
MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000–000
S 0025-5718(XX)0000-0

EMPIRICAL EVIDENCE FOR THE BIRCH AND SWINNERTON-DYER
CONJECTURES FOR MODULAR JACOBIANS OF GENUS 2 CURVES
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Abstract. This paper provides empirical evidence for the Birch and Swinnerton-Dyer conjectures for mod-

ular Jacobians of genus 2 curves. The second of these conjectures relates six quantities associated to a
Jacobian over the rational numbers. One of these six quantities is the size of the Shafarevich-Tate group.

Unable to compute that, we computed the five other quantities and solved for the last one. In all 32 cases,

the result is very close to an integer that is a power of 2. In addition, this power of 2 agrees with the size
of the 2-torsion of the Shafarevich-Tate group, which we could compute.
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1. Introduction

The conjectures of Birch and Swinnerton-Dyer, originally stated for elliptic curves over Q, have been a

constant source of motivation for the study of elliptic curves, with the ultimate goal being to find a proof.

This has resulted not only in a better theoretical understanding, but also in the development of better

algorithms for computing the analytic and arithmetic invariants that are so intriguingly related by them.

We now know that the first and, up to a non-zero rational factor, the second conjecture hold for modular

elliptic curves over Q 1 in the analytic rank 0 and 1 cases (see [GZ, Ko, Wal1, Wal2]). Furthermore, a

number of people have provided numerical evidence for the conjectures for a large number of elliptic curves;

see for example [BGZ, BSD, Ca, Cr2].

By now, our theoretical and algorithmic knowledge of curves of genus 2 and their Jacobians has reached

a state that makes it possible to conduct similar investigations. The Birch and Swinnerton-Dyer conjectures

have been generalized to arbitrary abelian varieties over number fields by Tate [Ta]. If J is the Jacobian

of a genus 2 curve over Q, then the first conjecture states that the order of vanishing of the L-series of

the Jacobian at s = 1 (the analytic rank) is equal to the Mordell-Weil rank of the Jacobian. The second

conjecture is that

(1.1) lim
s→1

(s− 1)−rL(J, s) = Ω · Reg ·
∏
p

cp ·#X(J,Q) · (#J(Q)tors)−2 .

In this equation, L(J, s) is the L-series of the Jacobian J , and r is its analytic rank. We use Ω to denote

the integral over J(R) of a particular differential 2-form; the precise choice of this differential is described

in Section 3.5. Reg is the regulator of J(Q). For primes p, we use cp to denote the size of J(Qp)/J0(Qp),

where J0(Qp) is defined in Section 3.4. We let X(J,Q) be the Shafarevich-Tate group of J over Q, and we

let J(Q)tors denote the torsion subgroup of J(Q).

As in the case of elliptic curves, the first conjecture assumes that the L-series can be analytically continued

to s = 1, and the second conjecture additionally assumes that the Shafarevich-Tate group is finite. Neither

of these assumptions is known to hold for arbitrary genus 2 curves. The analytic continuation of the L-series,

however, is known to exist for modular abelian varieties over Q, where an abelian variety is called modular

if it is a quotient of the Jacobian J0(N) of the modular curve X0(N) for some level N . For simplicity,

we will also call a genus 2 curve modular when its Jacobian is modular in this sense. So it is certainly a

good idea to look at modular genus 2 curves over Q, since we then at least know that the statement of

the first conjecture makes sense. Moreover, for many modular abelian varieties it is also known that the

Shafarevich-Tate group is finite, therefore the statement of the second conjecture also makes sense. As it

turns out, all of our examples belong to this class. An additional benefit of choosing modular genus 2 curves

is that one can find lists of such curves in the literature.

In this article, we provide empirical evidence for the Birch and Swinnerton-Dyer conjectures for such

modular genus 2 curves. Since there is no known effective way of computing the size of the Shafarevich-Tate

1It has recently been announced by Breuil, Conrad, Diamond and Taylor that they have extended Wiles’ results and shown

that all elliptic curves over Q are modular (see [BCDT]).
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group, we computed the other five terms in equation (1.1) (in two different ways, if possible). This required

several different algorithms, some of which were developed or improved while we were working on this paper.

If one of these algorithms is already well described in the literature, then we simply cite it. Otherwise, we

describe it here in some detail (in particular, algorithms for computing Ω and cp).

For modular abelian varieties associated to newforms whose L-series have analytic rank 0 or 1, the first

Birch and Swinnerton-Dyer conjecture has been proven. In such cases, the Shafarevich-Tate group is also

known to be finite and the second conjecture has been proven, up to a non-zero rational factor. This all

follows from results in [GZ, KL, Wal1, Wal2]. In our examples, all of the analytic ranks are either 0 or 1.

Thus we already know that the first conjecture holds. Since the Jacobians we consider are associated to a

quadratic conjugate pair of newforms, the analytic rank of the Jacobian is twice the analytic rank of either

newform (see [GZ]).

The second Birch and Swinnerton-Dyer conjecture has not been proven for the cases we consider. In order

to verify equation (1.1), we computed the five terms other than #X(J,Q) and solved for #X(J,Q). In

each case, the value is an integer to within the accuracy of our calculations. This number is a power of 2,

which coincides with the independently computed size of the 2-torsion subgroup of X(J,Q). Hence, we have

verified the second Birch and Swinnerton-Dyer conjecture for our curves at least numerically, if we assume

that the Shafarevich-Tate group consists of 2-torsion only. (This is an ad hoc assumption based only on the

fact that we do not know better.) See Section 6 for circumstances under which the verification is exact.

The curves are listed in Table 1, and the numerical results can be found in Table 2.

2. The Curves

Each of the genus 2 curves we consider is related to the Jacobian J0(N) of the modular curve X0(N) for

some level N . When only one of these genus 2 curves arises from a given level N , then we denote this curve

by CN ; when there are two curves coming from level N we use the notation CN,A, CN,B . The relationship

of, say, CN to J0(N) depends on the source. Briefly, from Hasegawa [Hs] we obtain quotients of X0(N) and

from Wang [Wan] we obtain curves whose Jacobians are quotients of J0(N). In both cases the Jacobian

JN of CN is isogenous to a 2-dimensional factor of J0(N). (When not referring to a specific curve, we will

typically drop the subscript N from J .) In this way we can also associate CN with a 2-dimensional subspace

of S2(N), the space of cusp forms of weight 2 for Γ0(N).

We now discuss the precise source of the genus 2 curves we will consider. Hasegawa [Hs] has provided exact

equations for all genus 2 curves which are quotients of X0(N) by a subgroup of the Atkin-Lehner involutions.

There are 142 such curves. We are particularly interested in those where the Jacobian corresponds to a

subspace of S2(N) spanned by a quadratic conjugate pair of newforms. There are 21 of these with level

N ≤ 200. For these curves we will provide evidence for the second conjecture. There are seven more such

curves with N > 200. We can classify the other 2-dimensional subspaces into four types. There are 2-

dimensional subspaces of oldforms that are irreducible under the action of the Hecke algebra. There are also
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2-dimensional subspaces that are reducible under the action of the Hecke algebra and are spanned by two

oldforms, two newforms or one of each. The Jacobians corresponding to the latter three kinds are always

isogenous, over Q, to the product of two elliptic curves. Given the small levels, these are elliptic curves

for which Cremona [Cr2] has already provided evidence for the Birch and Swinnerton-Dyer conjectures. In

Table 5, we describe the kind of cusp forms spanning the 2-dimensional subspace and the signs of their

functional equations from the level at which they are newforms. The analytic and Mordell-Weil ranks were

always the smallest possible given those signs.

The second set of curves was created by Wang [Wan] and is further discussed in [FM]. This set consists

of 28 curves that were constructed by considering the spaces S2(N) with N ≤ 200. Whenever a subspace

spanned by a pair of quadratic conjugate newforms was found, these newforms were integrated to produce

a quotient abelian variety A of J0(N). These quotients are optimal in the sense of [Ma], in that the kernel

of the quotient map is connected.

