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Abstract. We discuss the situation where a curve C, defined over a
number field K, has a known K-rational divisor class of degree 1, and
consider whether this class contains an actual K-rational divisor. When C
has points everywhere locally, the local to global principle of the Brauer
group gives the existence of such a divisor. In this situation, we give an
alternative, more down to earth, approach, which indicates how to com-
pute this divisor in certain situations. We also discuss examples where C
does not have points everywhere locally, and where no such K-rational
divisor is contained in the K-rational divisor class.

1 Introduction

The following result is typically proved as a direct consequence of the local to
global principle of the Brauer group (see, for example, [2] or p.30 of [3]).

Lemma 1 Let C be a curve defined over a number field K with points every-
where locally. Then any K-rational degree 1 divisor class D contains a K-rational
divisor D.

Such divisor classes have relevance to the application of second descents [4], as
well as the application of the Brauer-Manin obstruction to higher genus curves,
where such a class D is used to obtain an embedding P 7→ [P ] − D from C(K)
to J(K), the Mordell-Weil group of the Jacobian. This embedding can sometimes
be used to find information about C(K).

Our intention here is to describe, in a concise and explicit manner, how the
problem of finding a rational divisor in a rational divisor class corresponds to
finding a rational point on a certain algebraic variety. We give an example of
how this description can be used in practice to find a rational divisor explicitly,
given a rational divisor class.
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2 The Brauer-Severi variety of a divisor class

Let C be a curve defined over a field K and let K be a separable closure of K.
We say a divisor class D ∈ PicC(K) is rational if it is fixed under the action of
Gal(K/K). This means that for any divisor D ∈ D and σ ∈ Gal(K/K), we have
that σD and D are linearly equivalent. In the language of Galois modules and
Galois cohomology, we have

PicC(K)K = H0(K, PicC(K)) = {D ∈ PicC(K) : D is a rational divisor class}.

This group is different from PicC(K), which simply consists of the linear equiva-
lence classes in DivC(K). There is an obvious embedding PicC(K) ⊂ PicC(K)K

and we identify PicC(K) with its image.
For D ∈ DivC(K), we adopt the standard notation

L(D) = {f ∈ K(C) : (f) ≥ −D}. (1)

This is a finite dimensional vector space over K. We write l(D) for its dimension.
The Riemann-Roch theorem asserts that, for any divisor D ∈ DivC(K) and any
canonical divisor κ of C, we have l(D)− l(κ−D) = deg D− g + 1. Furthermore
l(D) only depends on the equivalence class of D and we write l([D]) = l(D).

We write
VD(K) = PL(D) (2)

for the complete linear system of D. Via the map f 7→ (f) + D, we see that this
set is in bijection with the set of effective divisors linearly equivalent to D:

VD(K) ' V[D](K) := {D′ ∈ DivC(K) : D′ ≥ 0 and D′ ∼ D}. (3)

Let D be a rational divisor class with l(D) > 0. Then VD(K) is fixed under
Gal(K/K) and has the structure of a Galois set. Generalizing the above notation,
for an extension L of K, we write VD(L) for the effective divisors of C defined
over L and in D.

The functor VD is represented by a scheme over K, which is called the Brauer-
Severi variety associated to D.

It follows that the following are equivalent.

– VD(K) 6= ∅
– VD(K) ' P(l(D)−1)(K).
– D contains a rational divisor.

In some cases it is easy to see that the conditions above hold. For instance,
if D is a rational divisor class with l(D) = 1, then over K, there is a unique
effective divisor D representing D. Consequently, D is fixed under Gal(K/K)
and therefore is itself rational.

If a curve has a rational point P0 then the property above is sufficient to
deduce that any rational divisor class contains rational divisors. We use that for
any divisor D and point P the following inequalities hold:

l(D) ≤ l(D + P ) ≤ l(D) + 1. (4)



It follows from (4) that for any divisor class D there exists an integer n such
that l(D+ [nP0]) = 1. The argument above shows that the rational divisor class
D + [nP0] contains a rational divisor D and therefore D − nP0 ∈ D.

In particular, if a curve C over a number field K has points everywhere
locally and l(D) > 0 then VD has rational points everywhere locally. Hence,
Lemma 1 is equivalent to the assertion that the local-to-global principle applies
to the Brauer-Severi varieties VD. For l(D) = 2, we have that VD is a curve of
genus 0, and the Hasse-Minkowski theorem confirms that such varieties obey a
local-to-global principle.

