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Abstract. We discuss the Brauer–Manin obstruction on del Pezzo surfaces

of degree 4. We outline a detailed algorithm for computing the obstruction

and provide associated programs in Magma. This is illustrated with the com-
putation of an example with an irreducible cubic factor in the singular locus

of the defining pencil of quadrics (in contrast to previous examples, which had

at worst quadratic irreducible factors). We exploit the relationship with the
Tate–Shafarevich group to give new types of examples of X[2], for families of

curves of genus 2 of the form y2 = f(x), where f(x) is a quintic containing an

irreducible cubic factor.

1. Introduction

The main aim of this article is to provide a detailed description and implemen-
tation of the algorithm for computing the Brauer–Manin obstruction of del Pezzo
surfaces of degree 4. The algorithm is in general terms well known (see, for ex-
ample, [9], [19]), but we shall build up a series of geometric and group-theoretic
lemmas which allow us to make the procedure more explicit and to implement the
algorithm in Magma.

We begin by discussing current knowledge of the Brauer–Manin obstruction for
rational surfaces. An excellent account of the history of this topic, together with a
description of contemporary methods, can be found in [4]. More recent advances,
including some important ones for del Pezzo surfaces of degree 4, are described
in [20]. The Brauer group of a scheme is a generalisation of the Brauer group of
a field. For background information on the Brauer group see [8]. In particular,
it is shown there that the Brauer group of a smooth variety X is the subgroup
of the Brauer group of its function field k(X) consisting of those elements which
are “unramified” in a certain sense; a central simple algebra over k(X) satisfying
this property is called an Azumaya algebra on X. Furthermore, it is shown that the
Brauer group is a birational invariant of smooth projective varieties. One deduces
that the Brauer group of a smooth projective rational variety over an algebraically
closed field is trivial, since this is true for projective space. Let k be a number
field. It follows from the Hochschild–Serre spectral sequence and the fact that
H3(k, k̄∗) = 0 that, for any rational variety X over k, there is an exact sequence

Br k → Br X → H1(k,Pic X̄) → 0,
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which will be our tool for calculating Br X. Here X̄ means the base extension of
X to the algebraic closure k̄ of k. When X has points everywhere locally, the first
arrow is injective. For a rational surface, H1(k,Pic X̄) is a finite group; for the
surfaces we are considering, it is always of order 1, 2 or 4.

It was noticed by Manin [13] that the Brauer group could be used to define an
obstruction to the existence of k-rational points on a variety X, as follows. An
element of Br X can be evaluated at any K-valued point of X (where K is any
field containing k) to obtain an element of Br K. Denote by X(Ak) the set of adelic
points of X. When X is a complete variety, this is equal to

∏
v X(kv), the product

being over all places of k. The set X(k) of rational points is contained in X(Ak)
under the diagonal embedding. For the existence of a rational point on X, it is
clearly necessary that X(Ak) be non-empty. Let invv : Br kv → Q/Z be the local
invariant map. Manin considered the pairing Br X ×X(Ak) → Q/Z defined by

(A, (xv)) 7→
∑

v

invv(A(xv))

and observed that, by the well-known local-global principle for Brauer groups, the
rational points of X must be contained in the right kernel of this map, which we
denote X(Ak)Br. If X(Ak)Br can be shown to be empty, then we say that there is a
Brauer–Manin obstruction to the existence of rational points on X. This obstruc-
tion accounted for all known counterexamples to the Hasse principle at that time.1

In principle, the Brauer–Manin obstruction is computable, at least for rational va-
rieties since Pic X̄ is finitely generated. In particular, Colliot-Thélène, Kanevsky
and Sansuc [5] described in detail how to compute the obstruction for diagonal
cubic surfaces, which are del Pezzo surfaces of degree 3. This article describes an
algorithm along the same lines for computing the Brauer–Manin obstruction on del
Pezzo surfaces of degree 4.

A natural question is whether the Brauer–Manin obstruction is the only obstruc-
tion to the Hasse principle for certain classes of varieties: that is, does X(Ak)Br 6= ∅
imply X(k) 6= ∅? This has been shown not to be true for all surfaces [16], but is
conjectured to be true for all rational varieties [4, p. 319]. If the conjecture is cor-
rect, then the algorithm described in this article gives a method for determining
the existence of rational points on del Pezzo surfaces of degree 4.

Progress towards proving this conjecture has been made in certain special cases
satisfying geometric conditions, under which certain general techniques can be ap-
plied; two main techniques are the fibration method and the method of descent, both
of which are described in [4]. For example, in the articles [6, 7], Colliot-Thélène,
Sansuc and Swinnerton-Dyer studied intersections of two quadrics in general di-
mension, of which del Pezzo surfaces of degree 4 are a special case; they proved,
among several other results, that such a surface satisfies the Hasse principle if it
contains a pair of skew conjugate lines.

The fibration method can be applied much more widely if one assumes Schinzel’s
hypothesis, which is a far-reaching conjecture generalising both the twin prime
conjecture and Dirichlet’s theorem on primes in arithmetic progression. Under
that hypothesis, much can be proved about surfaces fibred as a pencil of curves of

1The fact that the Cassels-Guy counterexample is explained by the Manin obstruction was not
proved until later.
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genus 1, of which our del Pezzo surfaces are an example; for the state of the art in
this direction, see [20].

In Section 2, we discuss some of the prerequisite geometry of a del Pezzo surface
of degree 4: the families of conics and rational quartic curves, and the configuration
of lines. In Section 3, we describe in detail the algorithm itself, which involves
determining the Brauer group (via the Galois group of the lines), determining the
rational conics on the surface, and finding representative Azumaya algebras. We
illustrate the algorithm with a worked example in Section 4, which differs from
previous examples of the Brauer–Manin obstruction by having an irreducible cubic
factor in the singular locus of the defining pencil of quadrics.

In Section 5, we discuss the relationship between del Pezzo surfaces of degree 4
and the homogeneous spaces arising from a 2-descent on the Jacobian of a curve
of genus 2. When the del Pezzo surface violates the Hasse principle, this can give
rise to members of X[2] of the Jacobian. When the del Pezzo surface has rational
points, other methods for computing X[2] are possible, and X[2] may still be
exhibited via field extensions and product varieties. In Section 6, we conclude by
giving new types of examples of X[2] on Jacobians of genus 2 curves, including an
infinite family of twists.

2. Geometry of del Pezzo surfaces of degree 4

In this section we review some of the classical geometry of del Pezzo surfaces
of degree 4. There are several good references for the contents of this section:
Chapter 4 of Manin’s book [12]; Chapter 2 of Reid’s thesis [14]; and Section 1
of [6]. While discussing geometry, we work over an algebraically closed field.

Definition 1. A del Pezzo surface is a rational surface S such that −KS is ample,
where KS is the canonical divisor class of S.

We will be concerned with the case K2
S = 4. Geometrically a del Pezzo surface

with this property is the blowup of P2 in five points, of which no three lie on a single
line. Also, in this case −KS is in fact very ample, so that S can be embedded in
P4 as a surface of degree 4 which is an intersection of two quadrics. We will always
assume that our surface is embedded like this.

Under the embedding given by −KS , the straight lines on S are the excep-
tional curves, which follows from the adjunction formula. There are 16 exceptional
curves on S, which we identify as follows: the 5 exceptional divisors of the blow-up,
e1, . . . , e5; the 10 strict transforms of lines joining two of the blown-up points, lij ;
and the strict transform of the conic through the five points, q. We will use as
basis for the Picard group the classes L of the inverse image of a general line in
P2 and E1, . . . , E5, the classes of e1, . . . , e5. Then KS = −3L +

∑
Ei and H, the

hyperplane class of S, is equal to −KS . In this basis, the class of lij is L−Ei−Ej

and the class of q is 2L −
∑

Ei. Hence, or directly from the description of the
lines, we can state which of the lines intersect which others: ei does not meet ej if
i 6= j, ei meets ljk if and only if i ∈ {j, k}, ei meets q, lij meets lkl if and only if
{i, j} ∩ {k, l} = ∅, and lij does not meet q.