The period matrix for A was created using certain intersection numbers. When all of the intersection

numbers have the same value, then the polarization on A induced from the canonical polarization of J0(N) is

equivalent to a principal polarization. (Two polarizations are equivalent if they differ by an integer multiple.)

Conversely, every 2-dimensional optimal quotient of J0(N) in which the induced polarization is equivalent

to a principal polarization is found in this way.

Using theta functions, numerical approximations were found for the Igusa invariants of the abelian surfaces.

These numbers coincide with rational numbers of fairly small height within the limits of the precision used

for the computations. Wang then constructed curves defined over Q whose Igusa invariants are the rational

numbers found. (There is one abelian surface at level N = 177 for which Wang was not able to find a curve.)

If we assume that these rational numbers are the true Igusa invariants of the abelian surfaces, then it follows

that Wang’s curves have Jacobians isomorphic, over Q, to the principally polarized abelian surfaces in his

list. Since the classification given by these invariants is only up to isomorphism over Q, the Jacobians of

Wang’s curves are not necessarily isomorphic to, but can be twists of, the optimal quotients of J0(N) over Q

(see below).

There are four curves in Hasegawa’s list which do not show up in Wang’s list (they are listed in Table 1

with an H in the last column). Their Jacobians are quotients of J0(N), but are not optimal quotients.

It is likely that there are modular genus 2 curves which neither are Atkin-Lehner quotients of X0(N) (in

Hasegawa’s sense) nor have Jacobians that are optimal quotients. These curves could be found by looking

at the optimal quotient abelian surfaces and checking whether they are isogenous to a principally polarized

abelian surface over Q.

For 17 of the curves in Wang’s list, the 2-dimensional subspace spanned by the newforms is the same as

that giving one of Hasegawa’s curves. In all of those cases, the curve given by Wang’s equation is isomorphic,

over Q, to that given by Hasegawa. This verifies Wang’s equations for these 17 curves. They are listed in

Table 1 with HW in the last column.
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The remaining eleven curves (listed in Table 1 with a W in the last column) derive from the other eleven

optimal quotients in Wang’s list. These are described in more detail in Section 2.1 below.

With the exception of curves C63, C117,A and C189, the Jacobians of all of our curves are absolutely

simple, and the canonically polarized Jacobians have automorphism groups of size two. We showed that

these Jacobians are absolutely simple using an argument like those in [Le, Sto1]. The automorphism group

of the canonically polarized Jacobian of a hyperelliptic curve is isomorphic to the automorphism group of

the curve (see [Mi2, Thm. 12.1]). Each automorphism of a hyperelliptic curve induces a linear fractional

transformation on x-coordinates (see [CF, p. 1]). Each automorphism also permutes the six Weierstrass

points. Once we believed we had found all of the automorphisms, we were able to show that there are no

more by considering all linear fractional transformations sending three fixed Weierstrass points to any three

Weierstrass points. In each case, we worked with sufficient accuracy to show that other linear fractional

transformations did not permute the Weierstrass points.

Let ζ3 denote a primitive third root of unity. The Jacobians of curves C63, C117,A and C189 are each

isogenous to the product of two elliptic curves over Q(ζ3), though not over Q, where they are simple. These

genus 2 curves have automorphism groups of size 12. In the following table we list the curve at the left.

On the right we give one of the elliptic curves which is a factor of its Jacobian. The second factor is the

conjugate.

C63 : y2 = x(x2 + (9− 12ζ3)x− 48ζ3)
C117,A : y2 = x(x2 − (12 + 27ζ3)x− (48 + 48ζ3))
C189 : y2 = x3 + (66− 3ζ3)x2 + (342 + 81ζ3)x + 105 + 21ζ3

Note that these three Jacobians are examples of abelian varieties ‘with extra twist’ as discussed in [Cr1],

where they can be found in the tables on page 409.

2.1. Models for the Wang-only curves. As we have already noted, a modular genus 2 curve may be

found by either, both, or neither of Wang’s and Hasegawa’s techniques. Hasegawa’s method allows for the

exact determination, over Q, of the equation of any modular genus 2 curve it has found. On the other

hand, if Wang’s technique detects a modular genus 2 curve CN , his method produces real approximations

to a curve C ′N which is defined over Q and is isomorphic to CN over Q. We will call C ′N a twisted modular

genus 2 curve.

In this section we attempt to determine equations for the eleven modular genus 2 curves detected by

Wang but not by Hasegawa. If we assume that Wang’s equations for the twisted modular genus 2 curves are

correct, we find that we are able to determine the twists. In turn, this gives us strong evidence that Wang’s

equations for the twisted curves were correct. Undoing the twist, we determine probable equations for the

modular genus 2 curves. We end by providing further evidence for the correctness of these equations.

In what follows, we will use the notation of [Cr2] and recommend it as a reference on the general results

that we assume here and in Section 4 and the appendix. Fix a level N and let f(z) ∈ S2(N). Then f has a
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Fourier expansion

f(z) =
∞∑

n=1

ane2πinz .

For a newform f , we have a1 6= 0; so we can normalize it by setting a1 = 1. In our cases, the an’s

are integers in a real quadratic field. For each prime p not dividing N , the corresponding Euler factor of

the L-series L(f, s) is 1 − app
−s + p1−2s. Let N(ap) and Tr(ap) denote the norm and trace of ap. The

product of this Euler factor and its conjugate is 1−Tr(ap) p−s +(N(ap)+2p) p−2s−p Tr(ap) p−3s +p2 p−4s.

Therefore, the characteristic polynomial of the p-Frobenius on the corresponding abelian variety over Fp is

x4 − Tr(ap) x3 + (N(ap) + 2p) x2 − p Tr(ap) x + p2. Let C be a curve, over Q, whose Jacobian, over Q,

comes from the space spanned by f and its conjugate. Then we know that p + 1 −#C(Fp) = Tr(ap) and
1
2 (#C(Fp)2 + #C(Fp2))− (p + 1)#C(Fp)− p = N(ap) (see [MS, Lemma 3]). For the odd primes less than

200, not dividing N , we computed #C(Fp) and #C(Fp2) for each curve given by one of Wang’s equations.

From these we could compute the characteristic polynomials of Frobenius and see if they agreed with those

predicted by the ap’s of the newforms.

Of the eleven curves, the characteristic polynomials agreed for only four. In each of the remaining seven

cases we found a twist of Wang’s curve whose characteristic polynomials agreed with those predicted by the

newform for all odd primes less than 200 not dividing N . Four of these twists were quadratic and three were

of higher degree. It is these twists that appear in Table 1.

We can provide further evidence that these equations are correct. For each curve given in Table 1, it is

easy to determine the primes of singular reduction. In Section 3.4 we will provide techniques for determining

which of those primes divides the conductor of its Jacobian. In each case, the primes dividing the conductor

of the Jacobian of the curve are exactly the primes dividing the level N ; this is necessary. With the

exception of curve C188, all the curves come from odd levels. We used Liu’s genus2reduction program

(ftp://megrez.math.u-bordeaux.fr/pub/liu) to compute the conductor of the curve. In each case (other

than curve C188), the conductor is the square of the level; this is also necessary. For curve C188, the odd

part of the conductor of the curve is the square of the odd part of the level.

In addition, since the Jacobians of the Wang curves are optimal quotients, we can compute k · Ω (where

k is the Manin constant, conjectured to be 1) using the newforms. In each case, these agree (to within

the accuracy of our computations) with the Ω’s computed using the equations for the curves. We can

also compute the value of cp for optimal quotients from the newforms, when p exactly divides N and the

eigenvalue of the pth Atkin-Lehner involution is −1. When p exactly divides N and the eigenvalue of the pth

Atkin-Lehner involution is +1, the component group is either 0, Z/2Z, or (Z/2Z)2. These results are always

in agreement with the values computed using the equations for the curves. The algorithms based on the

newforms are described in Section 4, those based on the equations of the curves are described in Section 3.

