− y) + ε x y

(
2x+ y2 − 4y

)
. (4.17)

The ODE system (4.16)–(4.17) has an algebraic limit cycle given by h(x, y) = 0. One possible way to
check that the periodic solution that lies along the curve h(x, y) = 0 is indeed a limit cycle is to look at
a more general setting which is discussed in depth in Section 5; specifically, it is easy to check that the
transversality condition (5.6) holds for the ODE system (4.16)–(4.17).

The red edges in Figure 2(b) suggest a realization of the ODE system (4.16)–(4.17) as a chemical
reaction network in S4 for any ε > 0, but this particular realization is not weakly reversible. However,
reaction network realizations of polynomial dynamical systems are not unique in general [12, 32, 33].
If ε ∈ (0, 1/6), then there do exist weakly reversible realizations of the ODE system (4.16)–(4.17); one
such realization is shown in Figure 2(c). Therefore, the ODE system (4.16)–(4.17) is in W4 for ε ∈ (0, 1/6),
giving W a(4) ≥ 1.

Lemma 12. We have Ha(n) ≥ O(n2), Sa(n) ≥ O(n2) and Ma(n) ≥ O(n2), as n→∞.

Proof. See [29] for Ha(n) ≥ O(n2) as n→∞. The next two asymptotic inequalities follow from Lemma 9.

Lemmas 10, 11 and 12 have justified all lower bounds in Table 2, except of the asymptotic inequality
W a(n) ≥ O(n) as n→∞. We will show this inequality in the next subsection by considering reversible
chemical systems, which is even more restrictive class of chemical reaction networks than weakly reversible
systems. In particular, we will show that reversible chemical systems can have (multiple) algebraic limit
cycles.
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(a) (b) (c)

Fig. 3 (a) Planar E-graph of a reversible chemical reaction network corresponding to the ODE system (4.18)–(4.19) as
its reaction rate equations with all reaction rate constants equal to 1.
(b) A geometric representation of the monomials of the polynomial h(x, y) given by (4.20). The blue points represent the
monomials with positive coefficients and the red point represents its negative monomial −9xy.
(c) The dynamical system obtained by multiplying the network shown in (a) by the factor h(x, y) shown in (b) (which gives
rise to the equations (4.21)–(4.22)) can be realized by this reversible ‘full-grid’ network.

4.1 Algebraic limit cycles for reversible chemical systems

In this section we describe a general approach for constructing reversible systems with algebraic limit
cycles. We start with the simple chemical reaction network shown in Figure 3(a). If we choose all the
reaction rate constants to be equal to 1, the corresponding reaction rate equations are given by the ODE
system

dx

dt
= 1− x+ y − xy, (4.18)

dy

dt
= 1 + x− y − xy, (4.19)

which has a globally attracting point at (x, y) = (1, 1). Next, we consider the algebraic curve h(x, y) = 0
of degree nh = 4 given by

h(x, y) = x2y2 + x2y + xy2 + x2 + y2 + x+ y + 1− 9xy , (4.20)

then, within the positive quadrant, the equation h(x, y) = 0 is satisfied along a simple closed curve.
Indeed, we can rewrite h(x, y) = 0 as(

x+ 1 +
1

x

)(
y + 1 +

1

y

)
= 10 ,

which has two solutions for (7−
√

13)/6 < x < (7+
√

13)/6 giving the closed curve visualized in Figure 4(a)
as the blue line. A geometric representation of the monomials of h(x, y) in (4.20) is shown in Figure 3(b).
Multiplying the right-hand side of the ODE system (4.18)-(4.19) by h(x, y), we obtain the ODE system

dx

dt
=
(
x2y2 + x2y + xy2 + x2 + y2 + x+ y + 1− 9xy

) (
1− x+ y − xy

)
, (4.21)

dy

dt
=
(
x2y2 + x2y + xy2 + x2 + y2 + x+ y + 1− 9xy

) (
1 + x− y − xy

)
, (4.22)

which has polynomials of degree 6 on the right hand side. The ODE system (4.21)–(4.22) has a curve of
equilibria [17] given by h(x, y) = 0. Moreover, since the ODE system (4.21)–(4.22) has been obtained by
multiplying the ODE system (4.18)-(4.19) by a polynomial, the corresponding planar E-graph represen-
tation will consists of shifted copies of the reaction network in Figure 3(a) for each multiplication by a
positive monomial, as we have already observed in Figure 1(c).