We will also need to describe the families of conics lying on a del Pezzo surface.
This may be implicit in the discussion at the beginning of chapter 3 of [10].
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Theorem 2. There are 10 families of conics lying on a del Pezzo surface. Their
classes in the Picard group are of the form Ci = L − Ei and C ′

i = H − Ci. Over
an algebraically closed field, the conics in each class are parametrized by a P1.

Proof. A conic C is a curve of degree 2, so C ·H = 2. On the other hand, it has
genus 0, so by the adjunction formula C · (C + KS) = −2. Since KS = −H, it
follows that C2 = 0.

If a divisor class D = aL −
∑

biEi satisfies these criteria, then so does H −D.
Hence, it suffices to consider the case a ≥ 2.

We have a2 −
∑

b2
i = 0 and 3a −

∑
bi = 2. If a = 2, the equality

∑
b2
i = 4

implies that either one of the bi is ±2 and the rest 0, which is inconsistent with the
second equality, or that four of the bi are ±1 and the other one 0. For the second
equality to be satisfied, we need four of the bi to be 1, and we obtain the class
H − L− Ei = H − Ci.

Now suppose that a ≥ 3. By the Cauchy–Schwartz inequality,
∑
|bi| ≤

√
5
∑

b2
i =√

5a. However, 3a −
∑

bi ≥ 3a −
∑
|bi|. Since 3a −

∑
bi = 2, it follows that

3a−
√

5a ≤ 2, a contradiction.
We conclude that the only possible conic classes with a ≥ 2 are those given, and

hence that the only ones with a < 2 are H − (H − Ci) = Ci.
Now, in fact, each of these classes is represented by an irreducible conic; for let C

be such a class. The residual class H −C is the sum of two intersecting, and hence
coplanar, lines (lij + ej in the case L−Ei, and q + ei for H −L+Ei). The divisors
residual to this one in hyperplanes are again of the class C, and are parametrized
by hyperplanes containing a given plane, which form a P1. Since there are only
finitely many lines on S, only finitely many of these divisors can degenerate. �

Definition 3. Let S be a nonsingular del Pezzo surface of degree 4, given as the
base locus of a pencil of quadrics in P4, spanned by, say, Q1, Q2. Then the charac-
teristic form of S is χS(t, u) = det(tM1 + uM2), where M1,M2 are the symmetric
matrices describing Q1, Q2 respectively. We call χS(t,−1) the characteristic poly-
nomial of S.

If Q1 is nonsingular then χS(t,−1) = det(M1) det(tI − M−1
1 M2) is (up to a

scalar) the characteristic polynomial of M−1
1 M2. Note that χS is only defined up

to linear transformation of the variables, corresponding to changing the basis of the
pencil of quadrics.

The characteristic form describes the subscheme of singular quadrics in the pencil
with coordinates (t : u). If S is nonsingular, then the characteristic form is square-
free: see Proposition 2.1 of [14]. This implies that there are 5 distinct singular
quadrics containing S over the splitting field of the characteristic polynomial, each
of rank 4. Hence, such a quadric Q is a cone over a non-singular quadric Q′ in P3.
The two families of lines on Q′ induce two families of planes on Q by taking the
span of a line on Q′ together with the singular point of Q. This gives ten families
of planes in total.

Theorem 4. Let tQ1 + uQ2 be a pencil of quadrics in P4 whose intersection is
the del Pezzo surface S, let Q be a singular quadric in the pencil, and let P be a
plane lying on Q. Then P ∩ S is a conic, and every conic on a del Pezzo surface
of degree 4 arises in this way.

Proof. To see that P∩S is a conic, simply observe that P∩S = P∩Q∩Q2 = P∩Q2,
the intersection of a quadric threefold with a plane. Thus we obtain 5 · 2 = 10
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irreducible one-parameter families of conics lying on S. Theorem 2 implies that
there can be no more. �

Similar results hold for degree 4 curves of genus 0 on a del Pezzo surface of degree
4.

Theorem 5. There are 40 families of degree 4 curves with arithmetic genus 0 on
a del Pezzo of degree 4. Their divisor classes are those of the form C1 + C2, where
C1 and C2 are distinct classes of conics such that C1 + C2 6= H.

Proof. A rational quartic curve C on a del Pezzo surface S of degree 4 has C ·H = 4
and C · (C −H) = −2, so that C2 = 2. First, let C1 and C2 be distinct classes of
conics on S, with C1 6= H − C2. Then C1 · C2 = 1. To check this, we calculate
(L−Ei)·(L−Ej) = L2−Ei·L−L·Ej+Ei·Ej = 1−0−0+0 = 1. Then H ·(L−Ej) = 2,
so (L−Ei) · (H − (L−Ej)) = 2, and likewise (H − (L−Ei)) · (H − (L−Ej)) = 2.
This gives 40 distinct divisor classes: 10 of the form 2L− Ei − Ej , 20 of the form
H + Ei − Ej , and 10 of the form 2H − 2L + Ei + Ej .

Conversely, let C be a divisor class represented by rational quartic curves; in
other words, suppose that C = aL −

∑
biEi, so that C · H = 4 and C2 = 2.

Similarly to the proof of Theorem 2, if C has these properties so does 2H − C, so
it suffices to consider the case a ≥ 3. If a = 3, then

∑
bi = 5 and

∑
b2
i = 7, so

the bi in some order are 2, 1, 1, 1, 0, giving H + Ei − Ej as claimed. If a = 4, then∑
bi = 8 and

∑
b2
i = 14. This means that no bi may be greater in absolute value

than 3; but 3 is impossible, for then we would have 3,±2,±1, 0, 0 in some order,
and these cannot add to 8. Therefore, the bi must be ±2,±2,±2,±1,±1 in some
order; for them to add to 8, all must be positive, and so we get 2H − 2L+Ei +Ej .
If a = 5, then

∑
bi = 11 and

∑
b2
i = 23. If one of the bi is 4, then the rest must be

±2,±1,±1,±1, which does not work; otherwise we must have at least two that are
±3, and then the others are ±2,±1, which are too small. Finally, if a > 5, then as
before

∑
bi = 3a− 4 ≤

∑
|bi| ≤

√
5
∑

b2
i =

√
5a, a contradiction.

Note that every such class contains irreducible curves; for let D be such a class.
Then 2H −D is as well, and it contains a curve which is the union of two conics.
There is then a 3-parameter family of quadrics vanishing on this curve modulo
those vanishing on S, and the residual intersection is a curve in D. But only a
2-dimensional subfamily of these are reducible, because the families of conics are
1-dimensional.

�
We now need to discuss the configuration of lines on a del Pezzo surface of

degree 4. First, we note its automorphism group:

Theorem 6. The automorphism group of the configuration of sixteen lines with
their intersections is the Weyl group W(D5).

Proof. This is part of [12, Theorem 25.4]. �
We now return to working over a number field k. The action of Gal(k̄/k)

on the sixteen lines preserves intersections, and hence we get a representation
φ : Gal(k̄/k) → W. We write L for the field corresponding to the kernel of this
representation. It turns out that the Weyl group has four normal subgroups: the
trivial subgroup, the Weyl group itself, the subgroup of words of even length, and
a fourth subgroup isomorphic to (Z/2Z)4 by which the quotient is isomorphic to
S5. The subfield corresponding to this quotient is easily identified. (Compare the
proof of theorem H in [10].)
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Theorem 7. Let σ be the quotient map W(D5) → S5. Then the kernel of σ ◦ φ is
the splitting field of the characteristic polynomial of the given del Pezzo surface.