Lastly, we were able to compute the Mordell-Weil ranks of the Jacobians of the curves given by ten of

these eleven equations. In each case it agrees with the analytic rank of the Jacobian, as deduced from the

newforms.
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It should be noted that curve C125,B is the
√

5-twist of curve C125,A; the corresponding statement holds

for the associated 2-dimensional subspaces of S2(125). Since curve C125,A is a Hasegawa curve, this proves

that the equation given in Table 1 for curve C125,B is correct.

The ap’s and other information concerning Wang’s curves are currently kept in a database at the Institut

für experimentelle Mathematik in Essen, Germany. Most recently, this database was under the care of

Michael Müller. William Stein also keeps a database of ap’s for newforms.

Remark 2.1. For the remainder of this paper we will assume that the equations for the curves given in Table 1

are correct; that is, that they are equations for the curves whose Jacobians are isogenous to a factor of J0(N)

in the way described above. Some of the quantities can be computed either from the newform or from the

equation for the curve. We performed both computations whenever possible, and view this duplicate effort

as an attempt to verify our implementation of the algorithms rather than an attempt to verify the equations

in Table 1. For most quantities, one method or the other is not guaranteed to produce a value; in this

case, we simply quote the value from whichever method did succeed. The reader who is disturbed by this

philosophy should ignore the Wang-only curves, since the equations for the Hasegawa curves can be proven

to be correct.

3. Algorithms for genus 2 curves

In this section, we describe the algorithms that are based on the given models for the curves. We give

algorithms that compute all terms on the right hand side of equation (1.1), with the exception of the size of

the Shafarevich-Tate group. We describe, however, how to find the size of its 2-torsion subgroup. Note that

these algorithms are for general genus 2 curves and do not depend on modularity.

3.1. Torsion Subgroup. The computation of the torsion subgroup of J(Q) is straightforward. We used

the technique described in [CF, pp. 78–82]. This technique is not always effective, however. For an algorithm

working in all cases see [Sto3].

3.2. Mordell-Weil rank and X(J,Q)[2]. The group J(Q) is a finitely generated abelian group and so is

isomorphic to Zr ⊕ J(Q)tors for some r called the Mordell-Weil rank. As noted above (see Section 1), we

justifiably use r to denote both the analytic and Mordell-Weil ranks since they agree for all curves in Table 1.

We used the algorithm described in [FPS] to compute Sel2fake(J,Q) (notation from [PSc]), which is a

quotient of the 2-Selmer group Sel2(J,Q). More details on this algorithm can be found in [Sto2]. Theorem

13.2 of [PSc] explains how to get Sel2(J,Q) from Sel2fake(J,Q). Let M [2] denote the 2-torsion of an abelian

group M and let dimV denote the dimension of an F2 vector space V . We have dim Sel2(J,Q) = r +

dim J(Q)[2] + dimX(J,Q)[2]. In other words,

dim X(J,Q)[2] = dim Sel2(J,Q)− r − dim J(Q)[2].

In all 30 cases where dimX(J,Q)[2] ≤ 1, we were able to compute the Mordell-Weil rank independently

from the analytic rank. The cases where dimX(J,Q)[2] = 1 are discussed in more detail in Section 6. For
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both of the remaining cases we have dimX(J,Q)[2] = 2. One of these cases is C125,B . For this curve we

computed Sel
√

5(J125,B ,Q) using the technique described in [Sc]. From this, we were able to determine that

the Mordell-Weil rank is 0 independently from the analytic rank. For the other case, C133,A, we could show

that r had to be either 0 or 2 from the equation, but we needed the analytic computation to show that r = 0.

3.3. Regulator. When the Mordell-Weil rank is 0, then the regulator is 1. When the Mordell-Weil rank is

positive, then to compute the regulator, we first need to find generators for J(Q)/J(Q)tors. The regulator is

the determinant of the canonical height pairing matrix on this set of generators. An algorithm for computing

the generators and canonical heights is given in [FS]; it was used to find generators for J(Q)/J(Q)tors and

to compute the regulators. In that article, the algorithm for computing height constants at the infinite

prime is not clearly explained and there are some errors in the examples. A clear algorithm for computing

infinite height constants is given in [Sto3]. In [Sto4], some improvements of the results and algorithms

in [FS] and [Sto3] are discussed. The regulators in Table 2 have been double-checked using these improved

algorithms.

3.4. Tamagawa Numbers. Let O be the integer ring in K which will be Qp or Qunr
p (the maximal un-

ramified extension of Qp). Let J be the Néron model of J over O. Define J 0 to be the open subgroup

scheme of J whose generic fiber is isomorphic to J over K and whose special fiber is the identity com-

ponent of the closed fiber of J . The group J 0(O) is isomorphic to a subgroup of J(K) which we denote

J0(K). The group J(Qunr
p )/J0(Qunr

p ) is the component group of J over OQunr
p

. We are interested in com-

puting cp = #J(Qp)/J0(Qp), which is sometimes called the Tamagawa number. Since Néron models are

stable under unramified base extension, the Gal(Qunr
p /Qp)-invariant subgroup of J0(Qunr

p ) is J0(Qp). Since

H1(Gal(Qunr
p /Qp), J0(Qunr

p )) is trivial (see [Mi1, p. 58]) we see that the Gal(Qunr
p /Qp)-invariant subgroup

of J(Qunr
p )/J0(Qunr

p ) is J(Qp)/J0(Qp).

There exist several discussions in the literature on constructing the group J(Qunr
p )/J0(Qunr

p ) starting

with an integral model of the underlying curve. For our purposes, we especially recommend Silverman’s

book [Si], Chapter IV, Sections 4 and 7. For a more detailed treatment, see [BLR, chap. 9] and [Ed2, §2].

One can find justifications for what we will do in these sources. While constructing such groups, we ran into

a number of difficulties that we did not find described anywhere. For that reason, we will present examples

of such difficulties that arose, as well as our methods of resolution. We do not claim that we will describe

all situations that could arise.

When computing cp we need a proper, regular model C for C over Zp. Let Zunr
p denote the ring of

integers of Qunr
p and note that Zunr

p is a pro-étale Galois extension of Zp with Galois group Gal(Zunr
p /Zp) =

Gal(Qunr
p /Qp). It follows that giving a model for C over Zp is equivalent to giving a model for C over Zunr

p

that is equipped with a Galois action. We have found it convenient to always work with the latter description.

Thus for us, giving a model over Zp will always mean giving a model over Zunr
p together with a Galois action.
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In order to find a proper, regular model for C over Zp, we start with the models in Table 1. Technically,

we consider the curves to be the two affine pieces y2 + g(x)y = f(x) and v2 + u3g(1/u)v = u6f(1/u), glued

together by ux = 1, v = u3y. We blow them up at all points that are not regular until we have a regular

model. (A point is regular if the cotangent space there has two generators.) These curves are all proper, and

this is not affected by blowing up.

Let Cp denote the special fiber of C over Zunr
p . The group J(Qunr

p )/J0(Qunr
p ) is isomorphic to a quotient

of the degree 0 part of the free group on the irreducible components of Cp. Let the irreducible components

be denoted Di for 1 ≤ i ≤ n, and let the multiplicity of Di in Cp be di. Then the degree 0 part of the free

group has the form

L = {
n∑

i=1

αiDi |
n∑

i=1

diαi = 0} .

In order to describe the group that we quotient out by, we must discuss the intersection pairing. For

components Di and Dj of the special fiber, let Di · Dj denote their intersection pairing. In all of the special

fibers that arise in our examples, distinct components intersect transversally. Thus, if i 6= j, then Di · Dj

equals the number of points at which Di and Dj intersect. The case of self-intersection (i = j) is discussed

below.