In fact, without assuming local solvability of C, the geometry of VD still
allows deductions to be made about representability of divisor classes by rational
divisors. For instance, any D with l(D) = 2 is representable by a divisor over a
quadratic extension of K, since any curve of genus 0 has quadratic points.

We now sketch how one can proceed, given a rational divisor class D, to
derive an explicit model of VD in such a way that finding a rational point on
it allows the construction of a representing rational divisor. Suppose that D is
represented by a divisor D over some finite extension L = K(α) of K of degree,
say, d.

1. Determine a basis f1, . . . , fl(D) ∈ L(C) of L(D).
2. Over L, we have VD ' Pl(D)−1 via the inverse of the map

(t1 : · · · : tl(D)) 7→ D + (t1f1 + · · ·+ tl(D)fl(D)).

This establishes a model of VD over L, with (t1 : . . . : tl(D)) as projective
coordinates. Putting t1 = 1 yields an affine chart (t2, . . . , tl(D)) of VD over L.

3. In order to descend our model of VD over L to a model over K, we compute a
representation of Dt = D+(f1+t2f2+· · · tl(D)fl(D)) ∈ DivC(L(t2, . . . , tl(D)))
corresponding to the generic point (1 : t2 : . . . : tl(D)) on VD as a scheme
over L.
Let C be given as a plane curve with coordinates X and Y in general
position over K. The effective divisor Dt can be described by the equa-
tions g(X) = 0, Y = h(X), with g, h ∈ L(t2, . . . , tl(D))[X], with g monic,
deg(g) = deg(D) and deg(h) = deg(D) − 1, since we have taken X and Y
such that degeneracies do not occur.

4. We substitute ti =
∑d−1

j=0 ti,jα
j and write

g(X) =
d−1∑
k=0

gk(X)αj , where gk(X) ∈ K({ti,j}i,j)[X],

and similarly for h(X). A point (1 : t1 : · · · : tl(D)) corresponds to a divisor
over K precisely when that divisor can be described by equations not in-
volving α. Thus, we are led to consider the equations obtained by insisting
that gk(X) = hk(X) = 0 for k = 1, . . . , d − 1 as polynomials in X. Those
equations define an affine chart of VD over K, with coordinates ti,j over K.
To get a model of VD, one can take the projective closure.



5. If one finds a point (ti,j), one can reconstruct g, h from these values and
obtain a description of a K-rational divisor in D. Equivalently, one can re-
construct (1 : t2 : · · · : tl(D)) and thus obtain a K-rational specialization
of Dt.

Of course, the procedure described above only applies to divisor classes satis-
fying l(D) > 0. In general, one should select some divisor D0 over K, preferrably
of minimal positive degree, and an integer n such that l(D+[nD0]) is minimally
positive. One can then apply the procedure to that divisor class and derive a
suitable representative of D from the result, or conclude that none exists.

3 Finding a rational divisor on a curve of genus 2

We will give an example of this for a genus 2 curve

C : Y 2 = f6X
6 + f5X

5 + · · ·+ f0 = F (X), with F (X) ∈ K[X] (5)

and a rational divisor class B of degree 3, represented by an effective divisor
defined over a quadratic extension of K.

We assume that B is a rational divisor class with B = [P1 + P2 + P3] and
P1, P2, P3 ∈ C(K(

√
d)), where the Pi are not all Weierstrass points. It follows

that l(B) = 2. We can arrive at an equation for VB in the by following the outline
in Section 2. We will give an account that can be read independently, but point
out the correspondences with the general algorithm.

Let Gt(x) ∈ K(
√

d)[t][x] be the cubic in x such that y = Gt(x) passes through
the points P1, P2, P3 for all values of t. For any value t ∈ K(

√
d) we have

(x− x1)(x− x2)(x− x3)
y −Gt(x)

∈ L(B).

