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Abstract

An explicit description is given of the group law on the Jacobian of a curve C of genus

2. The Kummer surface provides a useful intermediary stage; bilinear forms relating to the

Kummer surface imply that the global group law may be given projectively by biquadratic

forms defined over the same ring as the coefficients of C. It is not assumed that C has a

rational Weierstrass point, and the theory presented applies over an arbitrary ground field.

§0. Introduction

In [8] an explicit embedding in P15 is described of the Jacobian of a curve of genus

2 over an arbitrary ground field. The defining equations are 72 quadratic forms defined

over the ground field ([8], Appendix A). It is the main aim of this paper to describe the bi-

quadratic equations which define the group law on the Jacobian. Although these equations

are too large to be written down, we shall give explicit bilinear forms (in Appendix B)

relating to the Kummer surface from which the required biquadratic forms may be derived

for any given specialisation. These forms, together with the defining equations of [8] will

complete the explicit description of the Jacobian of a general curve of genus 2 as an Abelian

variety. Considerable care will be taken to ensure that all maps and equations are defined

over the ground field, and C will have the general sextic (rather than quintic) form. This

has the drawback of increasing the sheer size of the algebra; however, in compensation,

the results will have both a more general applicability and a more pleasing symmetry of

structure. An example of this additional symmetry is given by the transformation ˘ in

equation (12) of Section 3, which does not exist in the quintic situation (where the Weier-

strass point at infinity is given an artificial special status). Before describing our forms,

we shall first provide some motivation for our generalisations and give a few examples by

way of illustration.

* The author thanks SERC for financial support.



A general curve of genus 2 can be written in the form: Y 2 = sextic in X, and such

a curve is reducible to the form Y 2 = quintic in X if and only if the original sextic has

a rational root. In the general sextic case, a P15 embedding of the Jacobian variety is

required, whereas in the quintic case, one can use a P8 embedding [9]. Our reasons for

developing an explicit P15 theory fall into two categories: first, most of the examples likely

to arise in the near future will not have a rational Weierstrass point (and so will require the

P15 development); second, the P15 development gives rise to structures which are more

natural in appearance (regardless of whether the curve is in quintic or sextic form), and

which will provide a better base for the further development of an explicit theory in genus

2 (and higher).

Bost and Mestre in [2] have recently publicised curves of the form: Y 2 =

g(X)h(X)i(X), where g(X), h(X), i(X) are quadratics. It is almost certain that most

arithmetic progress in the near future will be on curves such as:

C : Y 2 = (X2 + 1)(2X2 + 1)(X2 +X + 1) (∗)

where g(X), h(X), i(X) are defined over Q. Such a curve is only reducible (over Q) to

quintic form if one of the quadratic factors splits onto two linear factors (for example, (∗)

is not reducible to quintic form). A curve such as (∗) is of particular interest since its

Jacobian is isogenous to that of a related curve of the same form. For example, (∗) has

Jacobian isogenous to that of: Ĉ : Y 2 = −2X(X−1)(2X2 +2X−1). It is a highly unusual

curve C for which both C and Ĉ have a rational Weierstrass point, and so at least one of C

or Ĉ (and usually both) will be intractably in sextic form. We do not develop isogenies here

(see [2] for a geometric development), but it is clear that a theory of the Jacobian which

can handle the sextic situation is a prerequisite for their further arithmetic investigation.

The P8 and P15 embeddings of the Jacobian for genus 2 are somewhat analogous to,

respectively, the embeddings: (1, X, Y ) in P2 and (1, X, Y,X2) in P3 of an elliptic curve.

We observe that, for the (1, X, Y,X2) embedding, addition by a point of order 2 is a linear

map, the group law is a biquadratic map, and its restriction to the projective x-coordinate

of the image is a bilinear map. None of these are true for the (1, X, Y ) embedding. In

genus 2, precisely the same types of maps occur in the P15 development (and do not in the

P8 situation), and it is the main purpose of this article to describe them explicitly. The
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more systematic and elegant theory which arises on P15 is also more likely to generalise in

the future to higher genus, since the underlying linear algebra will merely require higher

dimensional matrices (as opposed to P8, where the linear and quadratic maps are lost).

By retaining the full set of 10 even and 6 odd functions, we preserve the elegant forms

of the analytic theory [11], while still taking care to retain the arithmetic information

of the original curve. As evidence of the value of retaining quadratic maps, we consider

addition by a typical fixed divisor such as D0 = {(0, 1), (0, 1)} on the Jacobian of the

curve in (∗). Let D be any divisor on the Jacobian and let κ(D) = (k1, k2, k3, k4) be

its image on the Kummer surface (where κ is defined by equation (6) in Section 2). Let

κ(D + D0) = (k′1, k
′
2, k

′
3, k

′
4). Then it is immediate from specialising the quadratic and

bilinear forms of Sections 2 and 3 that:

max
(
|k′1|, |k′2|, |k′3|, |k′4|

)
6 186502max

(
|k1|, |k2|, |k3|, |k4|

)2
.

An inequality of this type can clearly be derived for any curve of genus 2 and any D0, and

is highly reminiscent of the height on the projective x-coordinate of an elliptic curve. We

also note that the duplication law of the Kummer surface (Corollary 3.8 and Appendix C)

is very similar in appearance to that of the x-coordinate of an elliptic curve.

It also seems likely that the equations in the appendices will give a more efficient

method of performing the group law in genus 2. There are two main contexts in the math-

ematics of computation where higher dimensional group laws arise: algebraic integration

[7] and the factorisation of large integers [1]. In both cases, many applications of the group

law are performed for a particular curve over Z. We observe that most of the multiplica-

tions and additions in the large forms of the appendices need only be calculated once for

any given curve. There is also the advantage (over direct manipulation of divisors) that

all calculations are projective, and so no time consuming divisions are required. By way

of illustration, if k = (k1, k2, k3, k4) is a point on the Kummer surface of the curve in (∗),

and (δ1, δ2, δ3, δ4) = 2k, then specialising the equations of Appendix C gives:

δ1 = −296k4
1 − 272k3

1k2 +128k3
1k3− 68k3

1k4− 536k2
1k

2
2 − 312k2

1k2k3− 64k2
1k2k4− 864k2

1k
2
3 −

16k2
1k3k4 + 16k2

1k
2
4 − 192k1k

3
2 − 208k1k

2
2k3 − 104k1k

2
2k4 − 480k1k2k

2
3 − 112k1k2k3k4 −

80k1k
3
3 − 152k1k

2
3k4 + 4k1k

3
4 − 144k4

2 − 208k3
2k3 − 16k3

2k4 − 800k2
2k

2
3 − 128k2

2k3k4 −

560k2k
3
3 − 144k2k

2
3k4 − 8k2k3k

2
4 − 880k4

3 − 288k3
3k4 − 24k2

3k
2
4
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δ2 = −13k4
1 + 60k3

1k2 − 38k3
1k3 + 12k3

1k4 + 12k2
1k

2
2 + 180k2

1k2k3 + 86k2
1k2k4 − 357k2

1k
2
3 −

96k2
1k3k4 + 4k2

1k
2
4 − 8k1k

3
2 + 192k1k

2
2k3 + 56k1k

2
2k4 + 264k1k2k

2
3 + 166k1k2k3k4 +

32k1k2k
2
4 +20k1k

3
3−84k1k

2
3k4−24k1k3k

2
4−24k4

2 +8k3
2k3+8k3

2k4+48k2
2k

2
3 +80k2

2k3k4+

15k2
2k

2
4 + 120k2k

3
3 + 140k2k

2
3k4 + 40k2k3k

2
4 + 4k2k

3
4 − 44k4

3 + 24k3
3k4 + 8k2

3k
2
4

δ3 = −296k4
1 − 244k3

1k2− 40k3
1k3− 120k3

1k4− 412k2
1k

2
2 − 288k2

1k2k3− 72k2
1k2k4− 672k2

1k
2
3 −

92k2
1k3k4 − 12k2

1k
2
4 − 152k1k

3
2 − 176k1k

2
2k3 − 80k1k

2
2k4 − 312k1k2k

2
3 − 88k1k2k3k4 −

4k1k2k
2
4 + 160k1k

3
3 − 16k1k

2
3k4 − 120k4

2 − 192k3
2k3 − 16k3

2k4 − 640k2
2k

2
3 − 104k2

2k3k4 −

352k2k
3
3 − 64k2k

2
3k4 − 568k4

3 − 104k3
3k4 + 20k2

3k
2
4 + 4k3k

3
4

δ4 = 1429k4
1+1232k3

1k2−56k3
1k3+528k3

1k4+2340k2
1k

2
2+1632k2

1k2k3+360k2
1k2k4+3456k2

1k
2
3+

336k2
1k3k4+34k2

1k
2
4 +848k1k

3
2 +1248k1k

2
2k3+528k1k

2
2k4+1776k1k2k

2
3 +504k1k2k3k4+

16k1k2k
2
4−272k1k

3
3 +384k1k

2
3k4 +32k1k3k

2
4 +604k4

2 +992k3
2k3 +96k3

2k4 +3384k2
2k

2
3 +

624k2
2k3k4+16k2

2k
2
4+1952k2k

3
3+432k2k

2
3k4+16k2k3k

2
4+3436k4

3+1008k3
3k4+52k2

3k
2
4+k4

4

For example, κ(D0) = (4, 0, 0,−15) and 2(4, 0, 0,−15) = (−6896,−448,−3776, 31969). We

can simplify the form of the above duplication law still further by a change of basis:

k =


1 2 1 0
0 0 −1 0
1 1 1 0
−6 −9 −6 −1

 s,

in which the above duplication law can be rearranged as 2(s1, s2, s3, s4) = (ξ1, ξ2, ξ3, ξ4),

where:

ξ1 = −112z2
1 − 328z1z2 − 208z1z3 − 4z1z4 − 240z2

2 − 312z2z3 − 8z2z4 − 96z2
3 − 4z3z4

ξ2 = 48z2
1 + 136z1z2 + 96z1z3 + 96z2

2 + 144z2z3 + 48z2
3 + 4z3z4

ξ3 = −80z2
1 − 232z1z2 − 152z1z3 − 4z1z4 − 168z2

2 − 216z2z3 − 4z2z4 − 72z2
3 − 4z3z4

ξ4 = 476z2
1 +1392z1z2 +888z1z3 +24z1z4 +1020z2

2 +1296z2z3 +36z2z4 +420z2
3 +24z3z4 +z2

4

where:

z1 = 3s2s3 + s1s4, z2 = s1s3 + s2s4, z3 = s1s2 + s3s4, z4 = s21 + 3s22 + 3s23 + s24.

which requires fewer multiplications and additions. A further computational motiva-

tion is that the forms of Section 3 give a more efficient method of deriving terms of

the formal group, which will have significance when it comes to using local techniques

on the Jacobian to solve Diophantine problems on the original curve. The structure

of the article is as follows.
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Section 1 summarises the definitions and main results of [8]: the defining equations

of the Jacobian, a pair of local parameters and the induced formal group. Section 2

concentrates on the Kummer surface. Quite apart from the usefulness of the Kummer

surface as a stepping stone towards the Jacobian, we hope that some of the structure

presented will be of independent interest. The Kummer surface in P3 is computationally

easier to deal with than the Jacobian variety, while still retaining some of the essential

structures, such as the notion of addition by a point of order 2, and a multiplication-by-m

map. Finally, Section 3 discusses the bilinear and biquadratic forms which define the group

law on the Jacobian; a fringe benefit is a more elementary derivation of the formal group

than the development in [8]. The identities of Sections 2 and 3 are difficult to derive, but

are comparatively easy to verify once found. We give a detailed derivation of the most

straightforward of these (addition by a point of order 2 on the Kummer surface); however,

finding the bilinear forms of Section 3 required a considerable period of programming in

the symbolic algebra languages Reduce and Maple, and involved the manipulation of large

files (up to 4 MBytes) of algebraic expressions. Therefore, it is not possible to present the

full mechanical details of their derivation, although we do give a general description of the

computational methodology.

Sections 2 and 3 describe collaborative work with J.W.S. Cassels. He also found

the method of deriving the even-even terms of the bilinear forms using Lemma 2.1 which

corroborated the values I had already more painfully obtained (using Methods 1 and 2 of

Section 3).

§1. Preliminary Definitions

In this section, we summarise the relevant definitions and results of [8]. We shall work

with a general curve C of genus 2, over a ground field K of characteristic not equal to 2, 3

or 5, which may be taken to have hyperelliptic form

C : Y 2 = F (X) = f6X
6 + f5X

5 + f4X
4 + f3X

3 + f2X
2 + f1X + f0 (1)

with f0,. . .,f6 in K, f6 6= 0, and the discriminant ∆(F ) 6= 0. Note that we do not assume

the existence of a rational Weierstrass point, and so much of the analytic theory [13] is not

directly applicable, although it still provides useful motivation.
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We let Pic0(C) denote the Picard group of C; that is, the group of divisors of C of degree

0 modulo linear equivalence [14]. It is convenient (following [6]) to represent any element of

Pic0(C) by an unordered pair of points {(x1, y1), (x2, y2)} on C, where we also allow +∞ and

−∞ (the 2 branches of the singularity of C at infinity) to appear in the unordered pair. This

representation is unique except that we must identify all pairs of the form {(x, y), (x,−y)}

to give the canonical equivalence class, which we denote by O. Generically, three such

elements will sum to O if there is a function of the form Y − (cubic in X) which meets C

at all 6 component points. The Mordell–Weil group, Pic0
K(C), is the subgroup invariant

under Galois action. In our representation, it consists of pairs of points which are either

both defined over K, or are conjugate over K and quadratic.

As a group, Pic0(C) may be identified with the Jacobian of C. We may give the

Jacobian the structure of a smooth projective variety of dimension 2 by a classical blowing

down of O. Let Θ+, Θ− be the images of C in the Jacobian via the embeddings P 7→

P − (+∞) , P 7→ P − (−∞) , respectively. Then, by a theorem of Lefschetz, ([12], p.105),

a basis of L
(
2(Θ+ + Θ−)

)
gives the desired projective embedding of the Jacobian. This

is equivalent to the space of symmetric functions on C × C which have at most a double

pole at infinity (that is to say, of degree at most 2 in each of X1, X2) , a pole of any

order at O, and are regular elsewhere. Such functions form a vector space of dimension

`
(
2(Θ+ + Θ−)

)
= 42 = 16. We reproduce the following basis from [8], p.427.

Definition 1.1. Let the map J : Pic0(C) → P15 take D = {(x1, y1), (x2, y2)} ∈ Pic0(C) to

a = (a0, . . . a15), where a0, . . . a15 is the following basis of L
(
2(Θ+ +Θ−)

)
, given in reverse

order.

Regular at O:

a15 = 1, a14 = x1 + x2, a13 = x1x2, a12 = x1
2 + x2

2, a11 = x1x2(x1 + x2), a10 = (x1x2)2.

Simple pole at O:

a9 = (y1 − y2)/(x1 − x2), a8 = (x2y1 − x1y2)/(x1 − x2),

a7 = (x2
2y1 − x2

1y2)/(x1 − x2), a6 = (x3
2y1 − x3

1y2)/(x1 − x2).
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Double pole at O:

a5 = (F0(x1, x2)− 2y1y2)/(x1 − x2)2,

a4 = (F1(x1, x2)− (x1 + x2)y1y2)/(x1 − x2)2,

a3 = (x1x2)a5,

where

F0(x1, x2) =2f0 + f1(x1 + x2) + 2f2(x1x2) + f3(x1x2)(x1 + x2)

+ 2f4(x1x2)2 + f5(x1x2)2(x1 + x2) + 2f6(x1x2)3,

F1(x1, x2) =f0(x1 + x2) + 2f1(x1x2) + f2(x1x2)(x1 + x2) + 2f3(x1x2)2

+ f4(x1x2)2(x1 + x2) + 2f5(x1x2)3 + f6(x1x2)3(x1 + x2).

Triple pole at O:

a2 = (G0(x1, x2)y1 −G0(x2, x1)y2)/(x1 − x2)3,

a1 = (G1(x1, x2)y1 −G1(x2, x1)y2)/(x1 − x2)3,

where

G0(x1, x2) =4f0 + f1(x1 + 3x2) + f2(2x1x2 + 2x2
2) + f3(3x1x

2
2 + x3

2)

+ 4f4(x1x
3
2) + f5(x2

1x
3
2 + 3x1x

4
2) + f6(2x2

1x
4
2 + 2x1x

5
2),

G1(x1, x2) =f0(2x1 + 2x2) + f1(3x1x2 + x2
2) + 4f2(x1x

2
2) + f3(x2

1x
2
2 + 3x1x

3
2)

+ f4(2x2
1x

3
2 + 2x1x

4
2) + f5(3x2

1x
4
2 + x1x

5
2) + 4f6(x2

1x
5
2).

Quadruple pole at O:

a0 = a2
5.

The embedding of the Jacobian in P15, given by the image of J , will be denoted J(C).

The canonical divisor class O is mapped by J to (1, 0, . . . , 0). Note that the Mordell-

Weil group Pic0
K(C) is mapped into P15(K). The following result from [8] gives J(C) the

structure of a variety.