The kernel of the map from L to J(Qunr
p )/J0(Qunr

p ) is generated by divisors of the form

[Dj ] =
n∑

i=1

(Dj · Di)Di

for each component Dj . We can deduce Dj · Dj by noting that [Dj ] must be contained in the group L. This

follows from the fact that the intersection pairing of Cp =
∑

diDi with any irreducible component is 0.

Example 1. Curve C65,B over Z2.

The Jacobian of C65,B is a quotient of the Jacobian of X0(65). Since 65 is odd, J0(65) has good reducation

at 2; however, C65,B has singular reduction at 2. Since the equation for this curve is conjectural (it is a

Wang-only curve), it will be nice to verify that 2 does not divide the conductor of its Jacobian, i.e. that the

Jacobian has good reduction at 2. In addition, we will need a proper, regular model for this curve in order

to find Ω.

We start with the arithmetic surface over Zunr
2 given by the two pieces y2 = f(x) = −x6 + 10x5 − 32x4 +

20x3 + 40x2 + 6x − 1 and v2 = u6f(1/u). (Here and in the following we will not specify the gluing maps.)

This arithmetic surface is regular at u = 0 so we focus our attention on the first affine piece. The special

fiber of y2 = f(x) over Zunr
2 is given by (y + x3 + 1)2 = 0 (mod 2); this is a genus 0 curve of multiplicity 2

that we denote A. This model is not regular at the two points (x−α, y, 2), where α is a root of x2 − 3x− 1.

The current special fiber is in Figure 1 and is labelled Fiber 1.

We fix α and move (x− α, y, 2) to the origin using the substitution x0 = x− α. We get

y2 = −x6
0 + (−6α + 10)x5

0 + (5α− 47)x4
0 + (−28α + 60)x3

0 + (−11α− 2)x2
0 + (−24α− 16)x0
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which we rewrite as the pair of equations

g1(x0, y, p) = −x6
0 + (−3α + 5)px5

0 + (5α− 47)x4
0 + (−7α + 15)p2x3

0

+ (−11α− 2)x2
0 + (−3α− 2)p3x0 − y2

= 0,

p = 2.

To blow up at (x0, y, p), we introduce projective coordinates (x1, y1, p1) with x0y1 = x1y, x0p1 = x1p, and

yp1 = y1p. We look in three affine pieces that cover the blow-up of g1(x0, y, p) = 0, p = 2 and check for

regularity.

x1 = 1: We have y = x0y1, p = x0p1. We get g2(x0, y1, p1) = 0, x0p1 = 2, where

g2(x0, y1, p1) = x−2
0 g1(x0, x0y1, x0p1)

= −x4
0 + (−3α + 5)p1x

4
0 + (5α− 47)x2

0 + (−7α + 15)p2
1x

3
0

+ (−11α− 2) + (−3α− 2)p3
1x

2
0 − y2

1 .

In the reduction we have either x0 = 0 or p1 = 0.

x0 = 0: (y1 + α + 1)2 = 0. This is a new component which we denote B. It has genus 0 and

multiplicity 2. We check regularity along B at (x0, y1 +α+1, p1− t, 2), with t in Zunr
2 , and find

that B is nowhere regular.

p1 = 0: (y1 + x2
0 + αx0 + (α + 1))2 = 0. Using the gluing maps, we see that this is A.

y1 = 1: We get no new information from this affine piece.

p1 = 1: We have x0 = x1p, y = y1p. We get g3(x1, y1, p) = p−2g1(x1p, y1p, p) = 0, p = 2. In the

reduction we have

p = 0: (y1 + (α + 1)x1)2 = 0. Using the gluing maps, we see that this is B. It is nowhere regular.

The current special fiber is in Figure 1 and is labelled Fiber 2. It is not regular along B and at the other

point on A which we have not yet blown up. The component B does not lie entirely in any one affine piece

so we will blow up the affine pieces x1 = 1 and p1 = 1 along B.

To blow up x1 = 1 along B we make the substitution y2 = y1 + α + 1 and replace each factor of 2 in a

coefficient by x0p1. We have g4(x0, y2, p1) = 0 and x0p1 = 2, and we want to blow up along the line (x0, y2, 2).

Blowing up along a line is similar to blowing up at a point: since we are blowing up at (x0, y2, 2) = (x0, y2),

we introduce projective coordinates x3, y3 together with the relation x0y3 = x3y2. We consider two affine

pieces that cover the blow-up of x1 = 1.

x3 = 1: We have y2 = y3x0. We get g5(x0, y3, p1) = x−2
0 g4(x0, y3x0, p1) = 0 and x0p1 = 2. In the

reduction we have

x0 = 0: y2
3 +(α+1)y3p1 +αp3

1 +p2
1 +α+1 = 0. This is B. It is now a non-singular genus 1 curve.

p1 = 0: (x0 + y3 + α)2 = 0. This is A. The point where B meets A transversally is regular.

y3 = 1: We get no new information from this affine piece.
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Figure 1. Special fibers of curve C65,B over Z2; points not regular are thick

A
2t t

Fiber 1 Fiber 2

A
2t

B
2

A
2

B D

Fiber 3

When we blow up p1 = 1 along B we get essentially the same thing and all points are again regular.

The other non-regular point on A is the conjugate of the one we blew up. Therefore, after performing the

conjugate blow ups, it too will be a genus 1 component crossing A transversally. We denote this component

D; it is conjugate to B.

We now have a proper, regular model C of C over Z2. Let C2 be the special fiber of this model; a diagram

of C2 is in Figure 1 and is labelled Fiber 3. We can use C to show that the Néron model J of the Jacobian

J = J65,B has good reduction at 2.

We know that the reduction of J 0 is the extension of an abelian variety by a connected linear group.

Since C is regular and proper, the abelian variety part of the reduction is the product of the Jacobians of the

normalizations of the components of C2 (see [BLR, 9.3/11 and 9.5/4]). Thus, the abelian variety part is the

product of the Jacobians of B and D. Since this is 2-dimensional, the reduction of J 0 is an abelian variety.

In other words, since the sum of the genera of the components of the special fiber is equal to the dimension

of J , the reduction is an abelian variety. It follows that J has good reduction at 2, that the conductor of J

is odd, and that c2 = 1. As noted above, this gives further evidence that the equation given in Table 1 is

correct.

Example 2. Curve C63 over Z3.

The Tamagawa number is often found using the intersection matrix and sub-determinants. This is not

entirely satisfactory for cases where the special fiber has several components and a non-trivial Galois action.

Here is an example of how to resolve this (see also [BL]).

When we blow up curve C63 over Zunr
3 , we get the special fiber shown in Figure 2. Elements of

Gal(Qunr
3 /Q3) that do not fix the quadratic unramified extension of Q3 switch H and I. The other compo-

nents are defined over Q3. All components have genus 0. The group J(Qunr
3 )/J0(Qunr

3 ) is isomorphic to a

quotient of

L = {αA + βB + δD + εE + φF + γG + ηH + ιI | α + β + 2δ + 2ε + 4φ + 2γ + 2η + 2ι = 0} .

The kernel is generated by the following divisors.
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Figure 2. Special fiber of curve C63 over Z3

G H I

E

F

A

B

D

2 2 2
4

2

2

[A] = −2A + E [B] = −2B + E
[D] = −D + E [E] = A + B + D − 4E + F
[F ] = E − 2F + G + H + I [G] = F − 2G
[H] = F − 2H [ I ] = F − 2I

When we project away from A, we find that J(Qunr
3 )/J0(Qunr

3 ) is isomorphic to

〈B,D,E, F, G,H, I | E = 0, E = 2B,D = E, 4E = B + D + F,

2F = E + G + H + I, F = 2G = 2H = 2I〉.