Proof. It suffices to consider the generic degree 4 del Pezzo surface, defined over

k(r11, r12, r22, . . . , r55, s11, . . . , s55)

by equations
∑

rijxixj =
∑

sijxixj = 0. We will show that the sixteen lines are all
defined over the compositum of the splitting field of the characteristic polynomial
with the field of definition of one line. Since this compositum plainly has degree
at most 120 · 16 = 1920, while the lines are defined over an extension of degree
#W(D5) = 1920, this is sufficient.

Thus, let us consider a rational line l0 over a field k′ in which the characteristic
polynomial splits. For each of the five lines li meeting l0, we have a singular conic
l0 ∪ li on S. By Theorem 4, this conic lies on a plane contained in one of the 5
singular quadrics in P4 containing S. Since two planes on such a conic do not meet
in a line contained in S, we see that each li thus corresponds to a unique singular
quadric and thus are not conjugate. Repeating the argument shows that each of
the lines meeting one of the li must be defined over k′ as well, and the lines meeting
those too. But that includes all lines on S. �

As discussed in [18], a certain type of collection of eight lines is particularly
important:

Definition 8. A four is a set of four skew lines on the surface that do not all meet
a fifth one. A double-four is a four together with the four lines that meet three
lines from the four. (Indeed, these four lines also constitute a four, and starting
from this four produces the same double-four: see [18, p. 458].) In the notation
introduced previously, for example, the lines e1, e2, e3, l45 constitute a four, and

e1, e2, e3, l12, l13, l23, l45, q

make up a double-four.

Let us count the fours. Since the lines are permuted transitively by the Weyl
group, and each four contains 1/4 of the lines, each line is contained in 1/4 of the
fours, so it suffices to count fours containing q. The lines not meeting q are the
lij . Let us take q and lij ; then, rearranging subscripts if necessary, the third line is
lik. These lines together with ljk constitute a four, but together with lim they do
not, because those four lines all meet ei. In particular, the fours containing q are
in bijection with the 10 subsets of {1, 2, 3, 4, 5} of cardinality 3, and so there are 40
fours in all.

The fours pair up to form 20 double-fours, and using a computer it is readily
checked that the Weyl group acts transitively on both fours and double-fours. The
complement of a double-four is also a double-four, and each double-four is uniquely
the union of two fours. Furthermore, the Picard classes containing rational quartic
curves are the same as the classes of the form l1+m2+m3+m4, where {l1, l2, l3, l4}
is a four, {m1,m2,m3,m4} is the complementary four, and m2,m3,m4 are the
lines in it that meet l1. (It was pointed out in Example 2 of [19] that this Picard
class depends only on the four {l1, l2, l3, l4}, not on the choice of line from it.) In
particular these classes are sums of two Picard classes of conics in a unique way.

Remark 9. In fact, there is a clear relation between double-fours and the singu-
lar quadrics containing S. Let v1, . . . , v5 be the singular points of the 5 singular
quadrics containing S.
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The plane through q and vi intersects S in another line meeting q. Upon adjust-
ing the labelling, we can assume it is ei. The hyperplane through q, vi, vj intersects
S in a fourth line, lij , that meets ei, ej but not q.

One can check that, starting from q and three vertices, say v1, v2, v3, we can ob-
tain 8 lines q, e1, e2, e3, l12, l23, l13, l45, where l45 for instance, lies in the hyperplane
spanned by e3, v1, v2.

The intersection graph, where the lines are the vertices and the edges join vertices
if the corresponding lines intersect, is a cube. The two fours constituting this
double-four can be recovered from the unique way in which a cube is a bipartite
graph.

This shows how the 10 ways of choosing 3 of the 5 singular quadrics correspond
to the 10 ways of splitting the lines into two disjoint double fours.

Finally, we review some results of Manin and Swinnerton-Dyer on the Brauer
group of a del Pezzo surface of degree 4.

As in [12], we may compute Br S/Br k as H1(k,Pic S). Recall that L/k was
defined to be the fixed field of the kernel of φ : Gal(k̄/k) →W; this is the smallest
Galois extension over which all of the lines in S are individually defined. The entire
Picard group of S is defined over L, because the lines generate the Picard group.
By an easy calculation using the inflation-restriction sequence, we get

Br S/Br k ∼= H1(L/k,Pic S ⊗k L).

Note in particular that Br S is determined by Gal(L/k) as a subgroup of the Weyl
group up to conjugacy. We must compute this group; to do so, it is sometimes nec-
essary to determine L and the action of Gal(L/k) on the sixteen lines. Sometimes,
though, an alternative description of the Brauer group can be used to advantage.

Theorem 10. (Swinnerton-Dyer). Let α be an element of Br S not in Br k.
Then α can be represented by an Azumaya algebra in the following way: there is
a double-four defined over k whose constituent fours are not k-rational but defined
over k(

√
b), for some b ∈ k∗. Further, let V be a divisor defined over k(

√
b) whose

class is the sum of the classes of one line in the double-four and the classes of the
three lines in the double-four that meet it, and let V ′ be the Galois conjugate of V .
Let H be a hyperplane section of S. Then the k-rational divisor D = V + V ′ − 2H
is principal, and if f is a function whose divisor is D then α is represented, modulo
Br k, by the quaternion algebra (b, f).

Proof. This is [19] (lemma 1 and example 2). As pointed out above, the divisor
class of V depends only on the four that the initial line belongs to, and since the
fours are defined over k(

√
b), the divisor class itself is. Then, since the surface S

has points everywhere locally, this class is represented by a k(
√

b)-rational divisor
everywhere locally; and because the divisors in a class constitute a Brauer–Severi
variety, there is such a divisor over k(

√
b). �

A converse of Theorem 10, determining when an algebra (b, f) of the above type
represents a non-trivial element in Br S/Br k, is also stated in [19], but we will not
need the result here.

We will say that Br S is trivial if every element of Br S is equivalent to a constant
algebra: that is, Br S/Br k has only one element.

Corollary 11. If [L : k] > 96 or if the characteristic form of S has an irreducible
factor of degree at least 4 then Br S is trivial.



8 M. J. BRIGHT, N. BRUIN, E. V. FLYNN, AND A. LOGAN

Proof. The stabilizer of a double-four inW has order 1920/20 = 96, so if [L : k] > 96
then there is no Galois-stable double-four. By Theorem 10, Br S must be trivial.

If the characteristic form of S has an irreducible factor of degree at least 4 then
there is no Galois-stable way of selecting 3 singular quadrics containing S. From
Remark 9 it follows that there is no Galois-stable pair of complementary double-
fours, so no Galois-stable double-four either. By Theorem 10, Br S must be trivial.

�
It can be shown, either by explicit enumeration of the subgroups of the Weyl

group or by careful consideration of the different cases, that Br S/Br k is always
either trivial or isomorphic to Z/2Z or (Z/2Z)2.

3. The algorithm

In this section we will explain how to use the theory of the Brauer group in com-
bination with some results of Swinnerton-Dyer and the geometry described above
to calculate the Brauer obstruction in concrete situations. We have implemented
the following algorithm in Magma and made it available at [11]. For simplicity, we
now assume that k = Q. As input, we consider a del Pezzo surface S of degree 4,
given as the intersection of two quadrics Q1, Q2 in P4 over Q. As output we return
whether there is a Brauer–Manin obstruction for S having rational points.

0) decide local solvability of S;
1) determine the Fano scheme and thus the individual lines;
2) find the Galois group of the lines, and hence the Brauer group;
3) determine the fours associated to the non-trivial elements of Br S/Br k;
4) find representative Azumaya algebras;
5) evaluate the Brauer–Manin obstruction.