Theorem 1.2. The 72 quadratic forms over Z[f0, . . . , f6] given in Appendix A of [8] are

a set of defining equations for the projective variety given by the embedding of Definition

1.1.
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The forms of Theorem 1.2 have been chosen so as to be homogeneous with respect to

the following weights on X, Y and f1, . . . , f6.

Definition 1.3. Let

wt1(X) = 0, wt1(Y ) = 1, wt1(fi) = 2, for all i,

wt2(X) = 1, wt2(Y ) = 0, wt2(fi) = −i, for all i.

Then C is homogeneous with respect to either weight. Each ai is homogeneous with respect

to the induced weights:

wt1 :
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

4 3 3 2 2 2 1 1 1 1 0 0 0 0 0 0

wt2 :
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

−4 −2 −3 0 −1 −2 2 1 0 −1 4 3 2 2 1 0

We also introduce the notion of localised coordinates: si = ai/a0 for i = 1, . . . , 15.

Each si has induced weights: wtj(si) = wtj(ai)−wtj(a0) for j = 1, 2. Each of the quadratic

forms of Theorem 1.2 may be divided by a2
0 and expressed in terms of s0, . . . , s15. A process

of recursive substitution (as described in [8], p.429) then allows each si to be written as

formal power series over Z[f0, . . . , f6] in the pair of local parameters s1, s2. For example

s10 = s41 − 2f0s21s
4
2 − 2f4s61 + . . . (2)

In order to classify the various forms and power series in the coming sections without

being overwhelmed by algebra, it is useful to introduce a notion of initial part.

Definition 1.4. Let a,b, c, . . . ∈ J(C) with projective coordinates ai, bi, ci, . . . and local

coordinates si, ti, ui . . . respectively. Let σ be a form in ai, bi, ci . . . or a power series in

si, ti, ui . . . defined over Z[f0, . . . f6]. Then the initial part of σ is σ modulo f0, . . . f6. We

say σ1 ≈ σ2 if σ1 and σ2 have the same initial part.

For example, the defining equation (A.27) in [8]:

a2a13 = a5a7 − 2f0a9a15 − f1a8a15 (3)

has initial part: a2a13 − a5a7. Alternatively, we may write: a2a13 ≈ a5a7. Similarly,

the local power series expansion in (2) above can be shortened to: s10 ≈ s41. We observe

8



that any power series expansion of si in terms of the local parameters s1, s2 must be

uniquely determined by its initial part (since if there were two with the same initial part,

their difference would give a non-trivial relationship between the local parameters). The

local power series expansions of the local coordinates s0 . . . s15 in terms of s1, s2 have the

following initial parts ([8], p.432).

s0 ≈ 1, s1 ≈ s1, s2 ≈ s2, s3 ≈ s21,

s4 ≈ s1s2, s5 ≈ s22, s6 ≈ s31,

s7 ≈ s21s2, s8 ≈ s1s
2
2, s9 ≈ s32,

s10 ≈ s41, s11 ≈ 2s31s2, s12 ≈ 2s21s
2
2,

s13 ≈ s21s
2
2, s14 ≈ 2s1s32, s15 ≈ s42,

(4)

Note that the notion of initial part given in Definition 1.4 relies on the curve C having

non-specialised coefficients f0, . . . f6. However, since all of the forms and power series to

be discussed will have a non-trivial initial part, we may describe an equivalent definition

by first defining a variant of wt1. Namely, let WT1 agree with wt1 on the ai, bi, ci, . . . and

si, ti, ui, . . ., but WT1(fi) = 0. The defining equations (1.1) and the local power series

are not homogeneous in WT1, and it is equivalent to Definition 1.4 to define the initial

part to be the terms of lowest WT1. For power series entirely in terms of local parameters

(s1, s2, t1, t2, . . .) such as (4), this is also equivalent to ‘polynomial of lowest degree in the

local parameters’. The large expressions required to describe the group law in Sections 2

and 3 will, for simplicity, be abbreviated to initial parts in the main body of the text, with

the complete equations given in the appendices.

We conclude the section with the result from [8] (p. 433) that the formal group induced

by the local parameters s1, s2 is defined over the same ring as the coefficients of C.

Theorem 1.5. Let a,b, c ∈ J(C) be such that c = a + b. Further, let s1 = a1/a0, s2 =

a2/a0, t1 = b1/b0, t2 = b2/b0, u1 = c1/c0, u2 = c2/c0 (the local parameters of a,b, c,

respectively). Then there is a formal group law F =
(
F1

F2

)
where F1,F2 are power series

in s1, s2, t1, t2 defined over R = Z[f0, . . . , f6]. If f0, . . . , f6 all lie in a (non-Archimedean)

valuation ring, and a,b both lie in the following neighbourhood of the origin:

N = {a ∈ J(C) : |si| < 1, for 1 6 i 6 15} (5)
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then F1,F2 converge, and u1 = F1(s1, s2, t1, t2), u2 = F2(s1, s2, t1, t2)

§2. The Kummer Surface

The 16 functions of Definition 1.1 may be divided into 10 even functions:

a0, a3, a4, a5, a10, a11, a12, a13, a14, a15, and 6 odd functions: a1, a2, a6, a7, a8, a9. Note that,

if a = J
(
{(x1, y1), (x2, y2)}

)
, then negation: −a = J

(
{(x1,−y1), (x2,−y2)}

)
, leaves the 10

even functions unchanged and negates the 6 odd functions, so that

−a = (a0,−a1,−a2, a3, a4, a5,−a6 − a7,−a8,−a9, a10, a11, a12, a13, a14, a15)

Of the 10 even functions, there are 4 functions: a5, a13, a14, a15 which give a basis for

L
(
(Θ+ + Θ−)

)
. These provide a basis in P3 for the Kummer surface. For convenience, we

introduce the labelling: k1 = a15, k2 = a14, k3 = a13, k4 = a5, so that:

k1 = 1, k2 = x1 + x2, k3 = x1x2, k4 = (F0(x1, x2)− 2y1y2)/(x1 − x2)2 (6)

where F0(x1, x2) is as defined in 1.1. We let K(C) represent the image of the map κ on

J(C) which takes (a0, . . . , a15) to (k1, k2, k3, k4). The map κ identifies ±. Points of order 2

are injected into K(C); all other points k = κ(a) in K(C) have precisely ±a as preimages.

The functions in (6) satisfy the homogeneous quartic:

R(k1, k2, k3)k2
4 + S(k1, k2, k3)k4 + T (k1, k2, k3) = 0 (7)

where R,S, T are forms of degree 2, 3, 4, respectively, defined over Z[f0, . . . , f6]. These are

given explicitly in Appendix A. The initial part of this equation is: (k2
2 − 2k1k3)k2

4. It is

clearly desirable to work as much as possible on the simpler Kummer surface in P3 rather

than the Jacobian variety in P15. Therefore we now consider what structure is preserved

by the map κ into the Kummer surface.

First, if a,b ∈ J(C) and b is of order 2, then a + b = a − b, so that κ(a + b) =

κ(a − b) = κ(−a + b) = κ(−a − b). Therefore, in general, κ(a + b) depends only on

κ(a), κ(b), and it is unambiguous to define κ(a) + κ(b) = κ(a + b), which constitutes

‘addition by a point of order 2’ on the Kummer surface. Note that, over the algebraic
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closure, the divisors of order 2 are simply pairs of distinct roots of the sextic in (1); that

is, {(x3, 0), (x4, 0)}. Let us assume for the moment that b is a rational point of order 2 on

J(C). A typical such b may be represented by a rational quadratic factor of the sextic in

C. We temporarily assume that our curve has the form

Cg : Y 2 = g(X)h(X) = (g2X2 + g1X + g0)(h4X
4 + h3X

3 + h2X
2 + h1X + h0) (8)

and take b = bg = J({(x3, 0), (x4, 0)}), where x3, x4 are the roots of the quadratic g2X2 +

g1X+g0. Having fixed bg, we have an involution on the Jacobian W g : a → a+bg, which

induces an involution on the Kummer surface:

W g : K(Cg) → K(Cg) : k 7→ k + κ(bg). (9)

We wish to express W g as a linear map. Here, the expressions are small enough that we

can derive the map with the following ‘pen and paper’ computation.

Let κ = K
(
{(x1, y1), (x2, y2)}

)
. To find k′ = k+κ(bg), we first construct the function

Y = Υ(X), a cubic in X, which passes through (x1, y1), (x2, y2), (x3, 0), (x4, 0). This is

given by:

Y = Υ(X) = g(X)L(X)

where L(X) = AX +B, with

A =
( y1
g(x1)

− y2
g(x2)

)
/(x1 − x2), B =

( x1y2
g(x2)

− x2y1
g(x1)

)
/(x1 − x2).