At this point, it is straightforward to simplify the representation by elimination. Note that we projected

away from A, which is Galois-invariant. It is best to continue eliminating Galois-invariant elements first.

We find that this group is isomorphic to 〈H, I | 2H = 2I = 0〉 and elements of Gal(Qunr
3 /Q3) that do not

fix the quadratic unramified extension of Q3 switch H and I. Therefore J(Qunr
3 )/J0(Qunr

3 ) ∼= Z/2Z⊕Z/2Z

and c3 = #J(Q3)/J0(Q3) = 2.

3.5. Computing Ω. By an integral differential (or integral form) on J we mean the pullback to J of a global

relative differential form on the Néron model of J over Z. The set of integral n-forms on J is a full-rank

lattice in the Q-vector space of global holomorphic n-forms on J . Since J is an abelian variety of dimension

2, the integral 1-forms are a free Z-module of rank 2 and the integral 2-forms are a free Z-module of rank 1.

Moreover, the wedge of a basis for the integral 1-forms is a generator for the integral 2-forms. The quantity

Ω is the integral, over the real points of J , of a generator for the integral 2-forms. (We choose the generator

that leads to a positive integral.)

We now translate this into a computation on the curve C. Let {ω1, ω2} be a Q-basis for the holomorphic

differentials on C and let {γ1, γ2, γ3, γ4} be a Z-basis for the homology of C(C). Create a 2 × 4 complex

matrix MC = [
∫

γj
ωi] by integrating the differentials over the homology and let MR = TrC/R(MC) be the

2× 4 real matrix whose entries are traces from the complex matrix. The columns of MR generate a lattice

Λ in R2. If we make the standard identification between the holomorphic 1-forms on J and the holomorphic

differentials on C (see [Mi2]), then the notation
∫

J(R)
|ω1 ∧ ω2| makes sense and its value can be computed

as the area of a fundamental domain for Λ.
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If {ω1, ω2} is a basis for the integral 1-forms on J , then
∫

J(R)
|ω1 ∧ ω2| = Ω. On the other hand, the

computation of MC is simplest if we choose ω1 = dX/Y , and ω2 = X dX/Y with respect to a model for C

of the form Y 2 = F (X); in this case we obtain Ω by a simple change-of-basis calculation. This assumes, of

course, that we know how to express a basis for the integral 1-forms in terms of the basis {ω1, ω2}; this is

addressed in more detail below.

It is worth mentioning an alternate strategy. Instead of finding a Z-basis for the homology of C(C) one

could find a Z-basis {γ′1, γ′2} for the subgroup of the homology that is fixed by complex conjugation (call this

the real homology). Integrating would give us a 2 × 2 real matrix M ′
R and the determinant of M ′

R would

equal the integral of ω1 ∧ ω2 over the connected component of J(R). In other words, the number of real

connected components of J is equal to the index of the C/R-traces in the real homology.

We now come to the question of determining the differentials on C which correspond to the integral

1-forms on J . Call these the integral differentials on C. This computation can be done one prime at a time.

At each prime p this is equivalent to determining a Zunr
p -basis for the global relative differentials on any

proper, regular model for C over Zunr
p . In fact a more general class of models can be used; see the discussion

of models with rational singularities in [BLR, §6.7] and [Li, §4.1].

We start with the model y2 + g(x)y = f(x) given in Table 1. Note that the substitution X = x and

Y = 2y + g(x) gives us a model of the form Y 2 = F (X). For integration purposes, our preferred differentials

are dX/Y = dx/(2y + g(x)) and X dX/Y = x dx/(2y + g(x)). It is not hard to show that at primes of

non-singular reduction for the y2 +g(x)y = f(x) model, these differentials will generate the integral 1-forms.

For each prime p of singular reduction we give the following algorithm. All steps take place over Zunr
p .

Step 1: Compute explicit equations for a proper, regular model C.

Step 2: Diagram the configuration of the special fiber of C.

Step 3: (Optional) Identify exceptional components and blow them down in the configuration diagram.

Repeat step 3 as necessary.

Step 4: (Optional) Remove components with genus 0 and self-intersection −2. Since C has genus

greater than 1, there will be a component that is not of this kind.

(This step corresponds to contracting the given components. The model obtained would no

longer be regular; it would, however, be a proper model with rational singularities. We will not need

a diagram of the resulting configuration.)

Step 5: Determine a Zunr
p -basis for the integral differentials. It suffices to check this on a dense open

subset of each surviving component. Note that we have explicit equations for a dense open subset of

each of these components from the model C in step 1. A pair of differentials {η1, η2} will be a basis

for the integral differentials (at p) if the following three statements are true.

a: The pair {η1, η2} is a basis for the holomorphic differentials on C.

b: The reductions of η1 and η2 produce well-defined differentials mod p on an open subset of each

surviving component.
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c: If a1η1 + a2η2 = 0 (mod p) on all surviving components, then p|a1 and p|a2.

Techniques for explicitly computing a proper, regular model are discussed in Section 3.4. A configuration

diagram should include the genus, multiplicity and self-intersection number of each component and the

number and type of intersections between components. Note that when an exceptional component is blown

down, all of the self-intersection numbers of the components intersecting it will go up (towards 0). In

particular, components which were not exceptional before may become exceptional in the new configuration.

Steps 3 and 4 are intended to make this algorithm more efficient for a human. They are entirely optional.

For a computer implementation it may be easier to simply check every component than to worry about

manipulating configurations.

The curves in Table 1 are given as y2 + g(x)y = f(x). We assumed, at first, that dx/(2y + g(x)) and

x dx/(2y + g(x)) generate the integral differentials. We integrated these differentials around each of the four

paths generating the complex homology and found a provisional Ω. Then we checked the proper, regular

models to determine if these differentials really do generate the integral differentials and adjusted Ω when

necessary. There were three curves where we needed to adjust Ω. We describe the adjustment for curve C65,B

in the following example. For curve C63, we used the differentials 3 dx/(2y + g(x)) and x dx/(2y + g(x)). For

curve C65,A, we used the differentials 3 dx/(2y + g(x)) and 3x dx/(2y + g(x)).

Example 3. Curve C65,B .

The primes of singular reduction for curve C65,B are 2, 5 and 13. In Example 1 of Section 3.4, we found a

proper, regular model C for C over Zunr
2 . The configuration for the special fiber of C is sketched in Figure 1

under the label Fiber 3. Component A is exceptional and can be blown down to produce a model in which B

and D cross transversally. Since B and D both have genus 1, we cannot eliminate either of these components.

Furthermore, it suffices to check B, since D is its Galois conjugate.

To get from the equation of the curve listed in Table 1 to an affine containing an open subset of B we

need to make the substitutions x = x0 − α and y = x0(y3x0 − α − 1). We also have x0p1 = 2. Using the

substitutions and the relation dx0/x0 = −dp1/p1, we get

dx

2y
=

−dp1

2p1(y3x0 − α− 1)
and

x dx

2y
=

−(x0 + α) dp1

2p1(y3x0 − α− 1)
.

Note that p1 − t is a uniformizer at p1 = t almost everywhere on B. When we multiply each differential

by 2, then the denominator of each is almost everywhere non-zero; thus, dx/y and x dx/y are integral at 2.

Moreover, although the linear combination (x − α) dx/y is identically zero on B, it is not identically zero

on D (its Galois conjugate is not identically zero on B). Thus, our new basis is correct at 2. We multiply

the provisional Ω by 4 to get a new provisional Ω which is correct at 2.

Similar (but somewhat simpler) computations at the primes 5 and 13 show that no adjustment is needed

at these primes. Thus, dx/y and x dx/y form a basis for the integral differentials of curve C65,B , and the

correct value of Ω is 4 times our original guess.
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4. Modular algorithms

In this section, we describe the algorithms that were used to compute some of the data from the newforms.

