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Abstract

The multi-grid reaction-diffusion master equation (mgRDME) provides a gener-
alization of stochastic compartment-based reaction-diffusion modelling described
by the standard reaction-diffusion master equation (RDME). By enabling dif-
ferent resolutions on lattices for biochemical species with different diffusion
constants, the mgRDME approach improves both accuracy and efficiency of
compartment-based reaction-diffusion simulations. The mgRDME framework is
examined through its application to morphogen gradient formation in stochastic
reaction-diffusion scenarios, using both an analytically tractable first-order reac-
tion network and a model with a second-order reaction. The results obtained
by the mgRDME modelling are compared with the standard RDME model and
with the (more detailed) particle-based Brownian dynamics simulations. The
dependence of error and numerical cost on the compartment sizes is defined and
investigated through a multi-objective optimization problem.

Keywords: reaction-diffusion master equation, multi-grid methods, morphogen

gradient formation, stochastic simulation algorithms

1 Introduction

Compartment-based stochastic reaction-diffusion models have been used for modelling
a range of biological processes, including Min-protein oscillations [1] and ribosome
biogenesis [2] in E. coli, calcium signalling [3, 4], gene expression [5], actin trans-
port in filopodia [6, 7] and epidemic spreading [8]. They can be simulated using
algorithms for continuous-time discrete-space Markov chains and are mathematically
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described using the reaction-diffusion master equation (RDME) for the probability
mass function [9, 10]. At the analytical level, the RDME builds a bridge between
microscopic models for reaction-diffusion processes and macroscopic approximations
through partial differential equations [11–14].

To formulate a standard compartment-based model, the computational domain is
discretized into compartments and diffusion is modelled as a jump process between the
compartments [10]. Considering three-dimensional domains, it has been shown that the
compartment size cannot be chosen arbitrarily small for systems containing second-
order or higher-order reactions, i.e., the error of a compartment-based simulation
increases as the compartment size approaches zero [9]. There have been numerous
studies [15–22] on the optimal choice of the compartment size and its influence on the
approximation quality compared to microscopic modeling approaches given by the Doi
model [23, 24] or the Smoluchowski model [25, 26].

The optimal size of the compartment depends on the diffusion constant [15–22]. In
particular, if a biological system consists of molecular species with different diffusion
constants, the compartment-based model can be naturally generalized to allow for dif-
ferent meshes (compartment sizes) for different chemical species [27–29]. In this paper,
we analyze such models using a generalization of the RDME which we will call the
multi-grid reaction diffusion master equation (mgRDME). Numerical simulations of
multi-grid reaction-diffusion models allow for high accuracy at reduced numerical cost
compared to fully microscopically resolved systems [27, 30, 31]. In some computational
frameworks [28], molecules can transfer from a fine-grained mesh to a coarse-grained
mesh whenever appropriate. In the mgRDME that will be analyzed in this work, the
grid size remains constant for each species but varies across species.

The mgRDME framework will be analyzed by applying it to biochemical sys-
tems of morphogen gradient formation [32–35]. Morphogens are signaling molecules
whose non-uniform distribution control pattern formation (or morphogenesis) dur-
ing the development of multicellular organisms. Starting with the pioneering work
of Turing [36], it has been shown that pattern formation can naturally arise in
reaction-diffusion systems through diffusion-driven instability, provided that the sys-
tem contains at least two chemical species with different diffusion constants [37]. In
particular, stochastic modelling of Turing patterns is a natural application area of the
mgRDME framework [27].

In this paper, we will focus on pattern formation (morphogen gradient formation)
which results from pre-patterning, i.e., we assume that the studied domain has already
been differentiated into two regions and the release of signalling molecules is localized
in one of those regions [38–40]. The formation of morphogen gradients then leads to
further pattern formation as the cells recognize and interpret the high or low mor-
phogen concentration [41]. Stochastic models helps us to understand the impact of
noise (fluctuations) on the pattern [9, 42, 43].

In our model, we distinguish between signaling molecules A, locally produced, and
morphogen molecules B, which are produced from A through a reaction. Both species
move in space via diffusion. The localized production of A (pre-patterning) leads to
creation of a morphogen gradient which is then interpreted by cells to produce further
patterning [9, Section 6.8]. Since the signaling molecules A are assumed to diffuse
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at a significantly higher rate compared to B, our reaction-diffusion systems are well
suited to be analyzed via the mgRDME. Moreover, the primary focus lies on the
spatial arrangement of the morphogen B, represented by its gradient, while the specific
spatial arrangement of signaling molecules A is of less importance. This prioritization
is reflected in the use of distinct compartment sizes for the two species, with a finer
resolution dedicated to the morphogen B.

We study two reaction networks. In Section 2, we consider a reaction–diffusion
system with the two chemical species A (signal) and B (morphogen) being subject to
the following three first-order chemical reactions

∅ −→ A (localized) and A −→ B −→ ∅ , (1.1)

where the empty set ∅ is interpreted as sources and sinks of molecules [9], i.e., molecules
of signal A are continuously produced and converted into molecules of morphogen B,
which are degraded over time. In Section 3, we replace the first-order conversion reac-
tion A→ B by the second-order dimerization reaction A+A→ B, i.e., the chemical
reactions (1.1) are changed to

∅ −→ A (localized) and A+A −→ B −→ ∅, (1.2)

while the diffusion part of the reaction-diffusion model remains the same in both
Sections 2 and 3. Since morphogen gradient systems are effectively one-dimensional
(with one ‘important’ direction), we study both systems in a one-dimensional domain.
For reaction-diffusion systems with first-order chemical kinetics as in (1.1), the one-
dimensional results are directly applicable in higher dimensions. However, since our
second system (1.2) includes the second-order reaction (dimerization), the diffusion-
limited results will depend on the dimension of the physical space [44–46].