We argue that the ODE system (4.21)–(4.22) has a weakly reversible realization given by the network
in Figure 3(c), and, moreover, this realization can be chosen such that all reactions have reaction rate
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Fig. 4 (a) The algebraic curve h(x, y) = 0 given by (4.20) is plotted as the blue line, together with algebraic curves
hi(x, y) = 0 given by (4.27) for δi = 2 (red line), δi = 3 (green line) and δi = 4 (magenta line).
(b) The negative coefficients of product h0 given by (4.28) correspond to (a subset of) monomials that are represented by
the red points, while the coefficients of the monomials that are represented by the blue points are all positive.
(c) A reversible chemical reaction network which can be modelled by the reaction rate equations written in the form of the
ODE system (4.29)–(4.30), which has N algebraic limit cycles.

constants ≥ 1. For this, we first note that the reactions shown in blue in Figure 3(c) can all be chosen to
have reaction rate constants equal to 1, because these are obtained from reactions in Figure 3(a) after
multiplying with one of the positive monomials of h(x, y).

On the other hand, the reactions shown in red in Figure 3(c) may have rate constants that are
impacted by multiplication with some positive and some negative monomials of h(x, y), so their size (and
even their sign) are not immediately clear. Nevertheless, note that, no matter what values these rate
constants have to begin with, if we increase all of them by an arbitrarily chosen constant, then the effect
of all these increases cancels out. This is due to the fact that the red reactions can be partitioned into
pairs, such that each pair of reactions originates at the same red node, and the two reactions within each
such pair point exactly opposite from each other. Therefore, we conclude that the system (4.21)–(4.22)
can be realized by the network shown in Figure 3(c). Consider now a perturbed version of this system,
also of degree 6, given by

dx

dt
=
(
x2y2 + x2y + xy2 + x2 + y2 + x+ y + 1− 9xy

) (
1− x+ y − xy

)
− ε x y

∂h

∂y
(x, y) , (4.23)

dy

dt
=
(
x2y2 + x2y + xy2 + x2 + y2 + x+ y + 1− 9xy

) (
1 + x− y − xy

)
+ ε x y

∂h

∂x
(x, y) , (4.24)

which implies

dx

dt
=
(
x2y2 + x2y + xy2 + x2 + y2 + x+ y + 1− 9xy

) (
1− x+ y − xy

)
− ε x y

(
2x2y + x2 + 2xy + 2y + 1− 9x

)
, (4.25)

dy

dt
=
(
x2y2 + x2y + xy2 + x2 + y2 + x+ y + 1− 9xy

) (
1 + x− y − xy

)
+ ε x y

(
2xy2 + y2 + 2xy + 2x+ 1− 9y

)
. (4.26)

The ODE system (4.25)–(4.26) has been constructed in a similar way as the ODE system (4.16)–(4.17).
Like in that example, it is easy to check that the transversality condition (5.6) also holds in this case.
We therefore conclude that the ODE system (4.25)–(4.26) has an algebraic limit cycle, plotted as the
blue line in Figure 4(a).

We now explain why this system also has a weakly reversible realization given by the network in
Figure 3(c). Recall that we have observed above that the ODE system (4.21)–(4.22) has a realization that
uses the reaction network in Figure 3(c) with all reactions having reaction rate constants ≥ 1. Note now
that all the monomials in (4.25)–(4.26) that contain a factor of ε already appear among the monomials
of the ODE system (4.21)–(4.22). Therefore, for ε small enough, the ODE system (4.25)–(4.26) can be
realized by the reversible network shown in Figure 3(c).
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Our construction of a reversible chemical system (4.25)–(4.26) with an algebraic limit cycle can be
generalized to obtain reversible systems with multiple limit cycles. To do that, we replace a single factor
h(x, y) by a product of several such factors. We construct reversible systems with several algebraic limit
cycles in our next theorem.

Theorem 1. There exists a reversible chemical system of order 4N + 2 that has N algebraic limit cycles
for all N ∈ N. In particular, we have W a(4N + 2) ≥ N .