Substituting Y = Υ(X) into Cg gives:

(
g(X)

)2(AX +B)2 = g(X)h(X).

On dividing out by g(X) and multiplying through by g(x1)g(x2)(x1 − x2)2, and replacing

each occurrence of y2
i by g(xi)h(xi), i = 1, 2, this can be rearranged to give:

τ1(X,x1, x2)− 2y1y2(X − x1)(X − x2)g(x) = 0

where τ1(X,x1, x2) is the polynomial

g(X)g(x1)h(x2)(X − x2)2 − g(x1)g(x2)h(X)(x1 − x2)2 + g(x2)g(X)h(x1)(X − x1)2.
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We observe that τ1 is invariant under X ↔ x1 and X ↔ x2, and so has (X−x1), (X−x2)

as factors. We can now write:

τ1(X,x1, x2) = (X − x1)(X − x2)τ2(X,x1, x2)

where τ2 is defined over Z[g0, g1, g2, h0, h1, h2, h3, h4], is quadratic in X and cubic in each

of x1, x2. It follows that the roots of the quadratic

τ2(X,x1, x2)− 2y1y2g(X) = 0

are the x-coordinates of the divisor on J(C) corresponding to a + bg. The function

τ2(X,x1, x2)− 2y1y2g(X) has a zero of order 2 at (x1, y1) = (x2, y2) and so the quadratic

in X: (
τ2(X,x1, x2)− 2y1y2g(X)

)
/(x1 − x2)2 = PX2 −QX +R

has a pole only at O, and is of degree one at infinity. Taking k′ = (k′1, k
′
2, k

′
3, k

′
4) =

k + κ(bg), we see that (k′1, k
′
2, k

′
3) = (P,Q,R) as projective triples, and that P,Q,R ∈

L(Θ++Θ−). Since k1, k2, k3, k4 gives a basis for L(Θ++Θ−), we can easily write (k′1, k
′
2, k

′
3)

as a Z[g0, g1, g2, h0, h1, h2, h3, h4]-linear map on k. This map may be extended to k′4 by

expressing k′4 as rational function in k′1, k
′
2, k

′
3 and rewriting this expression as a linear

combination of k1, k2, k3, k4. We may summarise the above by the following Lemma.

Lemma 2.1. Let C be as in (8), and W g be the ‘addition by a point of order 2’ involution

given in (9). Then there is a matrix (W g
ij) ∈ M4(Z[g0, g1, g2, h0, h1, h2, h3, h4]) such that

for any k =


k1
k2
k3
k4

 ∈ K(C), W g(k) = (W g
ij)k.

The matrix (W g
ij) is written out explicitly in Appendix A. We note that, since (W g

ij)

represents an involution in P3, its square gives a scalar multiple of the identity. This

property can be used as an alternative means of extending the linear map from (k′1, k
′
2, k

′
3)

to (k′1, k
′
2, k

′
3, k

′
4). In fact, (W g

ij)
2 = R · I, where R is the resultant of g2X2 + g1X + g0 and

h4X
4 + h3X

3 + h2X
2 + h1X + h0.

A second useful piece of structure on the Kummer surface is motivated by a set of

identities of theta functions given in [11]. For any a ∈ J(C), let
(
k1(a), k2(a), k3(a), k4(a)

)
12



represent the image κ(a) on the Kummer surface. Then, the identities of [11] (p.179) imply

that, for i, j ∈ {1, . . . , 4}, the functions

ki(a + b)kj(a− b) + ki(a− b)kj(a + b) (10)

are given projectively by biquadratic forms in the variables
(
k1(a), . . . , k4(a)

)
,(

k1(b), . . . , k4(b)
)

over the algebraic closure. We observe that in the case when C has

the form Cg and b = bg is of order 2, then the forms in (10) are projectively equal to

2ki

(
W g(a)

)
kj

(
W g(a)

)
. By Lemma 2.1, this is a quadratic form in

(
k1(a), . . . , k4(a)

)
,

over the ground field of Cg. If we formally regard the coefficient of each ki(a)kj(a) as

a quadratic form in k1(bg), . . . , k4(bg), we can equate coefficients and derive biquadratic

forms ψij

(
κ(a), κ(b)

)
which are projectively equal to (10) for arbitrary a,b ∈ J(C). We

can do this (infer the general form of ψij for arbitrary b on a general curve C from the

special case bg on Cg) because the 10 products ki(bg)kj(bg) are linearly independent over

Q(f0, . . . , f6). The above discussion may be summarised by the following lemma.

Lemma 2.2. For a,b ∈ J(C), let κ(a) =
(
k1(a), . . . , k4(a)

)
, κ(b) =

(
k1(b), . . . , k4(b)

)
∈

K(C). Then, for i, j ∈ {1, . . . , 4}, there exist biquadratic forms ψij defined over Z[f0, . . . , f6]

such that the 4×4 matrix
(
ψij

(
κ(a), κ(b)

))
is projectively equal to

(
ki(a+b)kj(a−b)+

ki(a− b)kj(a + b)
)
.

It will be seen that the forms ψij are easily derivable from the bilinear forms of the

next section, and so we have not given them explicitly.

Finally, since (±ma) = m(±a), it follows that the multiplication-by-m map may

legitimately be defined on the Kummer surface by: mκ(a) = κ(ma). In particular, the

duplication map may be given by quartic forms defined over Z[f0, . . . , f6]. As with the

forms of Lemma 2.2, these will be explicitly derived from the bilinear forms of the next

section.

§3. The Group Law

In this section we shall present a 4× 4 matrix of bilinear forms on the Jacobian which

will provide both a description of the group law and an explicit derivation of the forms
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mentioned at the end of Section 2. We first describe an isomorphism between the Kummer

surface and the 10 even coordinates of the Jacobian embedding.

Lemma 3.1. Let a ∈ J(C) and let E(C) represent the image of J(C) under the restriction

map to the 10 even functions:

(a0, . . . , a15) 7→ (a0, a3, a4, a5, a10, a11, a12, a13, a14, a15).

Then K(C) ∼= E(C) under the following isomorphism (for k = (k1, k2, k3, k4) ∈ K(C)):

ρ : K(C) 7→ E(C)

: k 7→ (ρ0(k), ρ3(k), ρ4(k), ρ5(k), ρ10(k), ρ11(k), ρ12(k), ρ13(k), ρ14(k), ρ15(k))

where:

ρ0(k) = k2
4, ρ3(k) = k3k4, ρ4(k) =

1
2
(k2k4 − f1k

2
1 − f3k1k3 − f5k

2
3), ρ5(k) = k1k4

ρ10(k) = k2
3, ρ11(k) = k2k3, ρ12(k) = k2

2−2k1k3, ρ13(k) = k1k3, ρ14(k) = k1k2, ρ15(k) = k2
1.

Further, if e = (a0, a3, a4, a5, a10, a11, a12, a13, a14, a15) is in E(C), then for j ∈ {1, . . . , 4},

the map:

θi : E(C) 7→ K(C) : e 7→
(
θi
1(e), θi

2(e), θi
3(e), θi

4(e)
)

gives the inverse of ρ, where the matrix (θi
j

(
(e)

)
is given by:

a15 a14 a13 a5

a14 a12 + 2a13 a11 2a4 + f1a15 + f3a13 + f5a10

a13 a11 a10 a3

a5 2a4 + f1a15 + f3a13 + f5a10 a3 a0

 .

The linear maps on E(C) which give the inverse of ρ are precisely the Z[f0, . . . , f6]-linear

combinations of the rows θ1, . . . , θ4.

We also observe that, for any pair of odd functions ai, aj (not necessarily distinct),

there exists a defining equation on J(C) ([8], Appendix A) of the form:

aiaj = Eij(a0, a3, a4, a5, a10, a11, a12, a13, a14, a15). (11)

where each Eij (for i, j ∈ {1, 2, 6, 7, 8, 9}) is a quadratic form in the 10 even functions.

Therefore, given (a0, a3, a4, a5, a10, a11, a12, a13, a14, a15) in E(C), the square of any odd
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function, a2
i , is uniquely determined by Eii, and so ai is determined up to a choice of

sign. Having fixed one of the non-zero odd functions, a1 say, the equations E1j (for

j = 2, 6, 7, 8, 9) uniquely determine the remaining odd functions. This gives a natural

route from a point k ∈ P3 on the Kummer surface to its two preimages ±a ∈ P15 on the

Jacobian variety. Namely, K(C) → E(C) (by ρ), which then has two extensions to J(C) via

(11).