For each of the two reaction networks (1.1) and (1.2), we formulate the standard
RDME, the mgRDME, as well as a ‘ground truth’ model given by particle-based Brow-
nian dynamics. The compartment-based modeling approaches are compared to the
Brownian dynamics results based on the differences in their steady-state distributions.
Specifically, we define an error function in terms of the distance between the distri-
bution of morphogen molecules B at steady state, and a cost function as a measure
of the numerical complexity when simulating the corresponding stochastic processes.
Minimizing error and cost over possible choices of compartment sizes for A and B
gives rise to a multi-objective optimization problem, which will be studied for both
reaction networks. Our results are further summarized in the discussion Section 4.

2 First-order fast-slow morphogen gradient model

In this section, we consider a reaction-diffusion system with the first-order chemical
reactions (1.1). We derive analytic expressions for the long-term spatial distribution of
particles, examining the standard RDME, the mgRDME and the Brownian dynamics
models in Sections 2.1, 2.2 and 2.3, respectively. Finally, we compare the models in
Section 2.4 by means of a multi-objective optimization problem.
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Fig. 1: Standard compartment-based model. (a) Schematic of the computational
domain [0, L] divided into K compartments of size h. In the first compartment on the
left, highlighted in red, molecules of type A are produced at rate k1 > 0.
(b) The average number of molecules of A (red) and B (blue) at steady state obtained
by solving equation (2.14) for parameters given in (2.16) and for L = 2 and K = 40
(i.e., we have h = L/K = 0.05, DA/h

2 = 64 and DB/h
2 = 4).

2.1 Standard compartment-based model

We consider molecules of chemical species A and B that diffuse in the domain [0, L],
where L is the domain length. The diffusion coefficients are denoted DA and DB ,
respectively. They have physical units of [length]2/[time]. As for the standard RDME
discretization, we divide the domain [0, L] into K = L/h compartments of equal
length h > 0. This domain is schematically shown in Fig. 1(a). Denoting the chemical
species A (resp. B) in the i-th compartment [(i − 1)h, ih) by Ai (resp. Bi), where
i = 1, 2, . . . ,K, then diffusion corresponds to two chains of “chemical reactions” [9, 27]:

A1

dA−→←−
dA

A2

dA−→←−
dA

A3

dA−→←−
dA

. . .
dA−→←−
dA

AK , (2.1)

B1

dB−→←−
dB

B2

dB−→←−
dB

B3

dB−→←−
dB

. . .
dB−→←−
dB

BK , (2.2)

where

dA =
DA

h2
and dB =

DB

h2
(2.3)

are the jump rates. Since h has the physical unit of [length], the jump rates have units
[time]−1. We assume that molecules of species A are produced in the first compartment
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on the left, highlighted in red in Fig. 1(a). This corresponds to the reaction

∅ k1/h−→ A1 , (2.4)

where the rate constant k1 > 0 has units [time]−1. Scaling with h in reaction (2.4) is
necessary to ensure that after multiplying by the compartment size h – as is usual for
zero-order reactions – we get a production rate independent of the compartment size.
This gives the same production rate in the first compartment for any value of h, and is
consistent with our ‘ground truth’ Brownian dynamics model corresponding to partial
differential equaitons (PDEs) (2.25)–(2.26) in Section 2.3. Since (1.1) assumes that A
is converted to B, and B is degraded in the whole domain, we have the reactions

Ai
k2−→ Bi

k3−→ ∅, for i = 1, 2, . . . ,K, (2.5)

with rate constants k2 and k3 again having physical units of [time]−1. The (ran-
dom) number of particles in the i-th compartment at time t ≥ 0 is denoted by Ai(t)
and Bi(t), respectively. Let p(n,m, t) be the joint probability that Ai(t) = ni and
Bi(t) = mi for i = 1, 2, . . . ,K, where we use the notation n = [n1, n2, . . . , nK ] ∈ N

K

and m = [m1,m2, . . . ,mK ] ∈ N
K to define the system state. To formulate the

RDME corresponding to the chemical reaction system (2.1)–(2.5), we define operators
O+

i ,O−

i : NK → N
K by

O+
i [n1, . . . , ni−1, ni, ni+1, . . . , nK ] := [n1, . . . , ni−1, ni + 1, ni+1, . . . , nK ], (2.6)

O−

i [n1, . . . , ni−1, ni, ni+1, . . . , nK ] := [n1, . . . , ni−1, ni − 1, ni+1, . . . , nK ], (2.7)

for i = 1, 2, . . . ,K. By means of these operators, we define the diffusion operator
D : L1

(
N

K×NK
)
→ L1

(
N

K×NK
)
, where

L1
(
N

K×NK
)
:=

{
f : NK×NK → R

∣∣∣∣
∑

n,m

f(n,m) <∞
}

(2.8)

by

Df(n,m) :=
DA

h2

K−1∑

i=1

{
(ni + 1) f(O+

i O−

i+1n,m)− ni f(n,m)
}

+
DA

h2

K∑

i=2

{
(ni + 1) f(O+

i O−

i−1n,m)− ni f(n,m)
}

(2.9)

+
DB

h2

K−1∑

i=1

{
(mi + 1) f(n,O+

i O−

i+1m)−mi f(n,m)
}

+
DB

h2

K∑

i=2

{
(mi + 1) f(n,O+

i O−

i−1m)−mi f(n,m)
}
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and the reaction operator R : L1
(
N

K × N
K
)
→ R by

Rf(n,m) := k1

{
f(O−

1 n,m)− f(n,m)
}

+ k2

K∑

i=1

{
(ni + 1) f(O+

i n,O−

i m)− ni f(n,m)
}

(2.10)

+ k3

K∑

i=1

{
(mi + 1) f(n,O+

i m)−mi f(n,m)
}
.