This allows us to write down a basis of L(B) for Step 1 in Section 2. We find
f1 = 1, f2 = (x−x1)(x−x2)(x−x3)

y−G0(x) . We get the coordinates (1 : t) on L(B).
For any value of t, we have that the identity

{y = G(x)} ∩ C = P1 + P2 + P3 + (x1, y1) + (x2, y2) + (x3, y3) ' 3O, (6)

where O is any canonical divisor3 of C. The divisor (x1, y1)+(x2, y2)+(x3, y3) can
be described by {Ct(x) = 0, y = Ht(x)}, where Ct(x),Ht(x) ∈ K(

√
d)[t][x] are

a monic cubic and a quadratic in x respectively. This is the required description
for Step 3 of Section 2.

Substituting t = t1 +
√

d t2, we get that the coefficients ci of Ct1+
√

d t2
are of

the form ci = ci,0(t1, t2) +
√

d ci,1(t1, t2), with ci,j ∈ K[t1, t2], and similarly for
Ht. Setting the

√
d-components to 0 yields 6 equations in t1, t2 over K, which

3 The divisor O = ∞+ +∞−, consisting of the intersection of C with X = ∞, is a
popular choice among people computing with curves of genus 2.



describe the genus 0 curve VB. This corresponds to Step 4 of Section 2, where
we put t2 = t2,1 +

√
d t2,2.

If C has points everywhere locally, then Lemma 1 asserts that VB has a
rational point. Let Ct0(x),Ht0(x) correspond to such a point. Then the divisor
class B is represented by the rational divisor B = 3O−{Ct0(x) = 0, y = Ht0(x)}.
This corresponds to Step 5 of Section 2.

Of course, since there exists O, which is of degree 2 and defined over K, the
above can be applied to the rational divisor class D = [P1 + P2 + P3 − O] of
degree 1, which is represented by the rational divisor D = B −O.

We illustrate the above ideas with a detailed worked example. We first ob-
serve how a K-rational divisor class can arise naturally, in such a way that the
contained K-rational divisor is not immediately apparent.

Let C be the genus 2 curve, defined over Q,

C : Y 2 = F (X) = −X6 −X5 − 2X4 − 2X3 + X2 − 2X + 2, (7)

which is easily checked to have points in IR and every Qp. One can perform a
2-descent on the Mordell-Weil group J (Q) of the Jacobian, as described in [6],
using the map

µ : J (Q) → Q(θ)∗/Q∗(Q(θ)∗)2 : [
∑

(xi, yi)] 7→
∏

(xi − θ), (8)

where θ is a root of F (X). One of the steps of the 2-descent on J (Q) is the
computation of the kernel of µ, generated by 2J (Q) and [P1 + P ′

1 − O], where
P1 = ( 1

2 + 1
5α, 7

40 + 12
25α) and α =

√
−55, with P ′

1 denoting the conjugate of P1

with respect to Q(α)/Q. Let P−
1 be the hyperelliptic involute of P1. Then general

properties of µ (see [6] or p.55 of [3]) guarantee that [P−
1 +P ′

1−O] ∈ 2J (Q(α)),
and computing preimages under the multiplication by 2 map on J (Q(α)), one
findsD1 = [(1+

√
−5, 2α)+(1−

√
−5, 2α)−O] which satisfies [P−

1 +P ′
1−O] = 2D1.

Clearly D′1 = −D1, since conjugation merely negates the y-coordinates. Let

P1 = ( 1
2 + 1

5α, 7
40 + 12

25α), P2 = (1 +
√
−5, 2α), P3 = (1−

√
−5, 2α),

D = [P1] +D1 = [P1 + P2 + P3 −O], where α =
√
−55.

(9)

Then

D′ = [P ′
1] +D′1 = [P ′

1]−D1 = [P ′
1]− 2D1 +D1 = [P ′

1]− [P−
1 +P ′

1−O] +D1 = D,

so that D is defined over Q. We now have a naturally occurring divisor class D of
degree 1, which is defined over Q, but whose naturally occurring representative
P1 + P2 + P3 −O is not itself defined over Q. This is a common outcome of an
application of 2-descent on J (Q) for genus 2 curves. Note that such D are of some
interest, as they allow an embedding of C(Q) into J (Q) via the map P 7→ [P ]−D,
even when no obvious member of C(Q) is available.