We shall now give the main result of the section. It will not be possible to give

the details of the derivation, but we shall follow the statement by a sketch of the main

computational techniques.

Theorem 3.2. Let a,b, c ∈ J(C) be such that c = a + b. Then there exists a 4 × 4

matrix of bilinear forms
(
φij(a,b)

)
defined over Z[f0, . . . , f6] which is projectively equal

to the matrix
(
ki(a − b)kj(a + b)

)
. For each fixed i ∈ {1, . . . , 4}, we have: κ(c) =(

φi1(a,b), φi2(a,b), φi3(a,b), φi4(a,b)
)
.

Much of the structure of the bilinear forms
(
φij(a,b)

)
is more clearly summarised by

the behaviour of their initial parts; we list only the initial parts here, with the entire forms

in a file (available by anonymous ftp) named in Appendix B.

φ11(a,b) ≈ a0b15 − 2a5b5 + a15b0

φ12(a,b) ≈ a0b14 + 2a1b9 − 2a2b8 − 2a4b5 − 2a5b4 − 2a8b2 + 2a9b1 + a14b0

φ13(a,b) ≈ b13a0 + a13b0 − 2a7b2 − 4a4b4 + a5b3 + a3b5 − 2b7a2 + 2b8a1 + 2a8b1

φ14(a,b) ≈ −2a2b2 + b0a5 + a0b5

φ21(a,b) ≈ a0b14 − 2a1b9 + 2a2b8 − 2a4b5 − 2a5b4 + 2a8b2 − 2a9b1 + a14b0

φ22(a,b) ≈ 2b13a0 + b0a12 + a0b12 + 2a13b0 − 4a5b3 − 4a3b5

φ23(a,b) ≈ −2a3b4 − 2a4b3 + 2a1b7 − 2a2b6 + a0b11 − 2a6b2 + 2a7b1 + a11b0

φ24(a,b) ≈ 2b0a4 + 2a0b4 − 2a1b2 − 2b1a2

φ31(a,b) ≈ a13b0 − 2a8b1 + 2a7b2 + a5b3 − 4a4b4 + a3b5 + 2b7a2 − 2b8a1 + b13a0

φ32(a,b) ≈ −2a3b4 − 2a4b3 − 2a1b7 + 2a2b6 + a0b11 + 2a6b2 − 2a7b1 + a11b0

φ33(a,b) ≈ a0b10 − 2a3b3 + a10b0

φ34(a,b) ≈ a0b3 − 2a1b1 + b0a3
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φ41(a,b) ≈ b0a5 + 2a2b2 + a0b5

φ42(a,b) ≈ 2a0b4 + 2b1a2 + 2a1b2 + 2b0a4

φ43(a,b) ≈ a0b3 + 2a1b1 + b0a3

φ44(a,b) ≈ a0b0

Remark 3.3. The bilinear forms satisfy the following properties.

(i). Each φij(a,b) is invariant under (a,b) → (−a,−b) (since both ki(a−b) and kj(a+b)

are invariant). Therefore, each bilinear form contains only even·even terms and odd·odd

terms. That is, if the monomial ambn occurs then the coordinates am, bn must either

be both even or both odd. Similarly, invariance under (a,b) → (b,a) gives that the

forms are symmetric a and b.

(ii). At duplication (that is, b = a), each ki(a− b) = ki(O) = 0 for i = 1, 2, 3. Therefore,

the first three rows of
(
φij(a,a)

)
are all zero. This vanishing is not a transparent

cancellation of terms, but is a statement that each such entry lies in the ideal generated

by the defining equations of the Jacobian variety. For example, note that the initial

part of φ34(a,a) above is: 2(a0a3 − a2
1), which is twice the initial part of the defining

equation (A.1) in Appendix A of [8]. The fourth row is the only non-degenerate row

at b = a, and so it is the only row which can be specialised to give the duplication

map on the Jacobian.

(iii). At b = O = (1, 0, 0, . . . , 0) all terms bibj vanish except b20. Therefore, we expect each

row of coefficients of b20 to lie in the span of the θi of Lemma 3.1. In fact, the bilinear

forms φij have been chosen so that the coefficient of b20 is simply θi
j . By symmetry,

the same comment applies with the roles of a and b swapped.

(iv). There are two transformations which permute the φij . The obvious one is to negate

either a or b (b, say). This interchanges each φij with φji and negates the odd

coordinates of b. Therefore, any φji may be derived from φij by leaving the even·even

terms unchanged and negating the odd·odd terms. In particular, the φii along the

leading diagonal have only even·even terms.

A more subtle transformation is on C itself; namely ˘ : X 7→ 1/X, 7→ Y/X3 which

transforms C to a curve of the same form:

C̆ : Y 2 = F (X) = f0X
6 + f1X

5 + f2X
4 + f3X

3 + f4X
2 + f5X + f6 (12)
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where each fi is replaced by f6−i. There is an induced biregular map from J(C) to J(C̆) :

(a0, . . . , a15) → (a0,−a2,−a1, a5, a4, a3,−a9,−a8,−a7,−a6, a15, a14, a12, a13, a11, a10),

and from K(C) to K(C̆) : (k1, k2, k3, k4) → (k3, k2, k1, k4). Therefore, replacing each of

a0, . . . , a15 by a0,−a2,−a1, a5, a4, a3,−a9,−a8,−a7,−a6, a15, a14, a12, a13, a11, a10, respec-

tively, and each of fi by f6−i, induces the permutation: φ11 ↔ φ33, φ12 ↔ φ32, φ13 ↔ φ31,

φ14 ↔ φ34, φ21 ↔ φ23, φ41 ↔ φ43, with φ22, φ24, φ42, φ44 invariant.

(v). Each φij is homogeneous with respect to both wt1 and wt2.

There follows a brief sketch of the three methods used to derive the bilinear forms.

Method 1. Direct Algebraic Manipulation.

We write a = J({(x1, y1), (x2, y2)}), b = J({(x3, y3), (x4, y4)}), c =

J({(x5, y5), (x6, y6)}), with c = a + b. One can then follow through the ‘naive’ technique

for adding divisors modulo linear equivalence ([3],[6]). Namely, one finds the function

Y − (αX3 + βX2 + γX + δ) which meets C at (x1, y1), . . . , (x4, y4), and expresses each

of α, β, γ, δ as rational functions in x1, y1, . . . , x4, y4 over Z[f0, . . . , f6]. It is then possible

similarly to express x5 +x6, x5x6, y5 + y6, y5y6 and so k1(a+b), . . . , k4(a+b). The same

procedure can be applied to a − b, and so we eventually obtain: ki(a + b)kj(a − b) for

each i, j ∈ {1, . . . , 4} as rational functions in x1, y1, . . . , x4, y4 over Z[f0, . . . , f6]. These are

rather large and required 4 MBytes of storage on an IBM mainframe. These 16 expressions

have unwanted common poles and zeroes (for example, at x2 = x3, y2 = −y3), and so we

divide these out to obtain 16 rational functions in x1, . . . , x4, y1, . . . y4 which are projec-

tively equal to
(
ki(a + b)kj(a − b)

)
, and which have poles only at: x1 = x2, y1 = −y2

and x3 = x4, y3 = −y4, and which are of degree at most 2 in each Xi (1 6 i 6 4). Such

functions lie in L
(
2(Θ+ + Θ−)

)
⊗ L

(
2(Θ+ + Θ−)

)
, and so can be represented as a linear

combination of the monomials aibj ; that is, as a bilinear map in a and b. Finding this

representation is a lengthy computation which involves a careful ordering of the monomials

aibj and using these to reduce the current largest pole in each of the 16 rational functions.

The methodology is along the lines described in [8] for finding the defining equations of

Theorem 1.2, but with expressions several orders of magnitude larger. The remarks in 3.3

above can all be used as devices for reducing the amount of computation. In particular,

homogeneity with respect to wt1 and wt2 places a severe restriction on the allowable coef-
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ficients of any given monomial aibj . In fact, for reassurance, the bilinear forms were also

derived from first principles without use of these computational aids, so that the remarks

in 3.3 could then be used as an independent verification.

Method 2. Formal Power Series.

In this method, one derives the local power series expansion of each desired form,

and equates coefficients to determine each form globally. We first give a few technical

definitions and lemmas.

Definition 3.4. Let σ(a,b, c, . . .) be a form over Z[f0, . . . , f6], homogeneous in each of

a,b, c, . . . ∈ J(C), and let (s1, s2), (t1, t2), (u1, u2), . . . be the local parameters for a,b, c, . . .,

respectively. The localisation of σ, denoted σ`, is the power series in s1, s2, t1, t2, u1, u1, . . .

over Z[f0, . . . , f6] obtained by replacing each ai, bj , ck . . . with the local power series ex-

pansion for si, tj , uk, . . . in the local parameters.