Then the reaction–diffusion master equation, which corresponds to the system of
reactions (2.1)–(2.5), can be written as follows

∂p

∂t
(n,m, t) = (D +R) p(n,m, t). (2.11)

The stationary distribution is defined by

φ(n,m) = lim
t→∞

p(n,m, t)

and satisfies the stationary reaction–diffusion master equation

0 = (D +R)φ(n,m). (2.12)

Solving (2.12), we obtain the product of Poisson distributions [47]

φ(n,m) = exp

[
−

K∑

i=1

(
Ai +Bi

)
]

K∏

i=1

A
ni

i B
mi

i

ni!mi!
, (2.13)

where Ai and Bi, for i = 1, 2, . . . ,K, satisfy the steady-state equations

(
DA

h2
S − k2 I

)
A = −k1e1,

(
DB

h2
S − k3 I

)
B = −k2A. (2.14)

Here, I ∈ R
K×K is the identity matrix and vectors A ∈ R

K , B ∈ R
K , e1 ∈ R

K and
matrix S ∈ R

K×K are given by

A =




A1

A2

A3

...
AK−1

AK




, B =




B1

B2

B3

...
BK−1

BK




, e1 =




1
0
0
...
0
0




, S =




−1 1 0 0 . . . 0 0
1 −2 1 0 . . . 0 0
0 1 −2 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −2 1
0 0 0 0 . . . 1 −1




. (2.15)
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The entries Ai and Bi are the average numbers of molecules of A and B, respectively,
in the i-th compartment at equilibrium. The solution (A,B) of equation (2.14) is
plotted in Figure 1(b) for the following choice of rate parameter values

k1 = 100, k2 = 2, k3 = 1, DA = 0.16, DB = 0.01 , (2.16)

showing the morphogen gradient. As the stationary distribution φ is given by a product
of Poisson distributions in (2.13), the values Ai and Bi not only determine the long-
term averages but also the variances of the particle numbers at steady state. Since the
values of Ai and Bi fully characterize the stationary distribution φ, we will compare
the models in terms of Ai and Bi.

2.2 Generalized compartment-based model: mgRDME

Assuming that molecules of species A are diffusing significantly faster than those of
species B (as is the case of our parameter values (2.16) where DA ≫ DB), we choose
a larger compartment size for species A [27]. Let hA = 1/KA for KA ∈ N be the
compartment length for species A, while hB = 1/KB for KB ∈ N, KB > KA, is
the compartment length for species B. We choose the values KA and KB such that
the ratio γ := KB/KA = hA/hB > 1 is a natural number, γ ∈ N. In the mgRDME
formulation [27], reaction (2.4) is replaced by

∅ k1/hA−→ A1, (2.17)

which implies again that A-particles are produced at rate k1 in the first compartment
on the left (of the coarser A-discretization), independently of the grid size hA. The
reaction Ai −→ Bi in (2.5) is generalized to

Aj
k2/γ−→ Bi, j = 1, 2, . . . ,KA, for i ∈ I(j) := {(j − 1)γ + 1, . . . , jγ}, (2.18)

which means that after conversion from A to B the resulting B-molecule is placed
uniformly in one of the γ (smaller) compartments that overlap with the j-th (large)
compartment of the reacting A-particle. The diffusion operator (2.9) is generalized to

D̃f(n,m) :=
DA

h2
A

KA−1∑

j=1

{
(nj + 1) f(O+

j O−

j+1n,m)− nj f(n,m)
}

+
DA

h2
A

KA∑

j=2

{
(nj + 1) f(O+

j O−

j−1n,m)− nj f(n,m)
}

(2.19)

+
DB

h2
B

KB−1∑

i=1

{
(mi + 1) f(n,O+

i O−

i+1m)−mi f(n,m)
}

+
DB

h2
B

KB∑

i=2

{
(mi + 1) f(n,O+

i O−

i−1m)−mi f(n,m)
}
,
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while the reaction operator (2.10) now reads

R̃f(n,m) := k1

{
f(O−

1 n,m)− f(n,m)
}

+
k2
γ

KA∑

j=1

∑

i∈I(j)

{
(nj + 1) f(O+

j n,O−

i m)− nj f(n,m)
}

(2.20)

+ k3

KB∑

i=1

{
(mi + 1) f(n,O+

i m)−mi f(n,m)
}
.

Dividing by γ in the second line of (2.20) goes in line with summing over the set
I(j) defined in (2.18) which contains |I(j)| = γ elements; this can be interpreted as a
sum of γ reactions Aj → Bi that share the rate k2. In total, we obtain the multi-grid
reaction–diffusion master equation (mgRDME)

∂p

∂t
(n,m, t) = (D̃ + R̃) p(n,m, t). (2.21)

Solving the corresponding stationary mgRDME, given by 0 = (D̃ + R̃)φ(n,m) in
analogy to (2.12), we obtain a product of Poisson distributions similar to (2.13):

φ(n,m) = exp

[
−

KA∑

j=1

Aj −
KB∑

i=1

Bi

]
KA∏

j=1

A
nj

j

nj !

KB∏

i=1

B
mi

i

mi!
, (2.22)

where Aj and Bi, for j = 1, 2, . . . ,KA, i = 1, 2, . . . ,KB , satisfy the generalized steady-
state equations

(
DA

h2
A

SA − k2 IA

)
A = −k1h3

Ae1,

(
DB

h2
B

SB − k3 IB

)
B = −k2

γ
MA. (2.23)

Here, IA ∈ R
KA×KA and IB ∈ R

KB×KB are identity matrices and vectors A ∈ R
KA ,

B ∈ R
KB , e1 ∈ R

KA and matrices SA ∈ R
KA×KA , SB ∈ R

KB×KB are defined in
an analogous manner as before in (2.15). In addition, there is the block matrix M ∈
R

KB×KA given by

M =




M1

...
MKA


 , Mj =



0 . . . 0 1 0 . . . 0
...

...
...
...