Since our curve has points everywhere locally, we know that D does contain
an actual Q-rational divisor. We now illustrate how this can be found in practice.
One first finds the general Y = G(X), through P1, P2, P3, where G(X) is cubic



in X, and where there is a free parameter t, since we have one less than the
number of points required to define the cubic uniquely. This parametrized family
of cubics is

G(X) = tX3 + ( 3
2 −

5t
2 −

2α
5 − tα

5 )X2

+(−3 + 7t + 4α
5 + 2tα

5 )X + 9− 3t− 2α
5 − 6tα

5 .
(10)

Computing G(X)2 − F (X), where F (X) is as in (7), and removing the cubic
factor (X −X(P1))(X −X(P2))(X −X(P3)) leaves the residual cubic

C(X) = 10(1 + t2)X3 + (35 + 2α + 30t− 8tα− 25t2 − 2t2α)X2

+(−50− 4α− 60t + 16tα + 70t2 + 4t2α)X
+30 + 12α + 180t− 8tα− 30t2 − 12t2α.

(11)

Let (x1, y1) + (x2, y2) + (x3, y3)−O ∈ D. Then x1, x2, x3 are the roots of C(X),
for some choice of t ∈ Q(α). Furthermore, the yi = −G(xi), where G(X) is
as in (10). We now compute the quadratic Y = H(X) which passes through
(x1,−G(x1)), (x2,−G(x2)), (x3,−G(x3)), namely

H(X) = ((15− 60t− 15t2 − 4α− 4tα + 4t2α)X2

+(−30 + 120t + 30t2 + 8α + 8tα− 8t2α)X
+90− 60t− 90t2 − 4α− 24tα + 4t2α)/(10 + 10t2).

(12)

We have now parametrized divisors of the form (x1, y1) + (x2, y2) + (x3, y3)−O
which are in D. Our requirement for (x1, y1) + (x2, y2) + (x3, y3) − O to be
Q-rational is the same as requiring that the ratios of the coefficients of C(x)
are Q-rational (giving six polynomials in t, which can be reduced to three poly-
nomials on the assumption that a given cofficient of C(x) is nonzero; however,
we shall prefer to write out all six polynomials in full), and that the actual co-
efficients of H(x) are also Q-rational (giving three polynomials in t). This gives
in total nine polynomials in t total that must be Q-rational. Let t = t1 + t2α.
Then on computing the coefficients on α in our nine expressions, we find nine
quartics in t1, t2, all with a common factor of t21 + 55t22 + 15t2 + 1. Then

t21 + 55t22 + 15t2 + 1 = 0 (13)

is our desired curve of genus 0, which has points everywhere locally, and hence
globally. The solution of smallest height is t1 = 1/7, t2 = −1/7, corresponding to
t = 1/7−α/7. Substituting this into C(X) and H(X), and removing from C(X)
a factor of −5(5 + 2α)/49 (permissible, since the roots of C(X) are unaffected),
gives

C(X) = 2X3 + X2 + 2X + 2, H(X) = −1
2
X2 + X − 1. (14)

These C(X),H(X) define (x1, y1) + (x2, y2) + (x3, y3)−O, which is our desired
Q-rational divisor in our given Q-rational divisor class D. We summarize the
above as follows.



Example 1 Let C be the curve (7) and D be the Q-rational divisor class in (9).
Then D contains the Q-rational divisor (x1, y1) + (x2, y2) + (x3, y3)−O, where
x1, x2, x3 are the roots of C(X) and yi = H(xi) for i = 1, 2, 3, with C(X),H(X)
as in (14).

We have written a Maple file at [1] which performs the above computation for
any curve of genus 2.

4 Examples where the rational divisor class contains no
rational divisor

Suppose now that our genus 2 curve is defined over a number field K and is of
the form

H : Y 2 = kF1(X)F2(X), with F1(X) = a3X
3 + a2X

2 + a1X + a0,

k ∈ K∗, each ai = gi + hi

√
d ∈ K(

√
d), and F1(X), F2(X) conjugate.

(15)

We shall also assume that F1(X) is not defined over K. Let e1, e2, e3 denote the
roots of F1(X). This is another situation where we have a naturally occurring de-
gree 1 divisor class D = [(e1, 0)+(e2, 0)+(e3, 0)−O] which is defined over K, even
though the given representative is defined over K(

√
d) and not generally over K.

