Analysis I Sheet 3

Convergence of sequences

1 For each of the following a_{n} and for arbitrary $\varepsilon>0$, find N such that $\left|a_{n}\right|<\varepsilon$ whenever $n \geqslant N$.
(i) $\frac{1}{n^{2}}$
(ii) $\frac{1}{n(n-\pi)}$
(iii) $\mathrm{e}^{-n} \sin \left(n^{2}\right)$
(iv) $\frac{1}{\log (\log (n+2))}$
(v) $\sin \frac{1}{n}$.
[You may in this question (and others like it) use the "standard" properties of the functions cos, sin, log, exp; these properties will be proved during the year-without using these special examples.]

2 Let $a_{n}=1+\frac{\mathrm{e}^{n / 1000}-1}{n^{2}}$. Evaluate (by calculator) $a_{1}, a_{2}, a_{5}, a_{10}, a_{101}, a_{1000}$. Does $\left(a_{n}\right)$ converge? Repeat with $a_{n}=\frac{n^{2} \cos n}{\mathrm{e}^{n / 1000}-1}$.

3 (a) Use the Binomial Theorem to show that $\left(1+\frac{2}{\sqrt{n}}\right)^{n} \geqslant n$ for all $n \geqslant 2$. Deduce that $n^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$.
(b) Show that $\frac{n!}{r!} \geqslant r^{n-r}$ if $n>r>0$. Hence or otherwise, show that $(n!)^{1 / n} \rightarrow \infty$ as $n \rightarrow \infty$.
(c)(i) Show that $\frac{n!}{(n-k)!} \geqslant\left(\frac{n}{2}\right)^{k}$ if $n \geqslant 2 k$.
(ii) Let a be a real number with $a>1$, and k be a positive integer. Prove that there exist an integer M and a positive real number c (both independent of n) such that $a^{n} \geqslant c n^{k+1}$ whenever $n>M$.
[Write $a=1+b$ and use the Binomial Theorem..]
(iii) Deduce that $n^{k} / a^{n} \rightarrow 0$ as $n \rightarrow \infty$.
(iv) Deduce that $n^{\alpha} / a^{n} \rightarrow 0$ for every real number α.

4 (a) Let $\tau:=\frac{1+\sqrt{5}}{2}$. Verify that $\tau>1$ and that $\tau=1+\frac{1}{\tau}$.
(b) Let $a_{1}=1$, and suppose that for $n \geqslant 1, a_{n}>0$ and $a_{n+1}=1+\frac{1}{a_{n}}$. Prove that $\left|a_{k+1}-\tau\right|=\left|a_{k}-\tau\right| /\left|a_{k}\right| \tau$, and (by induction on k) that $\left|a_{k+1}-\tau\right| \leqslant\left(\frac{1}{\tau}\right)^{k}$.
(c) Prove (from the definition) that $a_{n} \rightarrow \tau$ as $n \rightarrow \infty$.

The following question is optional. It uses what we have proved about sequences to show that positive real numbers have decimal expressions; and points to one of the drawbacks of working with these expressions.
5 Let $x>0$.
(a) For each natural number $n \geqslant 1$, prove that there is a largest member of $\left\{k: k \in \mathbb{N} \cup\{0\}, k<10^{n} x\right\}$. Denote this number by $D_{n}(x)$, and let $d_{n}(x):=D_{n}(x) / 10^{n}$, which we will call the n-th decimal truncation of x.
(b) Find $d_{n}(1), d_{n}\left(\frac{1}{9}\right)$ and $d_{n}\left(\frac{5}{37}\right)$. (Justify your answers).
(c) Prove that for all $n, x_{n}:=10^{n+1}\left(d_{n+1}(x)-d_{n}(x)\right) \in\{0,1,2,3,4,5,6,7,8,9\}$. We call this the n-th decimal digit of x.
(d) Prove that for every n there exists an $N>n$ such that $d_{n}(x)<d_{N}(x)$.
(e) Prove that $d_{n}(x) \leqslant d_{n+1}(x)<x$, and deduce that $d_{n}(x) \rightarrow x$ as $n \rightarrow \infty$.
(f) (i) Show by an example that $d_{n}(x+y)=d_{n}(x)+d_{n}(y)$ is not always true.
(ii) Suppose that $N \geqslant n$. Find (rational) numbers $x_{1}=x_{2}, y_{1}, y_{2}$ such that $d_{N}\left(x_{1}\right)=$ $d_{N}\left(x_{2}\right), d_{N}\left(y_{1}\right)=d_{N}\left(y_{2}\right)$, but $d_{n}\left(x_{1}+y_{1}\right) \neq d_{n}\left(x_{2}+y_{2}\right)$.
(iii) Deduce that there cannot exist functions $\alpha: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$ and $\beta: \mathbb{N} \rightarrow \mathbb{N}$ such that, for all positive x and $y, d_{n}(x+y)=\alpha\left(d_{\beta(n)}(x), d_{\beta(n)}(y)\right)$.