In the early steps, it is possible to discover that the later steps will be unnecessary.
For example, if the lines on the surface are all conjugate, there can be no interesting
Brauer group, and so it is unnecessary to find the Galois group of the lines.

Let us start by giving the generic Galois action on the lines explicitly, since it is
used several times in what follows.

Proposition 12. Let the sixteen lines on a del Pezzo surface of degree 4 be given in
the order e1, . . . , e5, l12, l13, . . . , l45, q. Then W is generated by elements w1, . . . , w5

which act by the following permutations:

(1, 2)(7, 10)(8, 11)(9, 12), (2, 3)(6, 7)(11, 13)(12, 14), (3, 4)(7, 8)(10, 11)(14, 15),
(1, 10)(2, 7)(3, 6)(15, 16), (4, 5)(8, 9)(11, 12)(13, 14).

Proof. This follows from the description of the permutations in [12], section 25.5.7,
and the enumeration of the roots in proposition 25.5.3. �

3.1. Step 0: Local solvability. We decide local solvability over R by using La-
grange multipliers to search for maxima and minima of a function on the real locus.
This locus is compact; if it is also nonempty, then any bounded continuous function
must attain an extremum there.

Using the Weil bounds, we know that S has points locally at all but finitely
many, known, primes. For those primes p, we search for points modulo increasing
powers of p until either we find an obstruction to such points existing or we find an
approximation to a point for which Hensel’s lemma guarantees that it will lift to a
point over Qp.
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If S does not have points locally at some place of Q then S(Q) is empty and the
Brauer–Manin obstruction is meaningless.

3.2. Step 1: The Fano Scheme.
a) Construct the subscheme of P4×P4 consisting of pairs of points on Q1 such

that the line through them also lies on Q1. Determine its image in P9 via
the Plücker embedding.

b) Repeat step (a) for Q2.
c) Intersect the schemes from (a) and (b) to obtain the 0-dimensional, degree

16 subscheme F of the Grassmannian G(1, 4) ⊂ P9 of lines in P4 that lie
on S.

3.3. Step 2: Galois action on the lines. First, we consider two lemmas that
allow us to conclude that Br S is trivial in many cases:

Proposition 13. If Br S is nontrivial, then the orbits of lines under the Galois
group have one of the following sequences of sizes:

(2, 2, 2, 2, 2, 2, 2, 2), (2, 2, 2, 2, 4, 4), (4, 4, 4, 4), (4, 4, 8), (8, 8).

Proof. This can be deduced from tables 2 and 3 in [12]. These tables only cover
minimal del Pezzo surfaces of degree 4. However, blowing down a divisor on a
nonminimal del Pezzo surface yields a del Pezzo surface of larger degree ([12], cor.
24.5.2), and the Brauer group of a del Pezzo surface of degree greater than 4 is
trivial ([12], thm. 29.3). �

Proposition 14. Let M be the field of least degree over which representatives of
all Q-orbits of lines are defined. If [M : Q] > 16, then Br S is trivial.

Proof. Under the Galois correspondence, the field M corresponds to the intersection
H of stabilizers of lines in each orbit. Using Magma, this can be computed for
every conjugacy class of subgroups G of W and it can be verified that H1(G, Pic S̄)
is trivial whenever the index of H is greater than 16. Note also that the intersection
of all conjugates of H is the intersection of the stabilizers of all of the lines, and is
therefore trivial; in other words, the Galois closure of M is equal to L. �

We consider the splitting field L of the scheme F computed in Step 1 and the
action of Gal(Q/Q) on F :

a) Decompose F into Galois orbits using factorisation.
b) Early exit: If the orbit lengths are not as listed in Proposition 13 then

Br S is trivial and we are done: there is no Brauer–Manin obstruction to
S having rational points.

c) Small case: If [L : Q] ≤ 16 then we explicitly construct L and determine all
lines on S over L explicitly. We compute their intersections and label them
according to a standard labelling to reconstruct Gal(L/Q) as a subgroup
of W.

d) Large case: If [L : Q] > 16, we will work backwards. We start from the
large subgroups of W that produce nontrivial Brauer groups and determine
whether Gal(L/Q) is one of them.

The group W has 78 conjugacy classes of subgroups of order greater
than 16, but only 8 of these give nontrivial Brauer groups, all of which
have Br S/Br k cyclic of order 2.
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These subgroups of the Weyl group are isomorphic to C2×A4, S4, C2
2 ×

D8, C2 × S4 (three groups), C2
2 ×A4, and C2

2 × S4. We consider each case
individually. The assertions are presented without justification, but they
are easily checked with, for instance, Magma.

C2 ×A4: There are 4 conjugacy classes of subgroups isomorphic to this
one. It turns out that there is a nontrivial Brauer group if and only if
there are 2 orbits of lines and there are 4 lines defined over a minimal
field of definition of one line, of which the pairs of conjugate lines do
not intersect.
For completeness, we give the details of this case. The 4 conjugacy
classes of subgroups are given by the following lists of generators:

〈w2w1w2w3w5w3, w2w4w3w4w5w3w2w4,

w3w4w5w3, w1w2w3w4w5w3w2w1〉,
〈w3w2, w1w2w3w5w3w2w1, w2w4w3w4w5w3w2w4,

w2w3w2w4w3w5w3w2w4w3〉,
〈w2w1w2w3w5w3, w4w5, w3w4w5w3, w1w2w3w4w5w3w2w1〉,
〈w2w1w2w3w5w3, w2w1w2w3w5w3w2w1, w2w1w3w5w3w2,

w2w1w2w3w2w1w4w3w2w5w3w2w1w4w3w2w5w3〉,

and only the first of these has nontrivial cohomology. Now, the sizes
of orbits for these groups are (8, 8), (4, 4, 8), (8, 8), (2, 6, 8) respectively,
so if the orbits do not have sizes (8, 8) there is no Brauer group. For
the two groups for which the orbits do have sizes (8, 8), we consider
the stabilizer of 1, which in fact also fixes 6, 8, 14. In the first group, 1
and 14 are in the same orbit; these correspond to e1 and l35, which do
not intersect. On the other hand, in the second group, 1 and 6 are in
the same orbit; these correspond to the intersecting lines e1 and l12.
Likewise, 6 and 8 do not intersect, whereas 8 and 14 do. We conclude
that if Gal(L/Q) is isomorphic to C2 × A4, then the Brauer group is
nontrivial if and only if there are two orbits of lines of size 8, and over
the field of definition of a single line the two rational lines that were
in the same Q-orbit of lines do not intersect.
Similar arguments are required for the five remaining isomorphism
classes of groups; in order to save space and avoid trying the reader’s
patience, these are not presented here. Instead, we only show the
answers. See electronic resources at [2] for an exhaustive treatment.

S4: There are 6 conjugacy classes of subgroups isomorphic to this one.
Again, there is a nontrivial Brauer group if and only if there are 2
orbits of lines and there are 4 lines defined over a minimal field of
definition, of which the pairs of conjugate lines do not intersect.

C2
2 ×D8: There are 2 classes of subgroups of this type. The Brauer group
is nontrivial if and only if there are 2 orbits of lines.

C2
2 ×A4: There are 2 such classes of subgroups. The Brauer group is
nontrivial if and only if there are 2 orbits of lines.

C2 × S4: There are 8 such conjugacy classes of subgroups. The Brauer
group is trivial unless there are exactly 2 orbits of lines, which is the
case for 4 of the classes. If there are 2 lines defined over the minimal
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field of definition, then the Brauer group is nontrivial. But if there are
4, we must consider the two lines in the same orbit defined over this
minimal field. If they intersect, the Brauer group is trivial; if not, it
is nontrivial.

C2
2 × S4: Again, there are 2 conjugacy classes of subgroups of this iso-
morphism type; the Brauer group is nontrivial if and only if there are
2 orbits of lines.

e) Early exit: Whether we are in the large case or the small case, we now
know Br S. If it is trivial, we are done.

