Analysis I Sheet 3

Convergence of sequences

1 For each of the following a_n and for arbitrary $\varepsilon > 0$, find N such that $|a_n| < \varepsilon$ whenever $n \ge N.$

(i)
$$\frac{1}{n^2}$$
 (ii) $\frac{1}{n(n-\pi)}$ (iii) $e^{-n}\sin(n^2)$ (iv) $\frac{1}{\log(\log(n+2))}$ (v) $\sin\frac{1}{n}$

[You may in this question (and others like it) use the "standard" properties of the functions cos, sin, log, exp; these properties will be proved during the year—without using these special examples.]

2 Let $a_n = 1 + \frac{e^{n/1000} - 1}{n^2}$. Evaluate (by calculator) $a_1, a_2, a_5, a_{10}, a_{101}, a_{1000}$. Does (a_n) converge? Repeat with $a_n = \frac{n^2 \cos n}{e^{n/1000} - 1}$.

3 (a) Use the Binomial Theorem to show that $(1 + \frac{2}{\sqrt{n}})^n \ge n$ for all $n \ge 2$. Deduce that

 $n^{1/n} \to 1 \text{ as } n \to \infty.$ (b) Show that $\frac{n!}{r!} \ge r^{n-r}$ if n > r > 0. Hence or otherwise, show that $(n!)^{1/n} \to \infty$ as $n \to \infty.$

 $\stackrel{\to}{}\infty$. (c)(i) Show that $\frac{n!}{(n-k)!} \ge \left(\frac{n}{2}\right)^k$ if $n \ge 2k$.

(ii) Let a be a real number with a > 1, and k be a positive integer. Prove that there exist an integer M and a positive real number c (both independent of n) such that $a^n \ge cn^{k+1}$ whenever n > M.

- [Write a = 1 + b and use the Binomial Theorem..]
- (iii) Deduce that $n^k/a^n \to 0$ as $n \to \infty$.
- (iv) Deduce that $n^{\alpha}/a^n \to 0$ for every real number α .

4 (a) Let $\tau := \frac{1+\sqrt{5}}{2}$. Verify that $\tau > 1$ and that $\tau = 1 + \frac{1}{\tau}$. (b) Let $a_1 = 1$, and suppose that for $n \ge 1$, $a_n > 0$ and $a_{n+1} = 1 + \frac{1}{a_n}$. Prove that $|a_{k+1} - \tau| = |a_k - \tau|/|a_k|\tau$, and (by induction on k) that $|a_{k+1} - \tau| \leq \left(\frac{1}{\tau}\right)^{\kappa}$. (c) Prove (from the definition) that $a_n \to \tau$ as $n \to \infty$.

- (a) For each natural number $n \ge 1$, prove that there is a largest member of $\{k: k \in \mathbb{N} \cup \{0\}, k < 10^n x\}$. Denote this number by $D_n(x)$, and let $d_n(x) := D_n(x)/10^n$, which we will call the n-th decimal truncation of x.
- (b) Find $d_n(1)$, $d_n(\frac{1}{9})$ and $d_n(\frac{5}{37})$. (Justify your answers). (c) Prove that for all $n, x_n := 10^{n+1}(d_{n+1}(x) d_n(x)) \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. We call this the n-th decimal digit of x.
- (d) Prove that for every *n* there exists an N > n such that $d_n(x) < d_N(x)$.
- (a) Prove that $d_n(x) \leq d_{n+1}(x) < x$, and deduce that $d_n(x) > x$ as $n \to \infty$. (b) (c) Show by an example that $d_n(x+y) = d_n(x) + d_n(y)$ is not always true. (c) (c) Suppose that $N \geq n$. Find (rational) numbers $x_1 = x_2$, y_1 , y_2 such that $d_N(x_1) = d_N(x_1) + d_N(x_1) = d_N(x_1) + d_N(x_$ $d_N(x_2), d_N(y_1) = d_N(y_2),$ but $d_n(x_1 + y_1) \neq d_n(x_2 + y_2).$
 - (iii) Deduce that there cannot exist functions $\alpha : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ and $\beta : \mathbb{N} \to \mathbb{N}$ such that, for all positive x and y, $d_n(x+y) = \alpha \left(d_{\beta(n)}(x), d_{\beta(n)}(y) \right)$.

The following question is optional. It uses what we have proved about sequences to show that positive real numbers have decimal expressions; and points to one of the drawbacks of working with these expressions. **5** Let x > 0.