Rings & Arithmetic 2: Integral domains and fields Thursday, 13 October 2005

Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- Units in a ring
- Integral domains; examples
- Fields; examples
- Characteristic of an integral domain
- Field of fractions of an integral domain

Units in a ring

Definition: Let R be a ring (commutative with 1). Element $u \in R$ is said to be a unit if $(\exists v \in R) : uv = 1$.

Note: The set of units of R forms a group under multiplication. It is denoted U(R) (or, sometimes, R^{\times}).

Example: $U(\mathbb{Z}) = \{1, -1\}.$

Example: $U(\mathbb{Q}) = \mathbb{Q} \setminus \{0\}.$

Zero-divisors

Definition: Element *a* of ring *R* is said to be a zero-divisor if: $a \neq 0$ and $(\exists b \in R \setminus \{0\}) : ab = 0$.

Example: Let *S* be a ring (commutative, with 1) and let $R := S \times S$. Elements of the form (s, 0), where $s \in S \setminus \{0\}$, are zero-divisors. Likewise elements of the form (0, t) with $t \neq 0$ are zero-divisors.

Integral domains

Definition: An integral domain is a commutative ring with 1 satisfying

(8')
$$ab = 0 \Rightarrow a = 0 \text{ or } b = 0$$

(10) $1 \neq 0$

Note: So R is an integral domain if and only if $1 \neq 0$ and there are NO divisors of zero.

Note: Axiom (8') is equivalent to (8") $(a \neq 0 \text{ and } ab = ac) \Rightarrow b = c$ [cancellation].

Examples of integral domains

- \mathbb{Z} is an integral domain [the prototype];
- any subring of \mathbb{Q} , of \mathbb{R} , or of \mathbb{C} is an integral domain;
- if R is an integral domain then so is the polynomial ring R[x]
 [see Sheet 1, Qn 4(a)];
- the ring $S \times S$ is never an integral domain.

Fields

Definition: A field is a commutative ring F with 1 in which

(8)
$$(\forall a \neq 0)(\exists b \in F)(ab = 1)$$

(10) $1 \neq 0$

Examples: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.

Note: A ring F (commutative with 1) is a field if and only if $U(F) = F \setminus \{0\}$.

Note: A field is an integral domain.

Note: Axioms (1) - (10) are the Axioms of Arithmetic.

Characteristic of an integral domain

Definition: Let R be an integral domain. Define Char $R := \begin{cases} additive order of 1 if this is finite, \\ 0 otherwise. \end{cases}$

Theorem: Let R be an integral domain and let p := CharR.

(1) If
$$p \neq 0$$
 then p is prime.

(2) For all
$$a \in R \setminus \{0\}$$
 the additive order of a is p .

Proof.

Fields of fractions

Observation: Any subring of a field is an integral domain.

Proposition: [Non-examinable, but informative and useful.] Let R be an integral domain. Then there exists a field F such that $R \leq F$.

Sketch Proof.