This includes the analytic rank and leading coefficient of the L-series. For optimal quotients, the value of k ·Ω

can also be found (k is the Manin constant), as well as partial information on the Tamagawa numbers cp

and the size of the torsion subgroup.

4.1. Analytic rank of L(J, s) and leading coefficient at s = 1. Fix a Jacobian J corresponding to the

2-dimensional subspace of S2(N) spanned by quadratic conjugate, normalized newforms f and f . Let WN

be the Fricke involution. The newforms f and f have the same eigenvalue εN with respect to WN , namely

+1 or −1. In the notation of Section 2, let

L(f, s) =
∞∑

n=1

an

ns

be the L-series of f ; then L(f, s) is the Dirichlet series whose coefficients are the conjugates of the coefficients

of L(f, s). (Recall that the an are integers in some real quadratic field.) The order of L(f, s) at s = 1 is even

when εN = −1 and odd when εN = +1. We have L(J, s) = L(f, s)L(f, s). Thus the analytic rank of J is 0

modulo 4 when εN = −1 and 2 modulo 4 when εN = +1. We found that the ranks were all 0 or 2. To prove

that the analytic rank of J is 0, we need to show L(f, 1) 6= 0 and L(f, 1) 6= 0. In the case that εN = +1,

to prove that the analytic rank is 2, we need to show that L′(f, 1) 6= 0 and L′(f, 1) 6= 0. When εN = −1,

we can evaluate L(f, 1) as in [Cr2, §2.11]. When εN = +1, we can evaluate L′(f, 1) as in [Cr2, §2.13]. Each

appropriate L(f, 1) or L′(f, 1) was at least 0.1 and the errors in our approximations were all less than 10−67.

In this way we determined the analytic ranks, which we denote r. As noted in the introduction, the analytic

rank equals the Mordell-Weil rank if r = 0 or r = 2. Thus, we can simply call r the rank, without fear of

ambiguity.

To compute the leading coefficient of L(J, s) at s = 1, we note that lims→1 L(J, s)/(s−1)r = L(r)(J, 1)/r!.

In the r = 0 case, we simply have L(J, 1) = L(f, 1)L(f, 1). In the r = 2 case, we have L′′(J, s) =

L′′(f, s)L(f, s) + 2L′(f, s)L′(f, s) + L(f, s)L′′(f, s). Evaluating both sides at s = 1 we get 1
2L′′(J, 1) =

L′(f, 1)L′(f, 1).

4.2. Computing k · Ω. Let J , f and f be as in Section 4.1 and assume J is an optimal quotient. Let V

be the 2-dimensional space spanned by f and f . Choose a basis {ω1, ω2} for the subgroup of V consisting

of forms whose q-expansion coefficients lie in Z. Let k · Ω be the volume of the real points of the quotient

of C × C by the lattice of period integrals (
∫

γ
ω1,

∫
γ

ω2) with γ in the integral homology H1(X0(N),Z).

The rational number k is called the Manin constant. In practice we compute k · Ω using modular symbols

and a generalization to dimension 2 of the algorithm for computing periods described in [Cr2, §2.10]. When

L(J, 1) 6= 0 the method of [Cr2, §2.11] coupled with Sections 4.1 and 4.3 can also be used to compute k · Ω.

A slight generalization of the argument of Proposition 2 of [Ed1] proves that k is, in fact, an integer.

This generalization can be found in [AS2], where one also finds a conjecture that k must equal 1 for all
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optimal quotients of Jacobians of modular curves, which generalizes the longstanding conjecture of Manin

that k equals 1 for all optimal elliptic curves. In unpublished work, Edixhoven has partially proven Manin’s

conjecture.

The computations of the present paper verify that k equals 1 for the optimal quotients that we are

considering. Specifically, we computed k ·Ω as above and Ω as described in Section 3.5. The quotient of the

two values was always well within 0.5 of 1.

4.3. Computing L(J, 1)/(k · Ω). We compute the rational number L(J, 1)/(k · Ω), for optimal quotients,

using the algorithm in [AS1]. This algorithm generalizes the algorithm described in [Cr2, §2.8] to dimension

greater than 1.

4.4. Tamagawa numbers. In this section we assume that p is a prime which exactly divides the conductor

N of J . Under these conditions, Grothendieck [Gr] gave a description of the component group of J in terms

of a monodromy pairing on certain character groups. (For more details, see Ribet [Ri, §2].) If, in addition, J

is a new optimal quotient of J0(N), one deduces the following. When the eigenvalue for f of the Atkin-Lehner

involution Wp is +1, then the rational component group of J is a subgroup of (Z/2Z)2. Furthermore, when

the eigenvalue of Wp is −1, the algorithm described in [Ste] can be used to compute the value of cp.

4.5. Torsion subgroup. To compute an integer divisible by the order of the torsion subgroup of J we

make use of the following two observations. First, it is a consequence of the Eichler-Shimura relation [Sh,

§7.9] that if p is a prime not dividing the conductor N of J and f(T ) is the characteristic polynomial of the

endomorphism Tp of J , then #J(Fp) = f(p+1) (see [Cr2, §2.4] for an algorithm to compute f(T )). Second,

if p is an odd prime at which J has good reduction, then the natural map J(Q)tors → J(Fp) is injective (see

[CF, p. 70]). This does not depend on whether J is an optimal quotient. To obtain a lower bound on the

torsion subgroup for optimal quotients, we use modular symbols and the Abel-Jacobi theorem [La, IV.2] to

compute the order of the image of the rational point (0)− (∞) ∈ J0(N).

5. Tables

In Table 1, we list the 32 curves described in Section 2. We give the level N from which each curve arose,

an integral model for the curve, and list the source(s) from which it came (H for Hasegawa [Ha], W for

Wang [Wan]). Throughout the paper, the curves are denoted CN (or CN,A, CN,B).

In Table 2, we list the curve CN simply by N , the level from which it arose. Let r denote the rank.

We list lims→1(s − 1)−rL(J, s) where L(J, s) is the L-series for the Jacobian J of CN and round off the

results to five digits. The symbol Ω was defined in Section 3.5 and is also rounded to five digits. Let Reg

denote the regulator, also rounded to five digits. We list the cp’s by primes of increasing order dividing

the level N . We denote J(Q)tors = Φ and list its size. We use X? to denote the size of (lims→1(s −