...
0 . . . 0 1 0 . . . 0


 ∈ R

γ×KA , j = 1, . . . ,KA,

with the non-zero entries (i.e., the ones) in the block Mj ∈ R
γ×KA placed in column

j. As in the standard setting, Aj and Bi give both the long-term mean and variance of
the population sizes in the respective boxes, and they fully characterize the stationary
distribution φ.
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(b) γ = 4

Fig. 2: Standard RDME vs. mgRDME. Average number of molecules of A and
B at equilibrium obtained by solving the standard stationary RDME (2.14) (red/blue
dots) and by solving the stationary mgRDME (2.23) (grey bars) for rate constants
given in (2.16) and for L = 2, KB = 40 and (a) γ = 2, (b) γ = 4.

Model comparison: standard RDME versus mgRDME.

In the following, we denote the solution of the generalized steady-state equation (2.23)

by Āγ = (Ā
(γ)
j )j=1,2,...,KA

, B̄γ = (B̄
(γ)
i )i=1,2,...,KB

in order to emphasize its depen-

dence on the ratio γ = KB/KA and to distinguish from the solution Ā = Ā1, B̄ = B̄1

of the standard compartment-based model given by equation (2.14). Figure 2 shows
the solution Āγ , B̄γ of equation (2.23) for the same parameter values as in Figure 1(b)

and for γ = 2 and γ = 4. Instead of Āγ we plot the rescaled values Ã
(γ)
i := Ā

(γ)
j /γ for

i ∈ I(j). This is for the purpose of comparability with the solution Ā of the standard
steady-state equation (2.14) plotted in Figure 1(b).

We observe a qualitatively good agreement of the generalized solutions with the
original one. To see how this agreement depends on the level of coarsening, we plot
the difference ‖B̄1 − B̄γ‖1 as a function of γ = KB/KA in Figure 3. We see that the
difference monotonically increases with γ, which is to be expected since large values of
γ represent a high degree of coarsening. However, the increase of the error is nonlinear,
and there is an area of values (γ . 5) where the error is sufficiently small to be deemed
acceptable. Before we study the approximation quality in more detail, we define in the
following section the ‘ground truth’ model given by particle-based Brownian dynamics.
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Fig. 3: Difference between standard RDME and mgRDME. Difference ‖B̄1−
B̄γ‖1 as a function of the ratio γ = KB/KA for rate constants given in (2.16) and for
L = 2, KB = 60 and KA ∈ {60, 30, 20, 15, 12, 10, 6, 4, 3}, where B̄1 the solution of the
standard steady-state equation (2.14), and B̄γ the solution of the generalized steady-
state equation (2.23).

2.3 ‘Ground truth’ particle-based model: Brownian dynamics

As our ‘ground truth’ model, we will consider a model with two species A and B
diffusing and reacting in the unbounded domain R [9]. Molecules of A are released at
the origin, x = 0, with rate 2k1, which has units [sec−1]. Due to symmetry, this is
equivalent to studying the same model on the half-line [0,∞) with the rate constant k1
and reflecting boundary conditions at x = 0 [48]. Molecules of A and B are diffusing
with diffusion constants DA and DB , respectively. They are subject to the conversion
and degradation reactions

A
k2−→ B

k3−→ ∅. (2.24)

We compare the Brownian dynamics to the simulation on the finite interval [0, L],
which is discretized into compartments in the RDME and mgRDME frameworks.
The effect of the boundary at x = L is discussed in Section A.2 of the Appendix.

Let a(x, t) and b(x, t) be the concentrations of molecules of A and B, respectively,
that is a(x, t) dx denotes the average number of molecules in the interval [x, x+dx) at
time t in the Brownian dynamics model. Then a(x, t) and b(x, t) satisfy the following
PDEs [33, equation (1)]

∂a

∂t
= DA

∂2a

∂x2
− k2 a+ 2k1 δ(x), (2.25)

∂b

∂t
= DB

∂2b

∂x2
+ k2 a− k3 b, (2.26)

where x ∈ R, and δ(x) is the Dirac delta function. We consider the boundary conditions

lim
x→±∞

a(x, t) = lim
x→±∞

b(x, t) = 0. (2.27)
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Let ā(x) and b̄(x) be the corresponding stationary distributions, i.e.

ā(x) = lim
t→∞

a(x, t), b̄(x) = lim
t→∞

b(x, t).

They satisfy the steady-state equations

0 = DA
d2ā

dx2
− k2 ā+ 2k1 δ(x) , (2.28)

0 = DB
d2b̄

dx2
+ k2 ā− k3 b̄ , (2.29)

with boundary conditions

lim
x→±∞

ā(x) = lim
x→±∞

b̄(x) = 0. (2.30)

We notice that the PDE (2.25) (resp. the ODE (2.28)) does not depend on b(x, t)
(resp. b̄(x)). In what follows, we will therefore first solve the equation (2.25) for the
chemical species A, and then we will substitute it into the second equation (2.26) for
the chemical species B to get our ‘ground truth’ solution. In the following, we will do
this for the steady-state problem. The time-dependent problem is considered in the
appendix, see Section A.1.

Steady-state solution

Since the second derivative of the absolute value function, |x|, is equal to 2δ(x), we
can write the solution to equation (2.28) with boundary conditions (2.30) as

ā(x) =
k1√
DA k2

exp

[
−
√

k2
DA
|x|

]
. (2.31)

This result is also obtained when taking the limit t → ∞ of the time-dependent
solution a(x, t) as given in equation (A.3) of Appendix A.1. Substituting into
equation (2.29), we get

DB
d2b̄

dx2
+ k1

√
k2
DA

exp

[
−
√

k2
DA
|x|

]
− k3 b̄ = 0.