3.4. Step 3: Represent the Brauer group with double-fours. We find several
divisors V of the type mentioned in Theorem 10 such that we know that for each
non-trivial α ∈ Br S/Br k, we have a representative divisor V .

a) For each double-four D representing an element α ∈ Br S we find the
field Q(

√
b) over which the fours making up D are defined, which we call

the Brauer field of D (not of α; it need not be the same for different
double-fours representing the same Brauer class). In the small case this is
straightforward, because the double-four consists of eight lines for which
we have explicit equations and we can determine the field over which each
of the fours is defined. In the large case it is more difficult, because we do
not have the fours explicitly. Instead we must use some group theory. In
most cases the Brauer field is the unique quadratic subfield of the field of
definition of a single line. To be precise, this occurs in all of the large cases
except that where the Galois group is of order 32. In that case, the orbits of
lines are the double-fours themselves, and the lines in each double-four are
defined over an extension of degree 16. Hence we may again determine the
Brauer field by finding explicit equations for the lines in each double-four.

b) Since V is a class of degree 4 curves of arithmetic genus 0, Theorem 5
implies that V is uniquely the sum of two classes C1, C2 of conics, defined
over a field K ′. When [L : Q] ≤ 16, we know the lines explicitly and we can
determine K ′. In the large case, we must use group theory: it turns out
that when the Galois group has order 24, and in one of the cases when it
is C2 × S4, the conics are defined over the Brauer field. In the other cases,
they are defined over a quadratic extension of this field. Fortunately, in
the large cases where the conics are not defined over the Brauer field, the
factorization type of the characteristic polynomial is either (1, 1, 3) or (2, 3),
so the relevant conics are determined in advance as those corresponding to
the factors of degree 1 or 2, and there is no ambiguity about K ′.

c) Consider the roots of the characteristic polynomial over K ′. Each root
corresponds to a singular quadric with vertex T over a nonsingular quadric
in P3. We determine the Fano scheme in the Grassmannian G(1, 3) of lines
on this quadric and, by taking the planes spanned by these lines and T , map
this to G(2, 4). This gives two conics in P3 that parametrize the planes on
the singular quadric threefold, and hence the conics in the relevant divisor
class on S.

d) Choose one of the classes, say C1, from (b). According to Theorem 4, the
members of that class correspond to planes on a singular quadric Q, which
are themselves parametrized by a conic, say Y . The planes parametrized by
Y only meet in the singular point of Q, which is outside of S. Therefore,



12 M. J. BRIGHT, N. BRUIN, E. V. FLYNN, AND A. LOGAN

every point on S has a unique plane P from Y through it. Since S has
points everywhere locally, it follows that Y has points everywhere locally
as well and hence is isomorphic to P1 over K ′. By parametrizing Y , we can
generate a number of conics on S representing C1 over K ′.

3.5. Step 4: Representative Azumaya algebras. Our method of finding a
representative Azumaya algebra depends on whether K ′ = Q(

√
b) or not.

a) If V is represented by the sum of two conics defined over the Brauer field,
then for each conic we find the linear form over Q that vanishes on it and
hence also on the conjugate. Let l1 and l2 be the forms for conics from
different classes. The divisor of the section l1l2 of O(2) is V + V ′ , and
so for any linear form h the quaternion algebra (b, l1l2/h2) represents the
element of the Brauer group.

b) V is represented by the sum of two conics defined over K ′, a quadratic
extension of the Brauer field. Suppose C is one representative conic. The
union E of C with its conjugate is defined over the Brauer field and rep-
resents V . Then V ′, the conjugate of V over Q, is represented by the
conjugate E′ of E. The curve E +E′ is a curve of arithmetic genus 5 which
is the intersection of three rational quadrics: the two that define S and a
new one. On the other hand, the curve E lies on a P5 of quadrics defined
over the Brauer field, and taking this modulo those defining S gives us a
P3. For any such quadric, we consider the residual intersection with the
surface S: it is a new curve F whose divisor class is V ′. Again, we get a
rational divisor of the form V +V ′ by taking F together with its conjugate.
Let q be a quadratic form that vanishes on this divisor but not on all of S:
then the divisor of q is F + F ′, and so (b, q/h2) represents the element of
the Brauer group.

3.6. Step 5: Computing the Brauer–Manin obstruction. At this point we
have a number of representative quaternion Azumaya algebras that define each
element of the Brauer group, modulo constant algebras. We must evaluate the
local invariants at each prime p. For simplicity, in the following description we
will only consider the case #(Br S/Br k) = 2 and leave the reader to imagine the
modifications needed for #(Br S/Br k) = 4.

a) For each finite prime p:
(1) Set e = 1, and consider all points on S modulo pe.
(2) For each Azumaya algebra A, evaluate the local invariant invpA(P ) ∈

Q/Z at each point P . Since the algebras are quaternion algebras, this
is done by evaluating a Hilbert symbol. Note the points for which
more precision is needed to compute the local invariant.

(3) If there are points modulo pe with different local invariants for the same
algebra, then that algebra cannot give a Brauer–Manin obstruction.

(4) If there are points for which we could not compute the local invariant
yet, increase e by 1, lift all those points to Z/peZ in all possible ways,
and go to step 2.

b) For real points, use Lagrange multipliers to find the maxima and minima
of our functions on the real locus, if the Brauer field is not real.

c) Once we have established that the local invariant is constant at each place
for every algebra, we can check whether their sum is 0. If it is, then there
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is no Brauer obstruction from the algebra considered. If, however, the sum
is 1

2 , then we have found a non-trivial Brauer–Manin obstruction.
There are three possible difficulties in this.
• If there is a large prime p of bad reduction, it may take a very long time to

find all the points mod p. To some extent this can be mitigated by noting
that if a linear or quadratic form does not vanish on a point mod p and if p
is unramified in the Brauer field, then the local invariant at that point is 0,
so we may assume that all the forms vanish on the points. This greatly
reduces the number of points to consider.

• Note that checking completely for each candidate point mod p whether it
lifts to a Qp-point can be computationally very expensive. One can leave
out this check, at the expense of possibly erroneously concluding that the
local invariant is not constant. This actually happens in one of the examples
described below.

• Although different representatives of the same class in Br S/Br Q do of
course give the same sum of local invariants, the functions must in general
be multiplied by constants (that is, the quaternion algebra must be tensored
with (c, d) for some rational c and d) for them to give the same invariants
at each place. This amounts to ensuring that our Azumaya algebras, which
as computed are known only to represent the same element of Br S/Br Q,
actually represent the same element of Br S. These constants cannot be
determined a priori. Thus, when we consider a new prime, we consider
different algebras at the same point to compare their local invariants, and
multiply by a constant to make sure that the algebras have the same invari-
ants at the prime. In fact, it is enough to tensor the algebras with (b, h),
where Q(

√
b) is the Brauer field corresponding to the given algebra: see [1].

4. Worked examples

We will demonstrate the application of the algorithm in two examples, both of
which violate the Hasse principle.

Example 15. Let Q1 = vw+10wx+5y2−x2 and let Q2 = (v+w)(v+2w)+5z2−x2.
We will refer to this surface as S1. It is routine to prove that the surface S1 where
Q1 and Q2 vanish has points everywhere locally.

Let us give an elementary proof that it has no rational points. We may assume
that v, w, x, y, z are integers with no common factor among the five.

First suppose that 5 | v. Then, because Q1 = 0, we have 5 | x. But then,
considering Q2, we deduce that 5 | 2w2 and so that 5 | w. This implies that
25 | 5y2 and that 25 | 5z2, so 5 | y and 5 | z, a contradiction. Similarly, 5 cannot
divide w. If 5 | x, then from Q1 = 0 we get 5 | vw, contradicting the above. Thus
5 does not divide vwx, and so 5 does not divide (v + w)(v + 2w) either.