Proof. We define

hi(x, y) = x2y2 + x2y + xy2 + x2 + y2 + x+ y + 1− (8 + δi)x y , for i = 1, 2, . . . , N , (4.27)

and for some mutually distinct real positive numbers δ1, δ2, . . . , δN . Then the equation hi(x, y) = 0 can
be rewritten as (

x+ 1 +
1

x

)(
y + 1 +

1

y

)
= δi + 9 ,

which has two solutions for

1 +
δi −

√
δi(12 + δi)

6
< x < 1 +

δi +
√
δi(12 + δi)

6

giving a simple closed curve in the positive quadrant for each δi > 0. As an illustration, we visualize four
such curves in Figure 4(a) for δi = 1, δi = 2, δi = 3 and δi = 4. We note that hi given by (4.27) is equal
to h given by (4.20) for δi = 1, which is plotted as the blue line in Figure 4(a). In particular, we note
that hi(x, y) = 0 in equation (4.27) for mutually distinct real positive numbers δ1, δ2, . . . , δN give rise
to N disjoint algebraic curves in the positive quadrant. Now denote

h0 =

N∏
i=1

hi (4.28)

and consider the system

dx

dt
= h0(x, y)

(
1− x+ y − xy

)
− ε x y

∂h0
∂y

, (4.29)

dy

dt
= h0(x, y)

(
1 + x− y − xy

)
+ ε x y

∂h0
∂x

. (4.30)

The curves of the form hi(x, y) = 0 lie along periodic trajectories of the system (4.29)-(4.30), and a quick
way to ensure that each one of the curves hi(x, y) = 0 is actually a limit cycle is to check the transversality
condition (5.6) in Theorem 2. This can be done without additional calculations (by relying on the case
of the ODE system (4.25)–(4.26)) if we assume that we have chosen all the δi to be close enough to 1.

The polynomial h0 has degree 4N . From the definition of h0 we conclude that if a monomial xpyq

of h0 has a negative coefficient, then we have 1 ≤ p ≤ 4N − 1 and 1 ≤ q ≤ 4N − 1. This situation is
illustrated in Figure 4(b), as follows: if the points in Figure 4(b) represent monomials of h0, then all the
negative monomials are among the red points, and all the blue points correspond to positive monomials.
Using the same argument as in Figures 3(b) and 3(c), we conclude that the ODE system (4.29)–(4.30)
has a reversible realization which uses the reaction network illustrated in Figure 4(c), and the ODE
system (4.29)–(4.30) has at least N algebraic limit cycles in the positive quadrant, given by the equations
hi(x, y) = 0. Therefore we have W a(4N + 2) ≥ N .

5 Robust limit cycles

The reaction rate equations (4.14)–(4.15), (4.23)–(4.24) and (4.29)–(4.30) can be written in the following
general form

dx

dt
= h(x, y) f0(x, y) − ε x y

∂h

∂y
(x, y) , (5.1)

dy

dt
= h(x, y) g0(x, y) + ε x y

∂h

∂x
(x, y) , (5.2)
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Fig. 5 (a) The phase plane of the ODE system (4.11)–(4.12), i.e. the ODE system (4.16)–(4.17) for ε = 0. We plot the
algebraic curve h(x, y) ≡ x2 + xy2 + y− 4xy = 0 (black dashed line) together with some illustrative trajectories starting at
the boundary of the visualized square. All trajectories converge to a stable steady state on the curve h(x, y) = 0.
(b) The phase plane of the ODE system (5.4)–(5.5), i.e. the ODE system (4.16)–(4.17) for ε = 1. The algebraic curve
h(x, y) = 0 becomes a stable limit cycle for ε > 0.

where f0(x, y), g0(x, y) and h(x, y) are polynomials. For example, the ODE system (4.14)–(4.15) is given
in the general form (5.1)–(5.2) for

h(x, y) = x2 + xy2 + y − 4xy, f0(x, y) = 1− x and g0(x, y) = x− y. (5.3)

Substituting ε = 0, we get the ODE system (4.11)–(4.12), which can be realized as a chemical system
and has a continuum of stable steady states, given by h(x, y) = 0. We illustrate this in Figure 5(a), where
we plot the set h(x, y) = 0 as the black dashed line together with fifteen illustrative trajectories starting
at the boundary of the visualized domain [0, 4] × [0, 4] and three illustrative trajectories starting inside
the oval h(x, y) = 0. We observe that all calculated trajectories approach an equilibrium point inside the
set h(x, y) = 0 as t→∞.