Consequently, using boundary conditions (2.30), we obtain

b̄(x) =
k1
√
k2 DA

DA k3 −DB k2
exp

[
−
√

k2
DA
|x|

]
+

k1k2
√
DB

(DB k2 −DA k3)
√
k3

exp

[
−
√

k3
DB
|x|

]

(2.32)
for the concentration b̄ of molecuels of B at equilibrium. Our compartment-based
models simulate the problem on the finite interval [0, L], with zero-flux boundary
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condition at x = L. To get the ‘ground truth’ solution (2.32), we have used the infinite
domain, R, with boundary conditions (2.30). In Section A.2 we show that the effect of
non-flux boundary conditions on the ‘ground truth’ solution ā vanishes for L→∞. In
particular, the concentration is negligible at x ≥ L as long as L is large enough, and
we can use (2.31) and (2.32) for a comparison with the compartment-based models.

2.4 Model comparison

Since the reaction system under consideration is a first-order reaction network,
the standard compartment-based model of Section 2.1 converges to the Brownian
dynamics solution for h→ 0 [9, 49]. Our goal is now to compare the Brownian dynam-
ics to the compartment-based model for finite h, both for the standard RDME and
for the mgRDME. In application, one is mainly interested in the output given by the
product B, which motivates to define the distance between the models by means of
the average number of molecules of B.

2.4.1 Error definition

Given the steady-state solution B̄h = (B̄1, B̄2, . . . , B̄KB
) of the mgRDME model with

KB boxes of size h = L/KB (which agrees with the standard RDME solution when
choosing γ = 1), we define the piecewise constant function b̄h : [0, L]→ [0,∞),

b̄h(x) := B̄i/h for x ∈ [(i− 1)h, ih), i = 1, 2, . . . ,KB , (2.33)

which approximates the steady-state concentration of molecules of B as it depends on
the location x. The L1-distance to the Brownian dynamics solution b̄ defines

err(KB , γ) := ||b̄−b̄h||L1 =

∫ L

0

|b̄(x)−b̄h(x)| dx =

KB∑

i=1

∫ ih

(i−1)h

|b̄(x)−B̄i| dx , (2.34)

the spatial error in dependence on KB and on the ratio γ = KB/KA. We note that
this error would be positive even if b̄h was a discretization of b̄ (and not the solution
of the compartment-based model), simply because of the coarse-graining. We thus
expect the error to naturally decrease with decreasing h.

Figure 4 shows this error in dependence on the grid size h, where hA = hB = h
for the standard RDME, while hA = h and fixed hB = h∗ = 1/60 for the generalized
mgRDME. For both scenarios, there is a monotone increase of the error with h, which
is to be expected in a first-order reaction system. The generalized model shows better
results as compared to the standard one, which is due to the fixed small grid size h∗ for
B. However, the error err(KB , γ) seems to be linear in h for γ = 1 (standard model,
blue crosses), while it is nonlinear in h = hA for the generalized system and stays close
to zero for small h = hA. We can say that for h = hA ≤ 0.1 (γ ≤ 6) the generalized
mgRDME model gives a good approximation, while the standard compartment-based
model already shows a clear error.

Despite the availability of an analytical solution for the steady-state distribution,
there remains a fundamental interest in stochastic simulations of the dynamics, which
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Fig. 4: Error in dependence on the compartment size. Error err(KB , γ), defined
in (2.34), between the steady-state solution b̄ of the ‘ground truth’ model given by (2.32)
and its approximation by the standard and the generalized compartment based models
with solutions B̄h in dependence on the compartment size h. We have hA = hB = h
for the standard model, while hA = h and hB = h∗ = 1/60 for the multi-grid model.
Rate constants given in (2.16) and L = 2.

allow for a more comprehensive exploration of the system’s behavior including complex
interactions and rare events. We point out that, in Figure 4 and for a given h, the
numerical effort for simulating trajectories is larger for the multi-grid model compared
to the standard model because due to the retention of the small grid size hB = h∗

for B. However, the overall goal of the generalized method is to reduce numerical cost
while simultaneously minimizing errors. Therefore, determining an optimal value for γ
entails multi-objective optimization, a task we will address next.

2.4.2 Multi-objective optimization

In this section, we study the dependence of the spatial error err(KB , γ) defined in (2.34)
and of the numerical effort on the grid sizes hA and hB . We calculate error and cost
for different parameter values to show the advantage of the generalized method over
the standard method. To define the cost function, we use propensities at steady state
because these indicate the runtime of our numerical simulations.

Propensities at steady state

The total number of particles at steady state is given by1

Ātotal =

KA∑

i=1

Āi =
k1
k2

, B̄total =

KB∑

i=1

B̄i =
k2
k3

Ātotal =
k1
k3

. (2.35)

The overall propensity for a reaction to take place at steady state (no matter which
reaction or where in space) is

r̄reac := k1 + k2 Ātotal + k3 B̄total = 3 k1 . (2.36)

1The values result from setting the related reaction rate equations to zero, i.e., from solving k1 −

k2Ātotal = 0 and k2Ātotal − k3B̄total = 0. This works only for first-order reaction systems.
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Analogously, the overall propensity for a diffusive jump to take place at steady state is

r̄diff :=
DA

h2
A

(2Ātotal − Ā1 − ĀKA
) +

DB

h2
B

(2B̄total − B̄1 − B̄KB
)

/ 2
DA

h2
A

Ātotal + 2
DB

h2
B

B̄total = 2
DA

h2
A

k1
k2

+ 2
DB

h2
B

k1
k3

(2.37)

with the negative terms in the first line resulting from the fact that diffusive jumps at
the outer boundaries of the domain can only go in one direction. The latter expression
is a good approximation as long as the population sizes in the outer boxes are not
too large (as compared to the total population size), which is the case in the scenarios
considered.