Therefore w/v (mod 5) is either 1 or 3. If it is 3, the first equation is 5-adically
impossible, so let us assume that it is 1. Then either v and w are both 5-adic
squares and v + w and v + 2w are not, or vice versa. Let us only consider the first
case, since the second is very similar.

Let p be a prime that divides v + w to odd exponent and is congruent to 2 or 3
mod 5. Now, p must divide x2 − 5z2 to even exponent, so it must divide v + 2w
to odd exponent as well. It therefore divides v and w. If it divides x and z, then
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it divides y, a contradiction. But the only such prime that can divide x2 − 5z2

without dividing both x and z is 2, so p = 2.
Now let us consider the equations 2-adically. We have seen that v and w are even,

while x and z are odd; y must then be odd as well, and both x2− 5y2 and x2− 5z2

are congruent to 4 (mod 8). If (v+w)(v+2w) ≡ 4 (mod 8), then v+w, v+2w ≡ 2
(mod 4), so that 4 | w. But then 8 | vw + 10wx, which is a contradiction because
8 does not divide x2 − 5y2.

We now show how the algorithm described in Section 3 can show that S1 has no
rational points. We find that the characteristic polynomial of S1 is t4u + 7t3u2 −
93t2u3 + tu4 up to scaling, and this factors as

t · u · (t3 + 7t2u− 93tu2 + u3).

Further, the Fano scheme is a union of two irreducible components of degree 8, and
both orbits have representatives that are defined over the number field Q(α), where
α is a root of

x8 − 4x7 − 2x6 + 40x5 − 7x4 − 64x3 + 446x2 + 90x + 405.

The Galois group of this polynomial has order 48 (being isomorphic to C2×S4), so it
would be undesirable to compute directly in the splitting field. On the other hand,
there are two orbits of lines, and for this Galois group this means that the Brauer
group is isomorphic to C2. Also, in this case, the Brauer group is described by
conics rational over the Brauer field, and this field is the unique quadratic subfield
of Q(α), which is Q(

√
5).

The two rational singular quadrics are Q1 and Q2 themselves. It turns out that,
when the Fano scheme of planes on Q1 is mapped to P9 by the Plücker embedding,
we get two curves of degree 2 in P9, defined and conjugate over Q(

√
5), each of

which projects to a conic of the form xy + 10yz − z2. This conic has an obvious
rational point (−9 : 1 : 1), and by intersecting the conic with lines through this
point we find other points, such as the even more obvious (1 : 0 : 0). Pulling back
the point (−9 : 1 : 1) to the Plücker embedding of the Grassmannian gives

(0 : 0 : −8
√

5 : 0 :
√

5 : −9 : 0 : −
√

5 : 1 : 1),

and the corresponding plane is the one containing the points

(−9 : 1 : 1 : 0 : 0), (−
√

5 :
√

5 : 0 : 1 : 0), (0 : 0 : 0 : 0 : 1).

Thus the rational linear form v + w + 8x vanishes on this plane. Similarly, the
obvious point (1 : 0 : 0) gives us the linear form w.

On the other hand, the Fano scheme of planes on Q2 projects to x2−5y2−20z2,
which has obvious points such as (5 : 1 : 1). The linear forms obtained from these
points include w − x− 5z and w − 11x− 25z.

Now we come to evaluate the obstruction. The bad primes of S1 are 2, 5, 23, and
9859. Fortunately, the Brauer field is a subfield of Q9859, so the obstruction there
is automatically trivial. There are 553 points on the surface mod 23. Considering,
for example, the point (3 : 15 : 22 : 9 : 1), we find that all of the linear forms take
non-square values there (for example, v + w + 8x evaluates to 10, and w − x − 5z
evaluates to 11). Thus the local invariant there is 0, and it is not necessary to
multiply the linear forms by constants. Similarly at all but one of the remaining
points, the exception being the singular point (2 : 2 : 1 : 0 : 0) which does not lift
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mod 232 and so need not be considered. We thus find that the local invariant at
23 is 0.

At 5 it is similar, except that there are 25 points mod 5 that need to be lifted
mod 25. We find that the local invariant at 5 is 1

2 , and similarly that it is 0 at 2.
The real place need not be considered, because the Brauer field is real. So the sum
of the invariants is 1

2 at every adelic point, and therefore there is a Brauer–Manin
obstruction to the existence of a rational point. �

Example 16. Let Q1 = vy−17wx and let Q2 = −12v2+204w2+408x2+25y2−2z2.
This surface will be called S2. It follows from [9, Theorem 3.17 and Proposition 4.25]
that the surface S2 has a point over a given field F if and only if −1 is a norm from
F (
√

2,
√

17). Clearly this is true if F = R or if F = Qp with p 6= 2, 17, because
then the étale algebra F (

√
2,
√

17)/F is unramified, and so the unit −1 is a norm.
Putting p = 2, we find that 17 is a square in Qp and −1 = N(1 +

√
2). Putting

p = 17, we find that 2 is a square in Qp and that −1 = N(4 +
√

17). Thus there
are points everywhere locally. On the other hand, it is well known that −1 is not
a norm from K = Q(

√
2,
√

17) to Q. Thus the surface S2 does not have a rational
point.

The characteristic polynomial of S2 is 1382400t5 − 48t3u2 − tu4, again up to
scaling, and this factors as

t · (1152t2 − u2) · (1200t2 + u2).

All the lines on S2 are defined over a number field of degree 8, namely

Q(
√

2,
√
−3,

√
17).

Explicitly, for example, one of the lines passes through the points

(0 : 0 :
√

34/119 :
√

2/7 : 1) and (
√

17 : 1 : 0 : 0 : 0).

So Gal(L/Q) belongs to one of the eleven conjugacy classes of rank-3 elementary
abelian 2-subgroups of W. We can now compute the cohomology and hence find
that, as an abstract group, the Brauer group is isomorphic to Z/2Z. In addition,
we find that the Brauer field is Q(

√
2). This time we are in the quartic case. One

singular quadric is defined over Q, two over Q(
√

2), and as in the previous example
we find rational points on the conics and recover conics on the original surface that
are defined over the quadratic extension Q(

√
2,
√
−3). This time there are three

families, and as we only need two we consider their Picard classes to remove the
one defined over Q. We now take the conjugates of two remaining conics, obtaining
subschemes of P4 of degree 4 with rather large coefficients. Using quadrics with
coefficients in Q(

√
2) that vanish on these, taking the residual intersection with the

Q-conjugate, and recording a third rational quadric form that vanishes on the curve
of genus 5, we obtain forms again with large coefficients. The smallest comes from
taking the curve of degree 4 with its conjugate, and is

461503262821129x2
2 + 34012498093512x2x5 + 5083647716998227x2

3 + 626674890384x2
5;

the coefficients of most others have about 30 digits.
The rest of the calculation is similar to that of the previous example; since 2 is a

square in Q17, we need not consider 17, and the only other primes of bad reduction
are 2, 3, and 5. We find straightforwardly that the local invariant is 0 at 3 and 5,
and that it is 1

2 at 2.
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5. Relationship with X[2]

We recall the basic setup for a 2-descent on the Jacobian of a curve of genus 2.
See for instance [17]. Consider a curve of genus 2 defined over a number field K in
the form

C : y2 = f(x) = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0,

where f(x) ∈ K[x] is a square-free polynomial, and let J = Jac(C), the Jacobian
of C. Note that, by taking f to be of degree 5, we are requiring that C have a
rational Weierstrass point. In particular, this implies that every rational divisor
class on C contains a rational divisor.