In the proof of Lemma 11, we have found a weakly reversible realization of the ODE system (4.16)–
(4.17) for ε ∈ (0, 1/6). However, the ODE system (4.16)–(4.17) can be realized as a chemical system for
all ε ≥ 0. For example, if ε = 1, it simplifies to

dx

dt
= x2 + xy2 + y − 6xy + 8x2y − 3x2y2 − x3, (5.4)

dy

dt
= x3 + x2y2 + xy − 3x2y − y2. (5.5)

This ODE system has one stable limit cycle as illustrated in Figure 5(b), where we calculate trajectories
for the same initial conditions as in Figure 5(a). We observe that all calculated trajectories approach the
stable limit cycle h(x, y) = 0. The existence of a stable limit cycle can also be established for the general
system (5.1)–(5.2). We formulate it as our next theorem.

Theorem 2. Consider the ODE system (5.1)–(5.2), where f0(x, y), g0(x, y) and h(x, y) are real polyno-
mials. Assume that the set where h(x, y) = 0 contains N isolated simple closed curves, and also assume
that the transversality condition

f0(x, y)
∂h

∂x
(x, y) + g0(x, y)

∂h

∂y
(x, y) 6= 0 (5.6)

holds along all these N isolated closed curves.
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Then any simple closed curve where h(x, y) = 0 and

f0(x, y)
∂h

∂x
(x, y) + g0(x, y)

∂h

∂y
(x, y) < 0 (5.7)

is a stable algebraic limit cycle of the ODE system (5.1)–(5.2), for all values of ε > 0. Similarly, any
simple closed curve where h(x, y) = 0 and

f0(x, y)
∂h

∂x
(x, y) + g0(x, y)

∂h

∂y
(x, y) > 0 (5.8)

is an unstable algebraic limit cycle of the ODE system (5.1)–(5.2), for all values of ε > 0.
In particular, the ODE system (5.1)–(5.2) has N algebraic limit cycles, for all values of ε > 0.

Proof. The transversality condition (5.6) implies that the gradient of h does not vanish along the curve
h(x, y) = 0. In particular, any simple closed curve where h(x, y) = 0 is a smooth curve. Note that the
vector field

(−hy, hx) ≡
(
−∂h
∂y
,
∂h

∂x

)
always points along any curve of the form h(x, y) = α, i.e. never points across it; the same is true of the
vector field εxy(−hy, hx). Therefore, the dynamics of the system (5.1)–(5.2) across curves of the form
h(x, y) = α is determined by the vector field (f0, g0).

Let us focus on the case where the condition (5.7) is satisfied along one such curve C. (The other case is
completely analogous.) Then there exists an annular neighborhood of C denoted AC(δ), which is delimited
by two curves where h(x, y) = ±δ, for some small number δ > 0, such that AC(δ) is forward invariant for
the system (5.1)–(5.2). (The condition (5.7) implies that, for δ small enough, the two boundary curves
of AC(δ) where h(x, y) = ±δ are smooth and (5.7) holds along them; therefore, along the two boundary
curves of AC(δ) the vector field (5.1)–(5.2) points towards the interior of AC(δ).) Moreover, if we fix
some δ0 > 0 such that AC(δ) is forward invariant for the system (5.1)–(5.2) for all δ ∈ (0, δ0], then it
follows that AC(δ0) cannot contain any periodic orbit other than C, and cannot contain any fixed point.
Therefore, all the forward trajectories that start within AC(δ0) must converge to C, which implies that
C is a stable limit cycle of the system (5.1)–(5.2).