The number of iterations steps needed to create a trajectory of the dynamics
(starting in steady state, using the Gillespie algorithm [50, 51]) scales with r̄reac+ r̄diff.
This motivates to define the cost function as a sum of (2.36) and (2.37), giving

c(KB , γ) := 3 k1 + 2
DA

h2
A

k1
k2

+ 2
DB

h2
B

k1
k3

, (2.38)

where hB = L/KB and hA = γhB . Figure 5 shows the values of error and cost
depending on KB and γ (where γ = 1 corresponds to the standard RDME model). We
see that the generalized model clearly outperforms the standard model: The Pareto
front exclusively comprises of points derived from the generalized model. Consequently,
the decrease in spatial resolution for species A introduced by the generalized model
minimally impacts the error in the B-solution, relative to the alteration in numerical
cost resulting from this coarse-graining. We note the special role of γ = 4 =

√
DA/DB ,

where the jump rates of the two species coincide.

Remark 1. We note that the scenario would change if we were to define an error
metric that incorporates the distance within the A-population. This is evident because
||A− Ā(KB , γ)||1 unmistakably rises with γ, irrespective of KB.

In the examined first-order reaction system, only the production of A depends on
location, whereas the other reactions occur independently of the molecules’ spatial
position. A stronger effect of the grid size on the reaction dynamics is expected for a
second-order reaction system, which is studied next.

3 Fast-slow morphogen gradient with dimerization

We consider the fast-slow morphogen gradient system of Section 2, replacing the con-
version reaction A → B by the second-order reaction of dimerization A + A → B,
i.e., the chemical reactions (1.1) are changed to (1.2), while the diffusion part of
the reaction-diffusion model remains consistent with that described in the previous
section. Again, we choose the one-dimensional domain [0, L]. The associated modeling
approaches are introduced in Section 3.1 and compared in Section 3.2.
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Fig. 5: Error and cost depending on the method. Error err(KB , γ) as defined
in (2.34) and numerical cost c(KB , γ) as defined in (2.38) for different values of KB

and γ = KB/KA (given by labels of the form [KB γ]). The colored symbols are for
orientation: blue pluses for the standard RDME, red stars for the generalized mgRDME
with KB = 120 and green circles for the generalized mgRDME with KB = 60.
Parameters are given in (2.16) and L = 2.

3.1 Modeling approaches for the dimerization system

Considering the compartment-based models, the diffusion operators are the same as in
Section 2, i.e., for the standard RDME model it is given by D as defined in (2.9), and
for the generalized mgRDME model it is given by D̃ as defined in (2.19). In contrast,
the reaction operators now explicitly depend on the grid size h via the second-order
reaction A+A→ B. For the standard compartment-based model, given by the RDME
∂p
∂t (n,m, t) = (D +R) p(n,m, t), it reads

Rf(n,m) := k1

{
f(O−

1 n,m)− f(n,m)
}

+
k2
h

K∑

i=1

{
(ni + 2)(ni + 1) f(O+

i O+
i n,O−

i m)−max{ni(ni − 1), 0} f(n,m)
}

+ k3

K∑

i=1

{
(mi + 1) f(n,O+

i m)−mi f(n,m)
}

for h = hA = hB . The rate constant k2 now has physical units [length]/[time], i.e.,
units of the ‘one-dimensional volume’ divided by time, because k2 is the rate constant
of a bimolecular reaction, in contrast to k2 in (2.10), which has physical units [time]−1.
Dividing by h in the second line stems from the standard scaling of a second-order
reaction rate by the volume of the domain in which it takes place, which is given
by h for the one-dimensional case under consideration. Similarly, for the generalized
mgRDME model, we have

R̃f(n,m) := k1

{
f(O−

1 n,m)− f(n,m)
}
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+
k2
hAγ

KA∑

j=1

∑

i∈I(j)

{
(nj + 2)(nj + 1) f(O+

j O+
j n,O−

i m)−max{nj(nj − 1)} f(n,m)
}

+k3

KB∑

i=1

{
(mi + 1) f(n,O+

i m)−mi f(n,m)
}
.

The factor 1/γ in the second summand results from splitting the reaction A+A→ B
occurring in the j-th compartment into |I(j)| = γ possible ones, depending on the
placement of the product B:

Aj +Aj
k2/γ−→ Bi, j = 1, 2, . . . ,KA, i ∈ I(j) := {(j − 1)γ + 1, . . . , jγ}, (3.1)

which conforms with the first-order case, see (2.18) and (2.20).

’Ground truth’ particle-based model: Brownian dynamics

As the ’ground truth’ we choose particle-based dynamics given by the Doi or λ-̺
model [16, 23, 24, 52]. Particles move in space by Brownian motion, and two particles
of species A undergo dimerization A+A→ B at rate λ > 0 whenever being within a
separation ̺ > 0, called the reaction radius.

Relation between rate constants for bimolecular reactions

Let h denote the grid size of the compartment-based model (given by the standard
RDME), and let k2/h

d (where d is the dimension of physical space) denote the rate
for two molecules of A to react when located in the same compartment. The (stan-
dard) RDME may be seen as a formal approximation of the Doi model [53], but it
loses second-order reactions as h → 0 [15, 16, 54]. In [19] a convergent RDME has
been developed, which allows second-order reactions of molecules located in different
compartments and thereby does not lose bimolecular reactions as h→ 0. The standard
RDME may be interpreted as an asymptotic approximation of the convergent RDME
for ̺/h ≪ 1 [19], where ̺ is the reaction radius of the Doi model. In this case of a
comparatively large compartment size, particles can be expected to only react when
being located in the same box, and an adequate choice of the binding rate constant k2
is given by k2 = λ|B̺|, where |B̺| denotes the volume of the d-dimensional sphere of
radius ̺. For our one-dimensional domain [0, L] (i.e, d = 1) we thus choose k2 = 2 ̺ λ
for the reaction-rate constant of the compartment-based model with sufficiently large
compartment size h. Note that, on the other hand, h has to be small, h≪ L, to ensure
an appropriate level of spatial resolution [9].