Note that, if σ(a,b, c, . . .) is homogeneous of degrees l,m, n . . . respectively, then

σ`(s1, s2, t1, t2, u1, u2, . . .) converges to σ(a,b, c, . . .)/(al
0b

m
0 c

n
0 ) when a,b, c, . . . ∈ N , where

N is the neighbourhood defined in (5). If
(
σij

)
is a projective array of such forms, all

homogenous of the same degrees in each of a,b, c, . . ., then
(
σ`

ij

)
=

(
σij

)
under the same

conditions. That is,
(
σ`

ij

)
gives the local expansion of

(
σij

)
in N ×N × . . .×N .

The usefulness of localisations as a computational tool is that there is no non-trivial

relationship satisfied by the local parameters; the defining equations of the Jacobian, when

localised, are transparent identities in the ring of power series. It follows that a sufficient

condition for a set of forms in a,b, c, . . . ∈ J(C) to be linearly independent is that they

have linearly independent local power series expansions. An application of this idea is

given in the following lemma.

Lemma 3.5. Let a ∈ J(C). The set of 16 functions linear in a:

Sa = {a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12 − 2a13, a13, a14, a15}

have localisations, S`
a, whose polynomials of lowest degree are linearly independent. The

same applies to the localisations T `
a of the following set of 64 functions quadratic in a:
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Ta = {a2
0, a0a2, a0a1, a0a5, a0a4, a0a3, a0a9, a0a8, a0a7, a0a6, a0a15, a0a14,

a0a13, a0a11, a0a10, a2a15, a2a14, a2a13, a2a11, a2a10, a1a10, a5a15, a4a15, a3a15,

a4a13, a3a13, a3a11, a3a10, a9a15, a8a15, a9a13, a8a13, a9a10, a8a10, a7a10, a6a10,

a2
15, a14a15, a13a15, a11a15, a10a15, a10a14, a10a13, a10a11, a

2
10, a12a15 − 2a13a15,

a12a14 − 2a11a15, a12a13 − 2a10a15, a11a12 − 2a10a14, a10a12 − 2a10a13,

a2
12 − 4a12a13 + a10a13, a5a12 − 2a3a15, a4a12 − 2a4a13, a3a12 − 2a3a13,

a9a14 − 2a8a15, 2a9a13 − a8a14, a9a12 − a8a14, a9a11 − 2a8a13, a9a11 − a8a12,

2a9a10 − a8a11, a8a11 − a7a12, 2a8a10 − a7a11, a7a11 − a6a12, 2a7a10 − a6a11}

A change of basis on Ta gives the set of quadratic monomials:

Ua = {a2
0, a0a2, a0a1, a0a5, a0a4, a0a3, a0a9, a0a8, a0a7, a0a6, a0a15, a0a14,

a0a13, a0a11, a0a10, a2a15, a2a14, a2a13, a2a11, a2a10, a1a10, a5a15, a4a15, a3a15,

a4a13, a3a13, a3a11, a3a10, a9a15, a8a15, a9a13, a8a13, a9a10, a8a10, a7a10, a6a10,

a2
15, a14a15, a13a15, a11a15, a10a15, a10a14, a10a13, a10a11, a

2
10,

a12a15, a12a14, a12a13, a11a12, a10a12, a
2
12, a5a12, a4a12, a3a12,

a9a14, a8a14, a9a12, a9a11, a8a12, a8a11, a7a12, a7a11, a6a12, a6a11}

whose localisations U `
a are linearly independent. The sets Ta and Ua each span L

(
4(Θ+ +

Θ−)
)
.

Proof. Since the 64 functions in either Ta or Ua have linearly independent localisations, it

follows that they are themselves linearly independent functions on C(2). Therefore, either

set gives a basis for L
(
4(Θ+ + Θ−)

)
, which has dimension 82 = 64. Alternatively, one can

write out an explicit basis for L
(
4(Θ+ + Θ−)

)
in terms of x1, y1, x2, y2 and verify that it

is spanned by either Ta or Ua. The sets Ta and Ua have been arranged so that the first 3

rows give 36 independent functions with poles at O (9 − i functions with a pole of order

i at O, for 1 6 i 6 8); the remaining rows give the 28 independent regular functions:

(x1x2)i(x1 + x2)j(y1y2)k(y1 + y2)l, for i+ j + 3k + 3l 6 4.

We shall only be concerned with the cases when σ(a,b) is a bilinear or biquadratic

form. A biquadratic form in a,b ∈ J(C) is unique modulo the ideal generated by the

19



72 defining equations of the Jacobian, satisfied by each of a and b. We shall remove

this ambiguity by fixing a representative of any biquadratic form; namely, we express any

such form uniquely as a linear combination of monomials aiajbmbn, where aiaj ∈ Ua and

bmbn ∈ Ub.

Lemma 3.6. Any bilinear form σ(a,b), a,b ∈ J(C), is uniquely determined by its local-

isation σ` up to terms si
1s

j
2t

m
1 t

n
2 of degree: i+ j 6 6,m+ n 6 6. Any biquadratic form is

uniquely determined by its localisation up to terms of degree i+ j 6 12,m+ n 6 12.

Proof. The independent polynomials of lowest degree of the localisations in S`
a have

degree 6 6. Similarly, those of T `
a have degree 6 12.

The members of S`
a modulo degree 7 form a Z[f0, . . . , f6]-basis for: Q(f0, . . . , f6)[S`

a]∩

Z[f0, . . . , f6][s1, s2, t1, t2] modulo degree 7. Similarly for U `
a modulo degree 13. This may

be combined with Lemma 3.6 to give the following equivalence between the integrality of

a form and of its localisation.

Lemma 3.7. Let σ(a,b) be a bilinear or biquadratic form over Q(f0, . . . , f6). Then σ is

defined over Z[f0, . . . , f6] if and only if its localisation σ` is defined over Z[f0, . . . , f6].

Given the above lemmas, we can use local power series to derive the φij(a,b) in two

stages. First, we express the coefficients of the function Y − (αX3 + βX2 + γX + δ) in

terms of a, b. Specifically, (1, α, β, γ, δ) are projectively equal to ([8], p.431):

a10b15 + b10a15 − a14b11 + a13(b12 + b13) + b13(a12 + a13)

a7b15 + b7a15 + a13b9 + b13a9 − a14b8 − b14a8

−a6b15 − b6a15 + a8(b12 + b13) + b8(a12 + a13)− a11b9 − b11a9

a6b14 + b6a14 − a7(b12 + b13)− b7(a12 + a13) + a9b10 + b9a10

−a6b13 − b6a13 + a7b11 + b7a11 − a8b10 − b8a10

respectively. We can now express all of the rational functions in x1, y1, x2, y2 in method 1

as considerably simpler functions in a, b. That is, we express each desired φij(a,b) as:

φij(a,b) = Nij(a,b)/Dij(a,b)
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where Nij ,Dij are known homogeneous forms over Z[f0, . . . , f6], with Nij of degree 1

greater than Dij in each of a and b. Then φ`
ij = N `

ij/D`
ij , and so we may write out

N `
ij ,D`

ij to derive φ`
ij to any required degree in s1, s2, t1, t2. We may then use Lemma

3.6 (the bilinear case) to determine the coefficients of φij . As a further verification, after

deriving φij , we can check that φij · Dij − Nij lies in the ideal generated by the defining

equations satisfied by a and b.

Method 3. Via the ψij of Lemma 2.2.

One first derives the ψij from the involution W g (as outlined in Section 2). Then

these clearly give all even·even terms of the φij . It is now a matter of finding the missing

odd·odd terms. By remark 3.3 (iv), the φii along the leading diagonal have no odd·odd

terms, and so are completely determined by the ψii. Further, by Remark 3.3 (ii), the first

3 rows at b = a lie in the ideal generated by the defining equations satisfied by a. Since

there are only 3 defining equations with purely odd·odd terms, we need only find a few

integer coefficients to determine φij completely. These remaining coefficients may be fixed

by linear equations induced by a selection of specialised curves over Z. Having found all

φij in the first 3 rows and the leading diagonal, the remaining: φ41, φ42, φ43 can be derived

using Remark 3.3 (iv), by negating the odd·odd terms of φ14, φ24, φ34, respectively.

Conversely, the reader can easily perform the easier task of recovering the ψij (which

have not been listed separately) from the φij of Appendix B. First, the odd·odd terms

must be removed (by setting a1, a2, a6, a7, a8, a9, b1, b2, b6, b7, b9, b9 to 0). Then each even

ai should be replaced by ρi(k) of Lemma 3.1, and similarly for each even bi.