The vector field (f0, g0) given by (5.3) has a single critical point (1, 1) inside the oval h(x, y) = 0, and the
transversality condition (5.6) is satisfied in our example in Figure 5(b). Such an approach is also used in
our proof of Theorem 1 to obtain the ODE system (4.29)–(4.30), where we have

f0(x, y) = 1− x+ y − xy and g0(x, y) = 1 + x− y − xy. (5.9)

Then the vector field (f0, g0) has one critical point at (x, y) = (1, 1), which is inside the ovals (4.27) for
any δi > 0. Consider h0(x, y) in the ODE system (4.29)–(4.30) in the product form (4.28) where N = 4,
δ1 = 1, δ2 = 2, δ3 = 3 and δ4 = 4. Such curves have been visualized in Figure 4(a). They are algebraic
limit cycles of the ODE system (4.29)–(4.30). In Figure 6(a), we plot ten illustrative trajectories of the
ODE system (4.29)–(4.30). We observe that the trajectories starting at the corners of our visualized
domain [0, 3.5]×[0, 3.5] approach the outer limit cycle corresponding to δ4 = 4, while trajectories starting
inside this oval converge either to it, or to the limit cycle corresponding to δ2 = 2 or to a fixed point.
The limit cycles corresponding to δ2 = 2 and δ4 = 4 are stable and they satisfy our transversality
condition (5.7). This is also confirmed in Figure 6(b), where we visualize the subdomains

Ωs =

{
(x, y) ∈ [0,∞)2

∣∣∣∣ f0(x, y)
∂h

∂x
(x, y) + g0(x, y)

∂h

∂y
(x, y) < 0

}
(5.10)

Ωu =

{
(x, y) ∈ [0,∞)2

∣∣∣∣ f0(x, y)
∂h

∂x
(x, y) + g0(x, y)

∂h

∂y
(x, y) > 0

}
(5.11)

using magenta and white shading, respectively. The limit cycles corresponding to δ2 = 2 and δ4 = 4 are
inside the domain Ωs, while the limit cycles corresponding to δ1 = 1 and δ3 = 3 are inside the domain Ωu
and they are unstable, satisfying the transversality condition (5.8).
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Fig. 6 (a) The phase plane of the ODE system (4.29)–(4.30) for ε = 0.1. We plot the algebraic curve h0(x, y) (black
dashed line) together with ten illustrative trajectories.
(b) The visualization of domains Ωs (magenta shading) and Ωu (white shading) given by (5.10) and (5.11), respectively.
The stable algebraic limit cycles, corresponding to δ2 = 2 and δ4 = 4, are plotted as the black lines, while the unstable
algebraic limit cycles, corresponding to δ1 = 1 and δ3 = 3, are plotted as the green lines.

The systems with limit cycles which are used to achieve lower bounds in Tables 1 and 2 have been
constructed using the standard definition of the limit cycle as an isolated closed trajectory. While such
limit cycles can be stable, they are sometimes difficult to observe in numerical simulations. For example,
consider the ODE system (4.7)–(4.8) which is a polynomial system of degree 4 with three hyperbolic
algebraic limit cycles in the positive quadrant. The ODE system (4.7)–(4.8) shares some similarities with
our general form (5.1)–(5.2) for (f0, g0) = (1, 1) if factor εxy is replaced by 7x− y. However, if we define
the subdomains Ωs and Ωu by (5.10)–(5.11) for (f0, g0) = (1, 1), then we observe that some parts of each
limit cycle of the ODE system (4.7)–(4.8) are in Ωs and some parts are in Ωu. While the application
of [31, Theorem 1] can help us to deduce that each limit cycle is hyperbolic, the trajectories are attracted
by parts of the limit cycle in Ωs and repelled by parts of the limit cycle in Ωu. In particular, numerical
errors can make it impossible to observe a trajectory which would for long positive times (resp. long
negative times) approach the (theoretically) stable (resp. unstable) limit cycle in computational studies
of such systems. However, if we do not attempt to minimize the degree of the polynomial on the right
hand side of the ODE system (5.1)–(5.2), then it is possible to find f0 and g0 such that all limit cycles
are fully in Ωs. We state this result as our next theorem.