3.2 Model comparison

In contrast to the first-order reaction-diffusion system of Section 2, analytical insights
for the dimerization system are relatively limited, so our studies solely rely on com-
putational simulations. Figure 6 shows the steady-state gradients of molecules of A
and B, estimated from long-term stochastic simulations (using the Gillespie stochas-
tic simulation algorithm for the generalized mgRDME and temporal discretization for
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Fig. 6: Steady-state solution for the morphogen system with the dimeriza-

tion reaction. Comparison between Brownian dynamics (solid lines) and generalized
mgRDME model (dots/ bars) for dimerization system (1.2). The parameters are given
in (3.2), together with L = 1, KA = 15 and KB = 60.

the Brownian dynamics model). The parameters are chosen as

k1 = 50, λ = 5, ̺ = 0.02, k2 = 2λ ̺ = 0.2, k3 = 2, DA = 0.16, DB = 0.01. (3.2)

We observe a close agreement of the generalized compartment-based model with the
particle-based dynamics for KA = 15 and KB = 60. In contrast, for the standard
RDME the agreement is worse, as we will see in the next section.

3.2.1 Multi-objective optimization

For the spatial error in the distribution of molecules of B, we define the function
err(KB , γ) in analogy to (2.34), that is, we choose the L1-distance between the steady-
state solutions of the compartment-based model and of the particle-based model. Let
Ātotal and B̄total be the total number of molecules of A and B, respectively, of the
compartment-based dimerization system at steady state. In contrast to the first-order
reaction system of Section 2, we lack analytical expression for these quantities and can
only estimate them via long-term numerical simulation. The cost function is defined
similarly to (2.38), using the total propensity for diffusion and reaction events at
steady state:

c(KB , γ) := 2
DA

h2
A

Ātotal + 2
DB

h2
B

B̄total + k1 + k2 Ātotal(Ātotal − 1) + k3B̄total , (3.3)

which is quadratic in the total number of molecules of A at steady state. Figure 7
illustrates the error and cost values across different combinations of KB and γ. We
see that the error is non-monotone in γ, which differs from the behavior seen in
Figure 5 for the first-order reaction-diffusion system. It seems that there is an optimal
KA ≈ 15 = 120/8 = 60/4, where the error in the spatial distribution of molecules of B
is minimal. Next, we study the relationship between the parameter KA and the error
in the A-population.
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Fig. 7: Error and cost for dimerization. Cost c(KB , γ) as defined in (3.3) and
error err(KB , γ) given by (2.34) for different values of KB and γ = KB/KA (given by
labels of the form [KB γ] ). The parameters are given in (3.2) and L = 1. The results
are calculated as averages over long-term simulations of length T = 5000.

3.2.2 Error analysis for species A

Given the steady-state solution ĀhA
= (Ā1, Ā2, . . . , ĀKA

) of the generalized mgRDME
model for the dimerization system, we define

āhA
(x) := Āi/hA for x ∈ [(i− 1)hA, ihA), i = 1, 2, . . . ,KA, (3.4)

as an approximation of the position-dependent steady-state concentration. Let fur-
ther ā(x) be the steady-state solution of the particle-based Brownian-dynamics
dimerization model (these functions can be approximately determined via numerical
simulation). We define the spatial error in A in analogy to (2.34):

errA(KA) := ||ā− āh||L1 =

∫ L

0

|ā(x)− āh(x)| dx. (3.5)

Moreover, we consider the difference in the total number of molecules of A at steady
state:

errtotal(KA) :=

∣∣∣∣∣Ātotal −
∫ L

0

ā(x) dx

∣∣∣∣∣ . (3.6)

As opposed to the first-order system, this quantity can here be non-zero. Figure 8
shows a non-monotone relationship between the number KA of compartments and the
error errtotal(KA) in the total number of molecules of A. The non-monotony is due
to a too small grid size hA for large KA which contrasts with the condition ̺/h ≪ 1
necessary for a good approximation of second-order reactions, see also the paragraph
on the relation between the rates on page 16. The spatial error errA(KA) in A, however,
decreases monotonically with increasingKA because a higher level of spatial resolution
dominates the effect of losing second-order reactions for the parameter values under
consideration. The error in B (also depicted in Figure 8b) results from a combination
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Fig. 8: Error in dependence on KA. (a) Spatial error errA(KA) given by (3.5)
(blue) and difference errtotal(KA) in the total number of molecules of A defined in (3.6)
(red) for different values of KA. (b) zoom-in, additionally contains the spatial error
in B, err(KB , γ) defined in (2.34), for fixed KB = 60 and γ = KB/KA. Parameters
given in (3.2), L = 1. Long-term simulation of length T = 105.

of the two errors in A and minimizes for KA ≈ 16, which is in consistency with the
observations from Figure 7. The standard compartment-based model would mean to
choose KA = KB = 60, inducing a comparatively large error both in the steady-state
distribution of molecules of B and in the total number of molecules of A.

We conclude that the generalized mgRDME model clearly outperforms the stan-
dard RDME model for the fast-slow morphogen gradient system with dimerization.
While in the setting of first-order reactions, it is reasonable to choose a specific ratio
γ =

√
DA/DB between the spatial compartment numbers, the non-linear case of

dimerization suggests a fixed compartment size hA for molecules of A, regardless of the
spatial resolution for B. Instead, the reaction radius ̺ and the rate constant λ of the
particle-based Brownian dynamics model, in conjunction with the diffusion constant
DA, dictate the optimal value for hA.

Remark 2 (Second-order moments for dimerization). Unlike the first-order reaction-
diffusion model discussed in Section 2, the variance of the particle numbers does here
not align with the mean. Consequently, one could also take the variance as a value
for comparing the models and defining an error. A numerical comparison of mean
and variance for the different model types in application to the dimerization system is
given in Appendix A.3.