We conclude with a few corollaries of Theorem 3.2. Recall from Remark 3.3 (ii)

that only the last row can be specialised to give the duplication law. If we set b = a

in this row to get:
(
φ41(a,a), φ42(a,a), φ43(a,a), φ44(a,a)

)
, we obtain quadratic forms

in a such that each monomial aiaj has either both ai, aj even or both odd. If they

are both odd, then aiaj may be replaced by Eij of (11). This gives quadratic forms in

the even functions of a which may composed with the substitution ai = ρi(k) to give

the duplication law in terms of homogeneous quartics on the Kummer surface. Alterna-

tively, we can use the ψij of Lemma 2.2 to get the same form of the duplication law as(
2ψ41(k,k), 2ψ42(k,k), 2ψ43(k,k), ψ44(k,k)

)
.
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Corollary 3.8. Let k ∈ K(C) Then 2k =
(
δ1(k), δ2(k), δ3(k), δ4(k)

)
, where each δi(k),

given in Appendix C, is a quartic form in k.

The initial parts give: 2k ≈ (4k1k
3
4, 4k2k

3
4, 4k3k

3
4, k

4
4), which is strikingly similar in

appearance to the duplication law on the X-coordinate of an elliptic curve ([14], p.59).

A second corollary follows from the fact that we can use ρ to give the even functions

of c, where c = a + b, as quadratic forms in the φij . That is, as biquadratic forms in a,

b; this can be extended to the odd functions of c to give the entire group law on J(C) as

a biquadratic map.

Corollary 3.9. Let a,b, c, c̄ ∈ J(C) satisfy c = a+b, c̄ = a−b. Then there is a 16× 16

matrix of biquadratic forms
(
ςij(a,b)

)
over Z[f0, . . . , f6] which is projectively equal to the

matrix (c̄icj). Any row gives the group law as a biquadratic map, with the row i = 0,

namely
(
ς0j(a,b)

)
, non-degenerate at duplication. The form ς00 has initial part a2

0b
2
0.

Proof. We first note that, if c̄i, cj are both even functions, we may use ρi,

ρj of Lemma 3.1 to obtain: (c̄icj) =
(
ρi(k1(c̄), . . . , k4(c̄))ρj(k1(c), . . . , k4(c))

)
=(

Qij(φ11(a,b), φ12(a,b), . . . , φ44(a,b)
)
, where Qij is a quadratic form in φ11, φ12, . . . , φ44,

and so is a biquadratic form in a,b, denoted ςij(a,b). Each ςij(a,b) is defined

over Z[f0, . . . , f6]; this is immediate when i, j 6= 4, since then ρi, ρj are over

Z[f0, . . . , f6]; when i or j (or both) = 4, then the denominator of 2 in ρ4 is can-

celled in
(
Qij(φ11(a,b), φ12(a,b), . . . , φ44(a,b)

)
. The initial part of ςij(a,b) is there-

fore induced directly as Qij of the initial parts of the φ’s. In particular, ς00(a,b) =

ρ0(k1(c̄), . . . , k4(c̄))ρ0(k1(c), . . . , k4(c)) = k4(c̄)2k4(c)2 = (k4(c̄)k4(c))2 = (φ44)2 ≈ a2
0b

2
0.

Finally, if either c̄i or cj (or both) is odd, then we use the quadratic forms of equation

(11) to see that: (c̄icj)2 = Eii(E(c̄))Ejj(E(c)), which, by the first part above, are quartic

forms in a,b over Z[f0, . . . , f6]. Thus, (c̄icj)2 ∈ L
(
8(Θ+ + Θ−)

)
⊗L

(
8(Θ+ + Θ−)

)
, and so

the rational function c̄icj ∈ L
(
4(Θ+ + Θ−)

)
⊗L

(
4(Θ+ + Θ−)

)
. Therefore, by Lemma 3.5,

there must exist biquadratic forms ςij(a,b) defined over Q(f0, . . . , f6) such that ςij(a,b) =

(c̄icj). Further, the localisation (ς`ij)
2 =

(
Eii(E(c̄))Ejj(E(c))

)`, which by Lemma 3.7, is

defined over Z[f0, . . . , f6]. Therefore, the same is true of ς`ij , by the integral closure of the

ring of power series in s1, s2, t1, t2 over Z[f0, . . . , f6]. It follows (by the reverse direction of

Lemma 3.7) that ςij(a,b) is also defined over Z[f0, . . . , f6].

22



The biquadratic forms are too large to be written out explicitly for a general curve

C over Z[f0, . . . , f6]. However, for any specialisation over Z, the above Lemmas provide

a method for writing them out in full. That is, one first specialises the bilinear forms to

f0, . . . , f6 ∈ Z, and derives ςij(a,b) = c̄icj for c̄i, cj even (using ρ). Then, for either ci or

cj odd (or both), one finds ς`(a,b) up to terms si
1s

j
2t

m
1 t

n
2 of degree: i+ j 6 12,m+n 6 12,

and applies Lemma 3.6 to determine the coefficients of ς(a,b). In general, it seems better

to work as much as possible with the Kummer surface; it is reassuring to know that the

ςij exist, but the φij should be sufficient for most computational purposes.

In retrospect, there is a slight improvement on the embedding in Definition 1.1 which

would have simplified a portion of the above discussion. Namely, one could replace a4 with

2a4+f1a15+f3a13+f5a10 = (x1+x2)a5, and replace a12 with a12+2a13 = (x1+x2)2. This

would remove the denominator of 2 from ρ4 of Lemma 3.1, and indeed would transform

every ρi and θi
j (the maps between E(C) andK(C)) into a monomial. A change of basis along

these lines would certainly be a prerequisite for a development in characteristic 2 (as well as

alterations to a0, . . . , a15 induced by including Y , XY and X2Y terms in the original curve

C). There is also a case to be made for replacing a12 with a12 − 2a13 = (x1 − x2)2 so that

the local power series expansions in equation (4) would all have independent polynomials

of lowest degree. However, it was felt that remaining consistent with the notation of [8]

was more important than such minor technical simplifications.

A fringe benefit of the bilinear forms of Theorem 3.2 is an improved proof of The-

orem 1.5, that the formal group law, induced by the choice of local parameters s1, s2, is

defined over Z[f0, . . . , f6].

Corollary 3.10. Let ςij be as in Corollary 3.9. The local power series expansion of ς00

has initial term 1, and so is invertible. Therefore, the formal group given by ς01/ς00, ς02/ς00

is defined over Z[f0, . . . , f6] and converges for all a,b ∈ N .

Proof. The form ς00 has initial term a2
0b

2
0, and so ς`00 has initial term 1. That is,

ς`(s1, s2, t1, t2) = 1+ terms of degree > 1 in s1, s2, t1, t2, and so is an invertible power

series. Therefore, ς01/ς00, ς02/ς00 are defined over Z[f0, . . . , f6], and converge in N ×N .

This improves on the proof in [8] in that it does not require the use of the theory of

Lie Groups to guarantee the existence of the formal group over the field of fractions.
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There are promising signs that the Jacobians of curves of genus 2 will become rapidly

more amenable to arithmetic investigation over the next few years. A temporary problem

is that, at present, computational work is only accessible to a small group working in the

area. We suggest that it is well worth the trouble to place the general forms of equations in

the public domain, even if these are of rather unwieldy size. Presentations along these lines

have already been made in [10] (the general form of the homogeneous spaces for a complete

2-descent) and [8],[9] (formal groups). Such presentations have the advantage (over loose

descriptions of algorithms) that a wider group of users who wish to experiment with specific

curves need merely specialise the given equations to the chosen values of f0, . . . , f6, and

need not necessarily become acquainted with the mechanics of their derivation. We have

made the expressions derived in Secions 2 and 3 available by anonymous ftp, as described

in the appendices below.

Appendix A. Addition by a Point of Order 2 on the Kummer Surface

All of the following files are available at: www.maths.ox.ac.uk/̃ flynn/genus2 and

the file README will be regularly updated and contains a listing and brief description of

all the files in www.maths.ox.ac.uk/̃ flynn/genus2 which might be of use to the reader.

The file www.maths.ox.ac.uk/̃ flynn/genus2/kummer/defeqns contains the following

equations in Appendix A. It will not be altered in name or content; any enhanced version

will be added to the directory as a new file.