Theorem 3. Let h : R2 → R be a polynomial of degree nh and let the real algebraic curve h(x, y) = 0
contains N ∈ N ovals in the (strictly) positive quadrant (0,∞)× (0,∞). Assume that

∇h(x, y) =


∂h

∂x
(x, y)

∂h

∂y
(x, y)

 6= (
0
0

)
for all (x, y) satisfying h(x, y) = 0. (5.12)

Then the ODE system

dx

dt
= −x y h(x, y)

∂h

∂x
(x, y) − ε x y

∂h

∂y
(x, y) , (5.13)

dy

dt
= −x y h(x, y)

∂h

∂y
(x, y) + ε x y

∂h

∂x
(x, y) , (5.14)

is a polynomial ODE system of degree n = 2nh + 1 which can be realized as a chemical reaction network
under mass-action kinetics (for any value of parameter ε). The chemical system (5.13)–(5.14) has N stable
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algebraic limit cycles contained in the components of the curve h(x, y) = 0 for all ε > 0 and the cofactor,
defined by (4.1), is equal to s(x, y) = −x y ‖∇h(x, y)‖2 .

Proof. Consider the ODE system (5.1)–(5.2) with

f0(x, y) = −x y ∂h
∂x

(x, y) and g0(x, y) = −x y ∂h
∂y

(x, y). (5.15)

Then the ODE system (5.1)–(5.2) becomes the ODE system (5.13)–(5.14), where the right-hand side
contains polynomials of degree at most 2nh+1. Moreover, the assumption (5.12) implies the transversality
condition (5.7). Using Theorem 2, we conclude the existence of N stable algebraic limit cycles contained
in the components of the curve h(x, y) = 0 for all ε > 0. Differentiating h(x, y) with respect of time, we
obtain

d

dt
h(x, y) =

∂h

∂x
(x, y)

dx

dt
+
∂h

∂y
(x, y)

dy

dt
= −x y

[(
∂h

∂x
(x, y)

)2
+

(
∂h

∂y
(x, y)

)2]
h(x, y)

which implies that the cofactor (4.1) is a polynomial of degree at most 2nh given by

s(x, y) = −x y
(
∂h

∂x
(x, y)

)2
− x y

(
∂h

∂y
(x, y)

)2
= −x y ‖∇h(x, y)‖2 .

We note that the ODE system (5.13)–(5.14) can also be written in the matrix form as

d

dt

(
x
y

)
= x y

(
−h(x, y) −ε

ε −h(x, y)

)
∇h(x, y) . (5.16)

This ODE system can be used to construct chemical systems with multiple stable algebraic limit cycles,
provided that the ovals of h(x, y) = 0 are contained in the (strictly) positive quadrant (0,∞)2, as we
illustrate using examples with quartic planar curves (i.e. using nh = 4) in the next section.

5.1 A chemical system with multiple stable algebraic limit cycles

We consider quartic polynomial q(x, y) in the following form

q(x, y) = 16 (x4 + y4) − 25 (x2 + y2) + µx2y2 + 9 , (5.17)

where µ ∈ R is a parameter. Since the degree of the polynomial (5.17) is 4 for all µ ∈ R, Harnack’s curve
theorem implies that the maximum number of connected components of the algebraic curve q(x, y) = 0
is 4. Depending on the value of parameter µ ∈ R, the algebraic curve q(x, y) = 0 contains one, two or
four ovals, as we show in our next lemma and illustrate in Figure 7.

Lemma 13. Let µ ∈ R and let q(x, y) be given by (5.17). Then we have:
(i) The set of solutions to equation q(x, y) = 0 contains points

[−1, 0], [−3/4, 0], [3/4, 0], [1, 0], [0,−1], [0,−3/4], [0, 3/4], and [0, 1]. (5.18)

Points (5.18) are the only intersections of the algebraic curve q(x, y) = 0 with x-axis and y-axis.
(ii) If µ ≤ −32, then the set of solutions to equation q(x, y) = 0 contains one oval.

(iii) If −32 < µ < 337/9, then the set of solutions to equation q(x, y) = 0 contains two ovals.
(iv) If µ = 32, then the algebraic curve q(x, y) = 0 are two concentric circles with radii 3/4 and 1.
(v) If µ > 337/9, then the set of solutions to equation q(x, y) = 0 contains four ovals.

In particular, q(x, y) = 0 is an M-curve containing four connected components.
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Proof. (i) If y = 0, then q(x, y) = 0 simplifies to 16x4 − 25x2 + 9 = 0, which is solved by x = ±1 and
x = ±3/4. Using symmetry, equation q(x, y) = 0 is solved for x = 0 by y = ±1 and y = ±3/4.