Following [3], we first note that a non-zero element D ∈ J(K) can be represented
by polynomials gD, hD ∈ K[x], where hD is at most linear, gD is monic and at most
quadratic, such that

D = {g(x) = 0, y = h(x)} · C − (deg(g))∞.

For a typical D = [(x1, y1), (x2, y2)− 2∞] ∈ J(K), where [ ] represents the divisor
class modulo linear equivalence, these are simply gD(x) = (x − x1)(x − x2) and
y = hD(x) is the line through (x1, y1), (x2, y2). We define A = K[θ] = K[x]/(f(x)),
so that {1, θ, . . . , θ5} is a basis of A as a K-vector space. Also define

A′ = Ker(NA/K : A∗ → K∗/K∗2).

Then H1(K, J [2]) ' A′/A∗2 and, making this identification, the connecting homo-
morphism can be given as

(1)
µ : J(K) → H1(K, J [2])

D 7→ (−1)deg(gD)gD(θ) if gcd(gD, f) = 1.

If δ =
∑

δiθ
i ∈ A represents an element in µ(J(K)), then there exists a monic

g ∈ K[x] of degree ≤ d and u0, . . . , u4 ∈ K such that

(2) g(θ) = (−1)deg(g)δ

(
4∑

i=0

uiθ
i

)2

,

and such that there is an h(x) ∈ K[x] for which

{g(x) = 0} · C = {g(x) = 0, y = h(x)} ∪ {g(x) = 0, y = −h(x)}.

For δ ∈ A∗ we define Qδ,i ∈ K[u0, . . . , u4] by

δ

(
4∑

i=0

uiθ
i

)2

=
4∑

i=0

Qδ,i(u)θi.

For δ ∈ µ(J(K)) there must then be points on the variety

(3) Vδ :
{

Qδ,3(u0, u1, u2, u3, u4) = 0,
Qδ,4(u0, u1, u2, u3, u4) = 0.

Lemma 17. Let C : y2 = f(x) be a curve of genus 2 over a number field K,
with f(x) quintic, let δ ∈ A∗, where A = K[θ] = K[x]/(f(x)), and let Vδ be as
in (3). Then Vδ is smooth, and so is a degree 4 del Pezzo surface. Furthermore, the
characteristic polynomial of Vδ is f(x), up to multiplication by a nonzero constant
and invertible linear change in variable.
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Proof. Let δ = δ0 + δ1θ + . . . + δ4θ
4, where δ0, . . . , δ4 ∈ K. Let L be the split-

ting field of f(x), so that f(x) = k
∏4

i=0(x − ei), with e0, . . . , e4 ∈ L distinct.
Note that an invertible linear change of variable x induces an invertible linear
change of variables u0, . . . , u4 on Vδ; similarly any invertible linear change of of
variables u0, . . . , u4 or any change in choice of defining equations for Vδ induces an
invertible linear change of variable on the characteristic form det(tM1 + uM2) of
Vδ (where, as usual, M1,M2 are the matrices representing the two quadratic forms
which give the defining equations for Vδ). Therefore, it is permissible to perform
invertible linear changes of variable and to make any choice for the pair of defining
equations of Vδ.

First inject A∗ = K[θ]∗ into five copies of L∗ via θ 7→ [e0, . . . , e4]. Then our
equation (2), which we write as

x1x2 − (x1 + x2)θ + θ2 = δ

(
4∑

i=0

uiθ
i

)2

,

becomes the system of equations

x1x2 − (x1 + x2)ej + e2
j = dj

(
4∑

i=0

uie
i
j

)2

, for j = 0, . . . , 4,

where dj = δ0 + δ1ej + . . . + δ4e
4
j 6= 0 for all j, since δ ∈ A∗. We now perform the

invertible linear change of variable from the ui to vi, given by

(v0, . . . , v4) = (u0, . . . , u4)N,

where N is the 5 × 5 Vandermonde matrix N =
(
ei
j

)
. Then the above system of

equations becomes

(x1x2,−(x1 + x2), 1, 0, 0)N = (d0v
2
0 , . . . , d4v

2
4).

Multiplying both sides on the right by N−1 and equating the last two entries then
gives the defining equations of Vδ as

4∑
i=0

div
2
i

(
N−1

)
i+1,3

= 0,

4∑
i=0

div
2
i

(
N−1

)
i+1,4

= 0,

which is in diagonal form, and the coefficients are the last two columns of N−1.
Computing the last two columns of N−1 and substituting these into the above
equation then gives Vδ defined by

4∑
i=0

div
2
i (ei − s)/

∏
j 6=i

(ei − ej) = 0,
4∑

i=0

div
2
i /
∏
j 6=i

(ei − ej) = 0,

where s = e0 + . . . + e4. Any singularity on Vδ would require the two vectors(
2d0v0(e0 − s), . . . , 2d4v4(e4 − s)

)
,

(
2d0v0, . . . , 2d4v4

)
to be linearly dependent. Since the second defining equation of Vδ has all coefficients
nonzero, any such point must have at least two vi nonzero, and so the above linear
dependency would force two ei to be the same, a contradiction. Hence Vδ is a
smooth intersection of quadrics in P4, and so is a degree 4 del Pezzo surface.
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If we let M1,M2 be the diagonal matrices representing the quadratic forms defin-
ing Vδ, then the characteristic polynomial is given in affine form by

det(M1 + tM2) =
∏4

i=0 di

∆

4∏
i=0

(t + ei − s),

where ∆ is the discriminant of (x− e0) . . . (x− e4). After performing the invertible
linear change in variable x = s− t this becomes a nonzero constant times f(x), as
required. �

If δ ∈ S(2)(J/K), the 2-Selmer group, then Vδ has points everywhere locally. If
Vδ(K) = ∅ due to the Brauer–Manin obstruction, it follows that δ /∈ µ(J(K)) and
will give a member of the 2-part of the Shafarevich–Tate group. We shall give a
family of examples of this type in Section 6.

When δ ∈ S(2)(J/K) and Vδ(K) 6= ∅, and one suspects that δ /∈ µ(J(K)), then
one can attempt to prove this by finding a field extension L such that δ ∈ µ(J(L)).
One can then attempt to visualise the member of the Shafarevich–Tate group, as
described in [3]. We first note that the method in Section 3 has consequences for
the bound on the required degree of the extension.

Lemma 18. Let C : y2 = f(x) be a curve of genus 2 over a number field K, such
that f(x) contains an irreducible factor of degree at least 4. Let δ ∈ S(2)(J/K)
and assume that the Brauer–Manin obstruction is the only obstruction to the Hasse
principle for del Pezzo surfaces of degree 4, as conjectured by Colliot-Thélène and
Sansuc. Then

(1) There exists an imprimitive quartic extension2 L of K such that δ ∈ µ(J(L)),
(2) There exists a hyperelliptic genus 4 cover π : D → C such that π∗(δ) ∈

µ(JD(K)) ⊂ H1(K, JD[2]), i.e., δ is visible in a 4-dimensional abelian
variety.

Proof. Let δ ∈ S(2)(J/K). Then Vδ of (3) has points everywhere locally, and
its characteristic polynomial contains an irreducible factor of degree at least 4.
By Theorem 10, we need a double-four (see Definition 8) defined over Q and by
Remark 9, this requires a Galois-stable set of 3 singular quadrics containing S.
This would imply a factor of degree 3 of the characteristic polynomial. Therefore
Br Vδ/Br k is trivial and so Vδ(K) 6= ∅.

¿From Section 5 of [3] we recall some notation. Let K = J/〈−1〉 be the Kummer
surface of J . Let Tδ be the torsor over J under J [2] corresponding to δ. Therefore,
δ ∈ µ(J(K)) precisely if Tδ has a K-rational point.