Let C be as in equation (1), and let k = (k1, k2, k3, k4) ∈ K(C). Then k satisfies the

quartic:

R(k1, k2, k3)k2
4 + S(k1, k2, k3)k4 + T (k1, k2, k3)

where R, S, T are given by:

R(k1, k2, k3) = k2
2 − 4k1k3

S(k1, k2, k3) = −2(2k3
1f0 + k2

1k2f1 + 2k2
1k3f2 + k1k2k3f3 + 2k1k

2
3f4 + k2k

2
3f5 + 2k3

3f6)

T (k1, k2, k3) = −4k4
1f0f2 +k4

1f
2
1 −4k3

1k2f0f3−2k3
1k3f1f3−4k2

1k
2
2f0f4 +4k2

1k2k3f0f5−4k2
1k2k3f1f4−

4k2
1k

2
3f0f6+2k2

1k
2
3f1f5−4k2

1k
2
3f2f4+k2

1k
2
3f

2
3−4k1k

3
2f0f5+8k1k

2
2k3f0f6−4k1k

2
2k3f1f5+

4k1k2k
2
3f1f6−4k1k2k

2
3f2f5−2k1k

3
3f3f5−4k4

2f0f6−4k3
2k3f1f6−4k2

2k
2
3f2f6−4k2k

3
3f3f6−

4k4
3f4f6 + k4

3f
2
5

24



Let us temporarily assume that our curve has the form Cg of equation (8). Then the

following is the matrix W g (Lemma 2.1) which gives the addition of a rational point, bg,

of order 2.

W g
11 = −g2

2h0 + g0g2h2 + g2
0h4

W g
12 = −g1g2h0 + g0g2h1

W g
13 = −g2

1h0 + 2g0g2h0 + g0g1h1

W g
14 = g0

W g
21 = g2

2h1 − g1g2h2 − g0g2h3

W g
22 = g2

2h0 − g0g2h2 + g2
0h4

W g
23 = −g0g2h1 − g0g1h2 + g2

0h3

W g
24 = −g1

W g
31 = g1g2h3 − g2

1h4 + 2g0g2h4

W g
32 = g0g2h3 − g0g1h4

W g
33 = g2

2h0 + g0g2h2 − g2
0h4

W g
34 = g2

W g
41 = −g0g2

2h1h3 − g0g1g2h2h3 + g0g1g2h1h4 + g0g
2
1h2h4 + g2

0g2h
2
3 − 4g2

0g2h2h4 − g2
0g1h3h4

W g
42 = g2

1g2h0h3 − g3
1h0h4 − 2g0g2

2h0h3 − g0g1g2h1h3 + 4g0g1g2h0h4 + g0g
2
1h1h4 − 2g2

0g2h1h4

W g
43 = −g1g2

2h0h1 + g2
1g2h0h2 + g0g

2
2h

2
1 − 4g0g2

2h0h2 − g0g1g2h1h2 + g0g1g2h0h3 − g2
0g2h1h3

W g
44 = −g2

2h0 − g0g2h2 − g2
0h4

Appendix B. Bilinear Forms on the Jacobian

The file www.maths.ox.ac.uk/̃ flynn/genus2/jac/bilforms contains the bilinear forms

φij(a,b) described in Theorem 3.2, satisfying
(
φij(a,b)

)
=

(
ki(a − b)kj(a + b)

)
. The

terms of each form are arranged in paragraphs; the initial part (free of f0, . . . , f6) is given

first, and subsequent paragraphs are in order of increasing degree in f0, . . . , f6.

Appendix C. The Duplication Law

Let k ∈ K(C). Then the following are the quartic forms δi(k) described in

Corollary 3.8, which satisfy 2k =
(
δ1(k), δ2(k), δ3(k), δ4(k)

)
. These are in the file

www.maths.ox.ac.uk/̃ flynn/genus2/kummer/dupl

δ1(k) = 4k1k
3
4+

4k2
4(k

2
1f2 − k2k3f5 − 3k2

3f6)+
4k4(−4k3

1f0f4 + k3
1f1f3− 8k2

1k2f0f5− 2k2
1k3f1f5− 12k1k

2
2f0f6− k1k

2
2f1f5− 6k1k2k3f1f6−

2k1k2k3f2f5−4k1k
2
3f2f6−k1k

2
3f3f5−2k3

2f1f6−4k2
2k3f2f6−6k2k

2
3f3f6−8k3

3f4f6+2k3
3f

2
5 )+

4(−4k4
1f

2
0 f6 − 4k4

1f0f2f4 + k4
1f0f

2
3 + k4

1f
2
1 f4 − 4k3

1k2f0f1f6 − 8k3
1k2f0f2f5 + 2k3

1k2f
2
1 f5 +

8k3
1k3f0f2f6 − 4k3

1k3f0f3f5 − 4k3
1k3f

2
1 f6 − 16k2

1k
2
2f0f2f6 − 2k2

1k
2
2f0f3f5 + 3k2

1k
2
2f

2
1 f6 −

4k2
1k2k3f0f4f5−4k2

1k2k3f1f2f6−k2
1k2k3f1f3f5−12k2

1k
2
3f0f4f6+4k2

1k
2
3f0f

2
5 +6k2

1k
2
3f1f3f6−

2k2
1k

2
3f1f4f5−4k2

1k
2
3f

2
2 f6−8k1k

3
2f0f3f6−4k1k

2
2k3f0f

2
5 −6k1k

2
2k3f1f3f6−4k1k2k

2
3f0f5f6−
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2k1k2k
2
3f1f

2
5 − 4k1k2k

2
3f2f3f6 + 8k1k

3
3f0f

2
6 − 4k1k

3
3f1f5f6 − 2k1k

3
3f

2
3 f6 − 4k4

2f0f4f6 +
k4
2f0f

2
5−4k3

2k3f0f5f6−4k3
2k3f1f4f6+k3

2k3f1f
2
5−12k2

2k
2
3f0f

2
6−2k2

2k
2
3f1f5f6−4k2

2k
2
3f2f4f6+

k2
2k

2
3f2f

2
5 −8k2k

3
3f1f

2
6 −4k2k

3
3f3f4f6+k2k

3
3f3f

2
5 −4k4

3f2f
2
6 +2k4

3f3f5f6−4k4
3f

2
4 f6+k4

3f4f
2
5 )

δ2(k) = 4k2k
3
4+

k2
4(4k

2
1f1 + 8k1k2f2 − 8k1k3f3 + 5k2

2f3 + 8k2k3f4 + 4k2
3f5)+

2k4(2k3
1f0f3 + 8k2

1k2f0f4 + k2
1k2f1f3 − 8k2

1k3f0f5 + 8k2
1k3f1f4 − 6k2

1k3f2f3 + 4k1k
2
2f0f5 +

4k1k
2
2f1f4 − 24k1k2k3f0f6 + 8k1k2k3f1f5 + 8k1k2k3f2f4 − 5k1k2k3f

2
3 − 8k1k

2
3f1f6 +

8k1k
2
3f2f5−6k1k

2
3f3f4+2k3

2f1f5+4k2
2k3f1f6+4k2

2k3f2f5+8k2k
2
3f2f6+k2k

2
3f3f5+2k3

3f3f6)+

16k4
1f

2
0 f5−4k4

1f0f2f3 +k4
1f

2
1 f3 +32k3

1k2f
2
0 f6 +16k3

1k2f0f1f5−4k3
1k2f0f

2
3 −32k3

1k3f0f2f5 +
16k3

1k3f0f3f4 + 16k3
1k3f

2
1 f5 − 6k3

1k3f1f
2
3 + 32k2

1k
2
2f0f1f6 − 4k2

1k
2
2f0f3f4 + 4k2

1k
2
2f

2
1 f5 −

64k2
1k2k3f0f2f6 − 20k2

1k2k3f0f3f5 + 32k2
1k2k3f0f

2
4 + 32k2

1k2k3f
2
1 f6 + 16k2

1k2k3f1f2f5 −
12k2

1k2k3f1f3f4−20k2
1k

2
3f0f3f6−14k2

1k
2
3f1f3f5+16k2

1k
2
3f1f

2
4 +16k2

1k
2
3f

2
2 f5−20k2

1k
2
3f2f3f4+

5k2
1k

2
3f

3
3 −4k1k

3
2f0f3f5+8k1k

3
2f

2
1 f6−56k1k

2
2k3f0f3f6+32k1k

2
2k3f0f4f5+32k1k

2
2k3f1f2f6−

8k1k
2
2k3f1f3f5 − 64k1k2k

2
3f0f4f6 + 32k1k2k

2
3f0f

2
5 − 20k1k2k

2
3f1f3f6 + 16k1k2k

2
3f1f4f5 +

32k1k2k
2
3f

2
2 f6−12k1k2k

2
3f2f3f5−32k1k

3
3f1f4f6+16k1k

3
3f1f

2
5 +16k1k

3
3f2f3f6−6k1k

3
3f

2
3 f5−

4k4
2f0f3f6 + 8k3

2k3f0f
2
5 − 4k3
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