(ii) Using (5.17), we have
q(x, x) = (32 + µ)x4 − 50x2 + 9 .

If µ ≤ −32, then equation q(x, x) = 0 has exactly two real solutions and the algebraic curve q(x, y) = 0
contains one oval. For example, if µ = −32, then the two real solutions to q(x, x) = 0 are given as
x = ±3/(5

√
2) ≈ 0.424 and the algebraic curve q(x, y) = 0 contains one oval which goes clockwise through

the points [−3/4, 0], [−3/(5
√

2), 3/(5
√

2)], [0, 3/4], [3/(5
√

2), 3/(5
√

2)], [3/4, 0], [3/(5
√

2),−3/(5
√

2)],
[0,−3/4] and [−3/(5

√
2), 3/(5

√
2)], see Figure 7(b).

(iii) If −32 < µ < 337/9, then there are four real solutions to q(x, x) = 0 given by

±

√
25 +

√
337− 9µ

32 + µ
and ±

√
25−

√
337− 9µ

32 + µ

and the set of solutions to equation q(x, y) = 0 contains two concentric ovals, see Figures 7(c), 7(d), 7(e)
and 7(f).

(iv) If µ = 32, then the formula (5.17) can be rewritten as

q(x, y) = 16 (x2 + y2)2 − 25 (x2 + y2) + 9 = 16 r4 − 25 r2 + 9 ,

where r2 = x2 + y2. Solving q(x, y) = 0 for r, we obtain r = 1 or r = 3/4, see Figure 7(f).

(v) If µ > 337/9, then there are no solutions to q(x, x) = 0. In particular, we have four regions separated
by lines y = x and y = −x each containing one oval, see Figures 7(h) and 7(i).

The ovals of the algebraic curve q(x, y) in Lemma 13 are outside of the positive quadrant. To apply
Theorem 3, we first shift the curve q(x, y) to get

h(x, y) = q(x− 2, y − 2), where q(x, y) is given by (5.17). (5.19)

Then the ovals of h(x, y) are in the positive quadrant for all nonnegative values of µ, see Figure 7. The
phase plane of the ODE system (5.13)–(5.14) is plotted in Figure 8 for ε = 1. We use two different values
of µ corresponding to two ovals (µ = 0) and four ovals (µ = 39) of the algebraic curve h(x, y) = 0 given
by (5.19). In both cases, we observe that all computed illustrative trajectories approach one of the ovals,
confirming that Theorem 3 leads to chemical systems with two (Figure 8(a)) or four (Figure 8(b)) stable
limit cycles.

6 Discussion

We have considered both algebraic and non-algebraic limit cycles in chemical reaction systems, with
our results summarized together with the results in the literature in Tables 1 and 2, respectively. To
establish some lower bounds in Tables 1 and 2, different techniques have to be applied. For example,
small perturbations of an ODE system preserve the existence of a hyperbolic limit cycle, but an algebraic
limit cycle can become non-algebraic after a perturbation. In particular, while the existence of a cubic
weakly reversible chemical system with a limit cycle has been established in Table 1, it remains an open
question whether a cubic weakly reversible system can have an algebraic limit cycle.

While a formulation of Hilbert’s 16th problem restricted to algebraic limit cycles under generic con-
ditions has been solved, see [29, 34] for further discussion, these results are not considering the ODE
systems which can be realized as chemical reaction networks. For example, a cubic system with two cir-
cular limit cycles is presented in [34]. Shifting the limit cycles to the positive quadrant, as we have done
with our quartic example in equation (5.19), and then multiplying the right-hand-side by xy yields a
fifth-order chemical system with two limit cycles. Other examples of cubic systems with 2 (non-generic)
algebraic limit cycles appear in [29, Section 1], which could again be used to conclude that Sa(5) ≥ 2.
However, this does not improve the lower bound in Table 2, which implies Sa(5) ≥ Sa(4) ≥ 3.