1)−rL(J, s)) · (#J(Q)tors)2/(Ω · Reg ·
∏

cp), rounded to the nearest integer. We will refer to this as the

conjectured size of X(J,Q). For rank 0 optimal quotients this integer equals the (a priori) rational number
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N Equation Source
23 y2 + (x3 + x + 1)y = −2x5 − 3x2 + 2x− 2 HW
29 y2 + (x3 + 1)y = −x5 − 3x4 + 2x2 + 2x− 2 HW
31 y2 + (x3 + x2 + 1)y = −x5 − 5x4 − 5x3 + 3x2 + 2x− 3 HW
35 y2 + (x3 + x)y = −x5 − 8x3 − 7x2 − 16x− 19 H
39 y2 + (x3 + 1)y = −5x4 − 2x3 + 16x2 − 12x + 2 H
63 y2 + (x3 − 1)y = 14x3 − 7 W
65,A y2 + (x3 + 1)y = −4x6 + 9x4 + 7x3 + 18x2 − 10 W
65,B y2 = −x6 + 10x5 − 32x4 + 20x3 + 40x2 + 6x− 1 W
67 y2 + (x3 + x + 1)y = x5 − x HW
73 y2 + (x3 + x2 + 1)y = −x5 − 2x3 + x HW
85 y2 + (x3 + x2 + x)y = x4 + x3 + 3x2 − 2x + 1 H
87 y2 + (x3 + x + 1)y = −x4 + x3 − 3x2 + x− 1 HW
93 y2 + (x3 + x2 + 1)y = −2x5 + x4 + x3 HW
103 y2 + (x3 + x2 + 1)y = x5 + x4 HW
107 y2 + (x3 + x2 + 1)y = x4 − x2 − x− 1 HW
115 y2 + (x3 + x + 1)y = 2x3 + x2 + x HW
117,A y2 + (x3 − 1)y = 3x3 − 7 W
117,B y2 + (x3 + 1)y = −x6 − 3x4 − 5x3 − 12x2 − 9x− 7 W
125,A y2 + (x3 + x + 1)y = x5 + 2x4 + 2x3 + x2 − x− 1 HW
125,B y2 + (x3 + x + 1)y = x6 + 5x5 + 12x4 + 12x3 + 6x2 − 3x− 4 W
133,A y2 + (x3 + x + 1)y = −2x6 + 7x5 − 2x4 − 19x3 + 2x2 + 18x + 7 W
133,B y2 + (x3 + x2 + 1)y = −x5 + x4 − 2x3 + 2x2 − 2x HW
135 y2 + (x3 + x + 1)y = x4 − 3x3 + 2x2 − 8x− 3 W
147 y2 + (x3 + x2 + x)y = x5 + 2x4 + x3 + x2 + 1 HW
161 y2 + (x3 + x + 1)y = x3 + 4x2 + 4x + 1 HW
165 y2 + (x3 + x2 + x)y = x5 + 2x4 + 3x3 + x2 − 3x H
167 y2 + (x3 + x + 1)y = −x5 − x3 − x2 − 1 HW
175 y2 + (x3 + x2 + 1)y = −x5 − x4 − 2x3 − 4x2 − 2x− 1 W
177 y2 + (x3 + x2 + 1)y = x5 + x4 + x3 HW
188 y2 = x5 − x4 + x3 + x2 − 2x + 1 W
189 y2 + (x3 − 1)y = x3 − 7 W
191 y2 + (x3 + x + 1)y = −x3 + x2 + x HW

Table 1. Levels, integral models and sources for curves

(L(J, 1)/(k · Ω)) · ((#J(Q)tors)2/
∏

cp); of course there is no rounding error in this computation. For all

other cases the last column gives a bound on the accuracy of the computations; all values of X? were at

least this close to the nearest integer before rounding.

In Table 3 are generators of J(Q)/J(Q)tors for the curves whose Jacobians have Mordell-Weil rank 2. The

generators are given as divisor classes. Whenever possible, we have chosen generators of the form [P − Q]

where P and Q are rational points on the curve. Curve 167 is the only example where this is not the case,

since the degree zero divisors supported on the (known) rational points on C167 generate a subgroup of index

two in the full Mordell-Weil group. Affine points are given by their x and y coordinates in the model given

in Table 1. There are two points at infinity in the normalization of the curves described by our equations,

with the exception of curve C188. These are denoted by ∞a, where a is the value of the function y/x3 on

the point in question. The (only) point at infinity on curve C188 is simply denoted ∞.
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N r lim
s→1

L(J,s)
(s−1)r Ω Reg cp’s Φ X? error

23 0 0.24843 2.7328 1 11 11 1
29 0 0.29152 2.0407 1 7 7 1
31 0 0.44929 2.2464 1 5 5 1
35 0 0.37275 2.9820 1 16,2 16 1 < 10−25

39 0 0.38204 10.697 1 28,1 28 1 < 10−25

63 0 0.75328 4.5197 1 2,3 6 1
65,A 0 0.45207 6.3289 1 7,1 14 2
65,B 0 0.91225 5.4735 1 1,3 6 2
67 2 0.23410 20.465 0.011439 1 1 1 < 10−50

73 2 0.25812 24.093 0.010713 1 1 1 < 10−49

85 2 0.34334 9.1728 0.018715 4,2 2 1 < 10−26

87 0 1.4323 7.1617 1 5,1 5 1
93 2 0.33996 18.142 0.0046847 4,1 1 1 < 10−49

103 2 0.37585 16.855 0.022299 1 1 1 < 10−49

107 2 0.53438 11.883 0.044970 1 1 1 < 10−49

115 2 0.41693 10.678 0.0097618 4,1 1 1 < 10−50

117,A 0 1.0985 3.2954 1 4,3 6 1
117,B 0 1.9510 1.9510 1 4,1 2 1
125,A 2 0.62996 13.026 0.048361 1 1 1 < 10−50

125,B 0 2.0842 2.6052 1 5 5 4
133,A 0 2.2265 2.7832 1 5,1 5 4
133,B 2 0.43884 15.318 0.028648 1,1 1 1 < 10−49

135 0 1.5110 4.5331 1 3,1 3 1
147 2 0.61816 13.616 0.045400 2,2 2 1 < 10−50

161 2 0.82364 11.871 0.017345 4,1 1 1 < 10−47

165 2 0.68650 9.5431 0.071936 4,2,2 4 1 < 10−26

167 2 0.91530 7.3327 0.12482 1 1 1 < 10−47

175 0 0.97209 4.8605 1 1,5 5 1
177 2 0.90451 13.742 0.065821 1,1 1 1 < 10−45

188 2 1.1708 11.519 0.011293 9,1 1 1 < 10−44

189 0 1.2982 3.8946 1 1,3 3 1
191 2 0.95958 17.357 0.055286 1 1 1 < 10−44

Table 2. Conjectured sizes of X(J,Q)

In Table 4 are the reduction types, from the classification of [NU], of the special fibers of the minimal,

proper, regular models of the curves for each of the primes of singular reduction for the curve. They are

the same as the primes dividing the level except that curve C65,A has singular reduction at the prime 3 and

curve C65,B has singular reduction at the prime 2.

6. Discussion of Shafarevich-Tate groups and evidence for the second conjecture

From Section 3.2 we have dimX(J,Q)[2] = dim Sel2(J,Q) − r − dim J(Q)[2]. With the exception of

curves C65,A, C65,B , C125,B , and C133,A we have dimX(J,Q)[2] = 0. Thus we expect #X(J,Q) to be an

odd square. In each case, the conjectured size of X(J,Q) is 1. For curves C65,A, C65,B , C125,B and C133,A

we have dimX(J,Q)[2] = 1, 1, 2 and 2 and the conjectured size of X(J,Q) = 2, 2, 4 and 4, respectively. We
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N Generators of J(Q)/J(Q)tors
67 [(0, 0)−∞−1] [(0, 0)− (0,−1)]
73 [(0,−1)−∞−1] [(0, 0)−∞−1]
85 [(1, 1)−∞−1] [(−1, 3)−∞0]
93 [(−1, 1)−∞0] [(1,−3)− (−1,−2)]
103 [(0, 0)−∞−1] [(0,−1)− (0, 0)]
107 [∞−1 −∞0] [(−1,−1)−∞−1]
115 [(1,−4)−∞0] [(1, 1)− (−2, 2)]
125,A [∞−1 −∞0] [(−1, 0)−∞−1]
133,B [∞−1 −∞0] [(0,−1)−∞−1]
147 [∞−1 −∞0] [(−1,−1)−∞0]
161 [(1, 2)− (−1, 1)] [( 1

2 ,−3)− (1, 2)]
165 [(1, 1)−∞−1] [(0, 0)−∞0]
167 [(−1, 1)−∞0] [(i, 0) + (−i, 0)−∞0 −∞−1]
177 [(0,−1)−∞0] [(0, 0)− (0,−1)]
188 [(0,−1)−∞] [(0, 1)− (1,−2)]
191 [∞−1 −∞0] [(0,−1)−∞0]
Table 3. Generators of J(Q)/J(Q)tors in rank 2 cases

N Prime Type Prime Type N Prime Type Prime Type
23 23 I3−2−1 117,A 3 III− III∗ − 0 13 I1−1−1