4 Discussion

We examined the mgRDME as a generalized compartment-based stochastic model for
reaction-diffusion kinetics, allowing adapted compartment sizes for different chemical
species involved in the system [27]. When employed in the context of morphogen gradi-
ent formation, the mgRDME appears to be very useful because the signaling molecules
A typically diffuse at a significantly higher rate than the morphogen molecules B,
and this diffusion rate is a deciding factor for the choice of compartment sizes. In
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comparison to the ‘ground truth’ particle-based Brownian dynamics simulations, the
mgRDME clearly outperformed the standard RDME in terms of accuracy and reduc-
tion in numerical cost, both for the first-order reaction network (1.1) and for the
considered dimerization system (1.2).

Interestingly, however, the structural dependence of error and cost on the compart-
ment sizes is different for the two settings. In Section 2, the optimal ratio between grid
sizes hinges on the relationship between the diffusion rates. Conversely, in the system
involving second-order dimerization in Section 3, an optimal grid size for species A
can be identified (in dependence on its diffusion constant) regardless of the grid size
allocated to B. In particular, the approximation error may be reduced for the dimer-
ization system by choosing a smaller compartment size for B while maintaining the
fixed optimal compartment size for A undergoing dimerization. This goes in line with
the observations for standard RDMEs, where very small grid sizes result in the elimi-
nation of the second-order reactions in three-dimensional simulations. The mgRDME
circumvents this issue by allowing larger compartment sizes for species involved in
second-order reactions. At the same time, the increase in numerical cost caused by
the higher spatial resolution is limited, since it is selectively applied solely to the slow
species.

Our work shows that the mgRDME is a valuable framework for studying reaction-
diffusion systems with multiple scales in diffusion speed of involved molecules. The
multi-grid network enables the mgRDME to more effectively accommodate the inher-
ent conditions of the system under consideration, surpassing the adaptability of the
standard RDME. The models with different diffusion constants naturally take into
account variations in the sizes of simulated biomolecules, which can range from small
calcium ions to relatively large vesicles in neurotransmission dynamics [55, 56], or from
relatively small G-actin monomers to larger F -actin filaments in simulations of actin
dynamics [6, 57]. Other applications of mgRDME include pattern formation based on
Turing instability which requires different diffusion constants [36].

In this work, we have solely considered dynamics in one-dimensional domains –
a restriction which is well justified in the context of morphogen gradient formation.
Nevertheless, it would be interesting to extend our studies to reaction-diffusion sys-
tems in higher-dimensional domains, as well as to other reaction networks. While our
analysis has been based on comparison of steady-state morphogen gradients, another
way to compare the RDME and mgRDME could be by comparing the first collision
and mean reaction times in these models [58], which can be achieved by analyzing the
random walks on lattices [45]. Also a comparison of time-dependent solutions (in con-
trast to steady-state distributions investigated here) is another interesting topic for
future research on mgRDME models of morphogen gradients [32].

A Appendix

A.1 Time-dependent solution of the Brownian dynamics model

Let us consider that initially there are no molecules of A and B in the system, i.e.

a(x, 0) ≡ b(x, 0) ≡ 0. (A.1)
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To solve the PDE (2.25) with initial condition (A.1) and boundary conditions (2.27),
we apply the Fourier transform

â(ξ, t) =

∫ ∞

−∞

a(x, t) e−iξx dx.

We get
∂â

∂t
(ξ, t) = −(DA ξ2 + k2) â(ξ, t) + 2k1.

Solving this ODE with the initial condition â(ξ, 0) = 0, we obtain

â(ξ, t) =
2k1

DA ξ2 + k2
− 2k1 exp

[
−
(
DA ξ2 + k2

)
t
]

DA ξ2 + k2
. (A.2)

Since the Fourier transform of the convolution is the product of Fourier transforms,
we can calculate the Fourier inverse of (A.2) as follows

a(x, t) = ā(x)− exp[−k2t]
2
√
DAtπ

∫ ∞

−∞

ā(y) exp

[
− (x− y)2

4DAt

]
dy,

where ā(x) is given by (2.31). In total we get

a(x, t) =
k1√
DA k2

exp

[
−
√

k2
DA
|x|

]

− exp[−k2t]
2
√
DAtπ

∫ ∞

−∞

k1√
DA k2

exp

[
−
√

k2
DA
|y|

]
exp

[
− (x− y)2

4DAt

]
dy (A.3)

for the average number of A-molecules in the interval [x, x+ dx] at time t.

A.2 ’Ground truth’ solution: The effect of the boundary

Here, we derive the ‘ground truth’ solution of Section 2.3 for zero-flux boundary con-
ditions. To do that, we will solve the ODEs (2.28)–(2.29) on the interval [−L,L] with
zero-flux boundary conditions

dā

dx
(−L) = dā

dx
(L) =

db̄

dx
(−L) = db̄

dx
(L) = 0. (A.4)

Then the solution to the steady-state equation (2.28) is

ā(x) =
k1√
DA k2

exp

[
−
√

k2
DA
|x|

]
1 + exp

[
2
√

k2

DA

(
|x| − L

)]

1− exp[−2L
√

k2/DA]
,

which for L→∞ agrees with (2.31), independently of the parameter values.
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Fig. 9: Comparison of mean and variance for dimerization. Mean/variance
of the number of molecules of (a)/(c) species A and (b)/(d) species B at steady state
estimated by long-term simulation (T = 2000) of the compartment-based model (red
circles) and of the particle-based Brownian dynamics model (grey bars). Rate constants
given in (3.2), L = 1, KA = KB = 15 (γ = 1, h = 1/15).

A.3 Second-order moments for dimerization

Means and variances of the numbers of molecules of A and B for the dimerization
system are plotted in Figure 9, sampled from long-term simulations of the (stan-
dard) compartment-based model and of the particle-based Brownian dynamics model,
choosing boxes of size h = 1/15. We observe a good agreement of the two model types.
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