Our investigation has focused on the ODE systems which can be realized as models of chemical
reaction networks. However, such a realization is not unique: if an ODE system can be realized as the
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Fig. 7 The algebraic curve q(x, y) = 0 given by (5.17) for (a) µ = −100; (b) µ = −32; (c) µ = −28; (d) µ = 0; (e) µ = 20;
(f) µ = 32, (g) µ = 337/9; (h) µ = 39 and (i) µ = 100.

reaction rate equations of a chemical system, then there exists infinitely many chemical reaction networks
corresponding to the same ODE system [12, 32, 33]. For some studied ODE systems, we have been able
to identify their realization as (weakly) reversible chemical reaction networks and this helped us to make
conclusions on the values of numbers W (n) and W a(n) (see, for example, our proof of Lemma 11). In
particular, chemical reaction networks (corresponding to the same ODE system) can be distinguished by
having different structural properties. They can also be distinguished by considering their more detailed
stochastic description [35], written as the continuous-time discrete-space Markov chain and simulated by
the Gillespie algorithm [15, 36]. While the long-term dynamics of some chemical reaction networks can
consist of a unique attractor of their ODE models, the long-term (stationary) probability distribution
given by their stochastic model may display multiple maxima [37, 38]. Considering chemical systems
with limit cycles and oscillatory behaviour, stochastic models can also bring additional possibilities for
long-term dynamics including noise-induced oscillations [11, 39].

The ODE system (5.13)–(5.14) or in its equivalent matrix form (5.16) can be used to construct
chemical reaction networks with stable algebraic limit cycles corresponding to the given algebraic curve
h(x, y) = 0. In particular, if we want to construct a chemical system with more than one stable algebraic
limit cycle, we can start with a quartic curve with more than one oval as shown in Section 5.1. Another
quartic curve with two ovals can be obtained as a product of two circles (quadratic curves). Such a product
form construction has been used in our proof of Theorem 1, see equation (4.28). Considering the product
of two circles and using Theorem 3, we can obtain a chemical system which has the two circles as its
two stable algebraic limit cycles. In Section 5.1, we have considered quartic curve (5.19) which had four
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Fig. 8 (a) The phase plane of the ODE system (5.13)–(5.14) with the polynomial h(x, y) given by (5.19) for parameters
µ = 0 and ε = 1. We plot the two ovals of the algebraic curve h(x, y) = 0 (black dashed line) together with ten illustrative
trajectories showing convergence to one of the two ovals which are stable algebraic limit cycles of the ODE system.
(b) The phase plane of the ODE system (5.13)–(5.14) with the polynomial h(x, y) given by (5.19) for parameters µ = 39
and ε = 1, when the ODE system has four stable algebraic limit cycles given as the four ovals of the algebraic curve
h(x, y) = 0 (visualized as the black dashed line together with illustrative trajectories converging to the limit cycles).

closed connected components for µ > 337/9 and Theorem 3 implied a chemical system with four stable
algebraic limit cycles. To construct chemical systems with more stable limit cycles than four, we can
apply Theorem 3 to algebraic curves h(x, y) = 0 of degree nh > 4, which has the corresponding number
of ovals. One possible way to find such algebraic curves is to construct them in the product form (4.28).

In this paper, we have considered chemical reaction systems with two chemical species X and Y
which are described by planar ODE system (1.1)–(1.2). In particular, we could make connections to the
results and open problems on limit cycles and periodic solutions in planar polynomial ODE systems, with
attention to the results for systems with polynomials of low degree n on the right hand side [8, 9]. Our
low degree n investigation is also interesting from the applications point of view, because it decreases the
order (2.2) of the chemical reactions when the ODE system (1.1)–(1.2) is realized as the chemical system.
In particular, we have addressed some questions on ‘minimal’ reaction systems with certain dynamics by
minimizing the value of n. The minimal reaction systems with oscillations can also be defined in terms
of the minimal number m of reactions in the chemical reaction network (2.1), see [40] for some systems
with two chemical species. In some applications, it is necessary to study chemical reaction systems with
more than two chemical species, leading to three-dimensional or higher-dimensional ODE systems. For
example, limit cycles in reaction networks with three or four chemical species are investigated under
additional structural conditions on the reaction network in [41, 42]. Multiple limit cycles for systems of
two chemical species have also been reported in [43] for the case when deficiency of the chemical reaction
network is one, while it is well known that the deficiency-zero networks cannot have periodic solutions
in the positive quadrant [44].
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