IfH has points everywhere locally, we know that D must contain a divisor defined
over K, but we do not make that assumption in this section. The parametrized
familiy of cubics through (e1, 0), (e2, 0), (e3, 0) is simply Y = G(X) = tF1(X),
where t = t1+t2

√
d and t1, t2 are K-rational parameters. Replacing Y by tF1(X)

in Y 2 − kF1(X)F2(X) and removing the known factor F1(X) gives the residual
cubic C(X) = t2F1(X) − kF2(X). Let (x1, y1) + (x2, y2) + (x3, y3) − O ∈ D.
Then x1, x2, x3 are the roots of C(X), for some choice of t ∈ K(

√
d). Further-

more, each yi = −G(xi); we compute the quadratic Y = H(X) passing through
the (xi,−G(xi)), namely

H(X) = 2k`
(
(g2h3 − g3h2)X2 + (g1h3 − g3h1)X + g0h3 − g3h0

)
, where

` = (−k + t22d− t21)(g3t2 + h3t1)d− (k + t22d− t21)(g3t1 + h3t2d)
√

d.
(16)

Now, suppose that (x1, y1) + (x2, y2) + (x3, y3)−O is defined over K. Then the
ratios of coefficients of C(X) must be in K, giving the six equations

(k+t22d−t21)(−k+t22d−t21)(gihj−gjhi) = 0, for {i, j} ⊂ {0, 1, 2, 3}, i < j. (17)

Furthermore, the coefficients of H(X) must be in K, giving the three equations

(k + t22d− t21)(g3t1 + h3t2d)(gih3 − g3hi) = 0, for i = 0, 1, 2. (18)

Inspecting (17), we note that we cannot have all gihj − gjhi = 0, since then our
original curve H would have zero discriminant. So, one of the first two factors
in (17) must be 0, giving that Norm(t) = ±k. If Norm(t) = −k then a similar
argument (we have placed the details in the file [1]) applied to the equations (18)



shows that eitherH has zero discriminant (which is not permitted) or that F1, F2

are each defined over K (which is also not permitted). In summary, if D contains
a K-rational divisor then we must have Norm(t) = k for some t.

Conversely, if Norm(t) = k for some t ∈ K(
√

d), then the K-rational divi-
sor (x1, y1) + (x2, y2) + (x3, y3)−O in D is defined by

C0(X) = tF1−t′F2(X), H0(X) = −4k2d(g3t2+h3t1)
2∑

i=0

(gih3−g3hi)Xi. (19)

We summarize this as follows.

Lemma 2 Let H : Y 2 = kF1(X)F2(X) be a curve of genus 2 of the type (15),
defined over a number field K, where F1(X) is defined over K(

√
d) and not

over K. Let D be the K-rational divisor class [(e1, 0) + (e2, 0) + (e3, 0) − O],
where e1, e2, e3 are the roots of F1(X). Then D contains a K-rational divisor if
and only if Norm(t) = k for some t ∈ K(

√
d), in which case the required divisor

is (x1, y1) + (x2, y2) + (x3, y3)−O, where x1, x2, x3 are the roots of C0(X) and
each yi = H0(xi), with C0,H0 as in (19).

In this situation, our genus 0 curve is simply the curve t21 − dt22 = k. Of course,
any choice of K, d, k (such as Q, 2, 5), where k is not a norm in K(

√
d), will give

an example where D does not contain a K-rational divisor.

References

1. N. Bruin and E.V. Flynn. Maple programs for computing rational divisors in ratio-
nal divisor classes. Available at www.maths.ox.ac.uk/eflynn/genus2/maple/ratdiv

2. D. Coray and C. Manoil. On large Picard groups and the Hasse principle for curves
and K3 surfaces. Acta. Arith., LXXVI.2 (1996), 165–189.

3. J.W.S. Cassels and E.V. Flynn. Prolegomena to a Middlebrow Arithmetic of Curves
of Genus 2. LMS–LNS 230. Cambridge University Press, Cambridge, 1996.

4. J.W.S. Cassels. Second descents for elliptic curves. J. reine angew. Math. 494
(1998), 101–127.

5. V. Scharaschkin. Local Global Problems and the Brauer-Manin Obstruction. PhD
Thesis, University of Michigan, 1999.

6. M. Stoll. Implementing 2-descent for Jacobians of hyperelliptic curves. Acta Arith.
98 (2001), 245–277.