29 29 I3−1−1 117,B 3 I∗3−1−1 13 I1−1−0

31 31 I2−1−1 125,A 5 VIII− 1
35 5 I3−2−2 7 I2−1−0 125,B 5 IX− 3
39 3 I6−2−2 13 I1−1−0 133,A 7 I2−1−1 19 I1−1−0

63 3 2I∗0 − 0 7 I1−1−1 133,B 7 I1−1−0 19 I1−1−0

65,A 3 I0 − I0 − 1 5 I3−1−1 135 3 III 5 I3−1−0

65,A 13 I1−1−0 147 3 I2−1−0 7 VII
65,B 2 I0 − I0 − 1 5 I3−1−0 161 7 I2−2−0 23 I1−1−0

65,B 13 I1−1−1 165 3 I2−2−0 5 I2−1−0

67 67 I1−1−0 165 11 I2−1−0

73 73 I1−1−0 167 167 I1−1−0

85 5 I2−2−0 17 I2−1−0 175 5 II− II− 0 7 I2−1−1

87 3 I2−1−1 29 I1−1−0 177 3 I1−1−0 59 I1−1−0

93 3 I2−2−0 31 I1−1−0 188 2 IV − IV − 0 47 I1−1−0

103 103 I1−1−0 189 3 II− IV∗ − 0 7 I1−1−1

107 107 I1−1−0 191 191 I1−1−0

115 5 I2−2−0 23 I1−1−0

Table 4. Namikawa and Ueno classification of special fibers

see that in each case, the (conjectured) size of the odd part of X(J,Q) is 1 and the 2-part is accounted for

by its 2-torsion.

Recall that for rank 0 optimal quotients we are able to exactly determine the value which the second

Birch and Swinnerton-Dyer conjecture predicts for X(J,Q). From the previous paragraph, we then see that

equation (1.1) holds if and only if X(J,Q) is killed by 2.

The size of X(J,Q)[2] is related to deficient primes. A prime p is deficient with respect to a curve C of

genus 2, if C has no degree 1 rational divisor over Qp. From [PSt], the number of deficient primes has the
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same parity as dimX(J,Q)[2], if X(J,Q) is finite. In any case, X(J,Q)[2] is non-trivial if there is an odd

number of deficient primes. Curve C65,A has one deficient prime 3. Curve C65,B has one deficient prime 2.

Curve C117,B has two deficient primes 3 and ∞. The rest of the curves have no deficient primes.

Since we have found r (analytic rank) independent points on each Jacobian, we have a direct proof that

the Mordell-Weil rank must equal the analytic rank if dimX(J,Q)[2] = 0. For curves C65,A and C65,B , the

presence of an odd number of deficient primes gives us a similar result. For C125,B we used a
√

5-Selmer group

to get a similar result. Thus, we have an independent proof of equality between analytic and Mordell-Weil

ranks for all curves except C133,A.

The 2-Selmer groups have the same dimensions for the pairs C125,A, C125,B and C133,A, C133,B . For each

pair, the Mordell-Weil rank is 2 for one curve and the 2-torsion of the Shafarevich-Tate group has dimension 2

for the other. In addition, the two Jacobians, when canonically embedded into J0(N), intersect in their 2-

torsion subgroups, and one can check that their 2-Selmer groups become equal under the identification of

H1(Q, JN,A[2]) with H1(Q, JN,B [2]) induced by the identification of the 2-torsion subgroups. Thus these

are examples of the principle of a ‘visible part of a Shafarevich-Tate group’ as discussed in [CM].

Appendix: Other Hasegawa curves

In Table 5 is data concerning all 142 of Hasegawa’s curves in the order presented in his paper. Let us

explain the entries. The first column in each set of three columns gives the level, N . The second column

gives a classification of the cusp forms spanning the 2-dimensional subspace of S2(N) corresponding to the

Jacobian. When that subspace is irreducible with respect to the action of the Hecke algebra and is spanned

by two newforms or two oldforms, we write 2n or 2o, respectively. When that subspace is reducible and is

spanned by two oldforms, two newforms or one of each, we write oo, nn and on, respectively. The third

column contains the sign of the functional equation at the level M at which the cusp form is a newform.

This is the negative of εM (described in Section 4.1). The order of the two signs in the third column agrees

with that of the forms listed in the second column. We include this information for those who would like to

further study these curves. The curves with N < 200 classified as 2n appeared already in Table 1.

The smallest possible Mordell-Weil ranks corresponding to ++, +−, −+ and −−, predicted by the first

Birch and Swinnerton-Dyer conjecture, are 0, 1, 1 and 2 respectively. In all cases, those were, in fact, the

Mordell-Weil ranks. This was determined by computing 2-Selmer groups with a computer program based on

[Sto2]. Of course, these are cases where the first Birch and Swinnerton-Dyer conjecture is already known to

hold. In the cases where the Mordell-Weil rank is positive, the Mordell-Weil group has a subgroup of finite

index generated by degree zero divisors supported on rational points with x-coordinates with numerators

bounded by 7 (in absolute value) and denominators by 12 with one exception. On the second curve with

N = 138, the divisor class [(3+2
√

2, 80+56
√

2)+ (3− 2
√

2, 80− 56
√

2)− 2∞] generates a subgroup of finite

index in the Mordell-Weil group.
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22 oo ++ 58 nn +− 87 2o ++ 129 on −− 198 2o +−
23 2n ++ 60 oo ++ 88 on +− 130 on −+ 204 2o +−
26 nn ++ 60 2o ++ 90 on ++ 132 oo ++ 205 2n −−
28 oo ++ 60 2o ++ 90 oo ++ 133 2n −− 206 2o −−
29 2n ++ 62 2o ++ 90 oo ++ 134 2o −− 209 2n −−
30 on ++ 66 nn ++ 90 oo ++ 135 on +− 210 on +−
30 oo ++ 66 2o ++ 91 nn −− 138 nn +− 213 2n −−
30 on ++ 66 2o ++ 93 2n −− 138 on +− 215 on −−
31 2n ++ 66 on ++ 98 oo ++ 140 oo ++ 221 2n −−
33 on ++ 67 2n −− 100 oo ++ 142 nn +− 230 2o −−
35 2n ++ 68 oo ++ 102 on +− 143 on +− 255 2o −−
37 nn +− 69 2o ++ 102 on +− 146 2o −− 266 2o −−
38 on ++ 70 on ++ 103 2n −− 147 2n −− 276 2o +−
39 2n ++ 70 2o ++ 104 2o ++ 150 on ++ 284 2o +−
40 on ++ 70 2o ++ 106 on −− 153 on +− 285 on −−
40 oo ++ 70 2o ++ 107 2n −− 154 on −− 286 on −−
42 on ++ 72 on ++ 110 on ++ 156 oo ++ 287 2n −−
42 oo ++ 72 oo ++ 111 oo +− 158 on −− 299 2n −−
42 on ++ 73 2n −− 112 on +− 161 2n −− 330 2o −−
42 oo ++ 74 oo +− 114 oo +− 165 2n −− 357 2n −−
44 2o ++ 77 on +− 115 2n −− 166 on −− 380 2o +−
46 2o ++ 78 oo ++ 116 2o +− 167 2n −− 390 on −−
48 on ++ 78 2o ++ 117 2o ++ 168 2o ++
48 oo ++ 80 oo ++ 120 oo ++ 170 2o −−
50 nn ++ 84 oo ++ 120 on ++ 177 2n −−
52 oo ++ 84 oo ++ 121 on +− 180 2o ++
52 oo ++ 84 oo ++ 122 on −− 184 on +−
54 on ++ 84 oo ++ 125 2n −− 186 2o −−
57 on +− 85 2n −− 126 oo ++ 190 on +−
57 on +− 87 2n ++ 126 on ++ 191 2n −−

Table 5. Spaces of cusp forms associated to Hasegawa’s curves
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E-mail address: stoll@math.uni-duesseldorf.de

Department of Mathematics, University of Southern California, 1042 W. 36th Place, Los Angeles, CA 90089-

1113, USA

E-mail address: jlwether@alum.mit.edu


