Rings \& Arithmetic 2: Integral domains

 and fieldsThursday, 13 October 2005
Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- Units in a ring
- Integral domains; examples
- Fields; examples
- Characteristic of an integral domain
- Field of fractions of an integral domain

Units in a ring

Definition: Let R be a ring (commutative with 1). Element $u \in R$ is said to be a unit if $(\exists v \in R): u v=1$.

Note: The set of units of R forms a group under multiplication. It is denoted $U(R)$ (or, sometimes, R^{\times}).

Example: $\quad U(\mathbb{Z})=\{1,-1\}$.
Example: $\quad U(\mathbb{Q})=\mathbb{Q} \backslash\{0\}$.

Zero-divisors

Definition: Element a of ring R is said to be a zero-divisor if: $a \neq 0$ and $(\exists b \in R \backslash\{0\}): a b=0$.

Example: Let S be a ring (commutative, with 1) and let $R:=$ $S \times S$. Elements of the form $(s, 0)$, where $s \in S \backslash\{0\}$, are zerodivisors. Likewise elements of the form $(0, t)$ with $t \neq 0$ are zero-divisors.

Integral domains

Definition: An integral domain is a commutative ring with 1 satisfying
(8') $a b=0 \Rightarrow a=0$ or $b=0$
(10) $1 \neq 0$

Note: So R is an integral domain if and only if $1 \neq 0$ and there are NO divisors of zero.

Note: Axiom (8^{\prime}) is equivalent to

$$
\left(8^{\prime \prime}\right) \quad(a \neq 0 \text { and } a b=a c) \Rightarrow b=c \quad[\text { cancellation }]
$$

Examples of integral domains

- \mathbb{Z} is an integral domain [the prototype];
- any subring of \mathbb{Q}, of \mathbb{R}, or of \mathbb{C} is an integral domain;
- if R is an integral domain then so is the polynomial ring $R[x]$ [see Sheet 1, Qn 4(a)];
- the ring $S \times S$ is never an integral domain.

Fields

Definition: A field is a commutative ring F with 1 in which
(8) $\quad(\forall a \neq 0)(\exists b \in F)(a b=1)$
(10) $1 \neq 0$

Examples: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
Note: A ring F (commutative with 1) is a field if and only if $U(F)=F \backslash\{0\}$.

Note: A field is an integral domain.
Note: Axioms (1) - (10) are the Axioms of Arithmetic.

Characteristic of an integral domain

Definition: Let R be an integral domain. Define

$$
\text { Char } R:=\left\{\begin{array}{l}
\text { additive order of } 1 \text { if this is finite } \\
0 \text { otherwise. }
\end{array}\right.
$$

Theorem: Let R be an integral domain and let $p:=$ Char R.
(1) If $p \neq 0$ then p is prime.
(2) For all $a \in R \backslash\{0\}$ the additive order of a is p.

Proof.

Fields of fractions

Observation: Any subring of a field is an integral domain.
Proposition: [Non-examinable, but informative and useful.]
Let R be an integral domain. Then there exists a field F such that $R \leqslant F$.

Sketch Proof.