In [3] it is shown than Kδ = Vδ ×P2 K is a double cover of Vδ and that Tδ is a
double cover of Kδ. In part 1 we can take L to be the field of definition of a point
over Vδ(K). For part 2, we simply invoke [3, Proposition 3]. �

6. Examples of X

In this section, we derive examples of X[2] on Jacobians of curves of genus 2,
both in the case where the associated del Pezzo surface of degree 4 violates the
Hasse principle, and when this surface has a rational point and X[2] is exhibited
via product varieties. Our examples will all be of the type y2 = f(x), where f(x)
is quintic and has an irreducible factor of degree at least 3.

2An imprimitive quartic extension is a quartic extension with a quadratic subfield. The Galois
group of its splitting field is a subgroup of the dihedral group of order 8.
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Example 19. Let Ht be the hyperelliptic curve

ty2 = f(x) = −(x− 1)(x + 1)(25x3 + 23x2 − 25x− 21).

Then there exists a subset T ⊆ Z with infinite image in Q∗/(Q∗)2 such that, for
t ∈ T , there is an element of exact order 2 in X(Jac(Ht)).

Proof. As usual, define A = Q[θ] = Q[x]/(f(x)), and let

δ = 1298000θ4 − 306890θ3 − 2240341θ2 + 306890θ + 942342.

The del Pezzo surface of degree 4 associated to this choice of δ is equivalent to that
of Example 15 by a rational change of coordinates, and so contains no Q-rational
points, as must then also be true of the principal homogeneous space.

We first claim that this principal homogeneous space is everywhere locally trivial
if:

(a) t > 0, t is a square in Q3, 10t or 15t is a square in Q5, t or 2t is a square
in Q2 and t is a square in Q23 and Q9859, and:

(b) for every prime q greater than 5 dividing t to odd order, the image of

d = 438625β2 − 103840β − 318540

is a square in every completion at a prime above q of the number field Q(β),
where 25β3 + 23β2 − 25β − 21 = 0.

We prove this claim as follows. The condition t > 0 is sufficient (and necessary)
to ensure that the principal homogeneous space be trivial at infinity. To find, for
example, that twisting by 2 gives a locally trivial principal homogeneous space at
2, we start by generating 2-adic points on the twist by 2 and finding their images
under the local descent map. These turn out not to generate the whole space, so,
using Magma, we next compute 2-Selmer groups of twists by n, where n is 2 mod
16. All elements obtained must map to the image of the local 2-descent map, which
has dimension 4 by [15], proposition 2.4. At this point we find that (1, 1, d) is in
the local image mod scalars, so the principal homogeneous space is locally trivial.
Similar considerations apply at the other primes. For the larger primes dividing t,
this condition ensures that δ = (1, 1, d) is a square in Q[x]/(f(x)). In fact, this δ
might be in the image of the local descent map even if d is not a square, so condition
(b) is likely to be too restrictive. In any case, we have proved that (a), (b) above
are sufficient for the principal homogeneous space of δ to be locally trivial.

The fact that there are infinitely many square-free t satisfying conditions (a), (b)
above is a consequence of Dirichlet’s theorem on primes in arithmetic progressions.
For example, we could take t = 10p, where p is a prime that is a square modulo 3
and 5, is not a square modulo 23 or 9859, and is congruent to 5 mod 8. It is easily
seen that such a t will give principal homogeneous spaces with points locally at all
the bad primes and at ∞. The smallest such t is 610. �

For cases when the del Pezzo surface has rational points, there remain the two
other approaches mentioned in the last section: via field extensions and product
varieties. There is already an example computed via field extensions in [3]; however,
it does not seem that any examples have been computed via product varieties. We
provide such an example here.

Example 20. Let C : y2 = x6−5x5+4x4+x−4. Then X(Jac(C)/Q)[2] ' (Z/2Z)2

and Jac(C)(Q) ' Z.
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Proof. First, we put this curve in monic quintic form:

y2 = x5 + 210x4 + 25 · 17 · 769x3 + 24 · 32 · 7692x2 + 19 · 7693x + 7694.

We find S(2)(Jac(C)/Q) ' (Z/2Z)3 and obviously the divisor [(0, 7692) −∞] is a
non-torsion point in Jac(C)(Q). Writing A = Q[θ] for the algebra where we adjoin
a root of the monic quintic above, we see that two elements of S(2)(Jac(C)/Q) that
do not correspond to [(0, 7692)−∞] are

δ1 = 17θ2 + 6152θ + 591361 and δ2 = −15θ2 − 6152θ − 591361.

A direct computation of the Selmer group will probably not produce these repre-
sentatives, but note that in our case, the corresponding del Pezzo surfaces have an
irreducible quintic characteristic polynomial and hence no Brauer–Manin obstruc-
tion. We would therefore expect them to have a rational point and hence δ1 and
δ2 to have representatives that are only quadratic in θ.

In fact, if we put u = x
4x+769 we find another model for C:

C1 : (v1)2 = −(4u− 1)(u5 − u + 1).

In order represent S(2) relative to this u-coordinate, we consider β = θ
769+4θ . We

find β5 − β + 1 = 0 and δ1 = β2 + 1 and δ2 = β2 − 1. This choice of coordinates is
motivated by the fact that for

C2 : v2 = u5 − u + 1

we find that [(1, 1) + (−1, 1)− 2∞] and [(i, 1) + (−i, 1)− 2∞] are rational divisors
and hence that δ1, δ2 ∈ S(2)(Jac(C2)/Q) as well.

We consider the fibre product D := C1×u C2. Putting (w/2)2 = −(u− 1/4), we
obtain a model

D : (v/25)2 = −w10 + 5w8 − 10w6 + 10w4 + 251w2 + 769.

Using [3, Proposition 3] we see that if δ1, δ2 ∈ S(2)(Jac(C)/Q) come from
Jac(C)(Q) then δ1, δ2 ∈ Nw/u(S(2)(Jac(D)/Q)).

In principle, doing a 2-descent on the Jacobian of a hyperelliptic curve of genus 4
is completely analogous to doing that for a genus 2 curve. The main difficulty is in
determining whether the Cassels kernel, i.e., the kernel of the map from the proper
2-Selmer group to the fake 2-Selmer group (see [17]), is trivial or not: it is trivial
if the curve has an odd degree Weierstrass place or when the Weierstrass locus
consists of two quadratic conjugate loci. The latter can be checked by determining
whether the following resolvent has any roots.

Let θ1, . . . , θ10 be the points of the Weierstrass locus over an algebraic closure.
Then we define

R =
∏

(X − (θi1 · · · θi5 + θj1 · · · θj5)) ,

where the product is taken over all possible partitions of {1, . . . , 10} into two un-
labeled sets {i1, . . . , i5} and {j1, . . . , j5}. The polynomial R is symmetric in the
θi and hence will have rational coefficients. However, deg(R) = 126, which makes
it rather hard to compute generically. Instead, we compute R over several finite
fields (where the splitting fields have manageable degrees) and use the Chinese
Remainder Theorem to reconstruct the polynomial R over Z.

If R is square-free then the degree 10 polynomial splits in two quadratic conju-
gate factors if and only if R has a root. If R is not square-free, then we apply a
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transformation to u, which does not change the factorization type, and compute R
again.

We can use the resolvent thus obtained and perform a 2-descent on Jac(D) as
usual to compute that S(2)(Jac(D)/Q) = (Z/2)3. and that Nw/u(S(2)(Jac(D)(Q)) =
{1}. We conclude, either by using that the rank of Jac(D) is the sum of the ranks
of Jac(C) and Jac(C1) or by using [3, Proposition 6] that δ1 and δ2 do not represent
elements from the Mordell-Weil group in S(2)(Jac(C)/Q). See [2] for a transcript
of a Magma session performing these calculations. �
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[10] B. È. Kunyavskĭı, A. N. Skorobogatov, and M. A. Tsfasman. Del Pezzo surfaces of degree
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