Honour Moderations: Linear Algebra Problem Sheet 5

Michaelmas Term 2004

1. (a) Determine whether the following sets of vectors in \mathbb{R}^{4} are linearly dependent or independent:
(i) $\left(\begin{array}{c}1 \\ 2 \\ -3 \\ 1\end{array}\right), \quad\left(\begin{array}{c}3 \\ 7 \\ 1 \\ -2\end{array}\right), \quad\left(\begin{array}{c}1 \\ 3 \\ 7 \\ -4\end{array}\right)$;
(ii) $\left(\begin{array}{c}1 \\ 3 \\ 1 \\ -2\end{array}\right), \quad\left(\begin{array}{c}2 \\ 5 \\ -1 \\ 3\end{array}\right), \quad\left(\begin{array}{c}1 \\ 3 \\ 7 \\ -2\end{array}\right)$.
(b) Consider the subspaces

$$
U=\left\{\left.\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) \right\rvert\, b-2 c+d=0\right\} \quad \text { and } U=\left\{\left.\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) \right\rvert\, a=d, b=2 c\right\} .
$$

Find a basis and dimension for (i) U, (ii) W, and (iii) $U \cap W$.
2. Defining $M_{n \times n}(\mathbb{R})$ to be the set of all $n \times n$ real matrices, compute the dimensions of the following vector spaces:
(a) the subspace of $M_{n \times n}(\mathbb{R})$ consisting of all diagonal matrices (a matrix $\left\{a_{i, j}\right\}$ is diagonal if $a_{i, j}=0$ for $i \neq j$);
(b) the subspace of $M_{n \times n}(\mathbb{R})$ consisting of all matrices of zero trace (that is, where the sum of the diagonal entries is zero).
3. For each of the following statements about subspaces X, Y, Z of a vector space V either give a proof of the statement, or find a counterexample. $\left[\mathbb{R}^{2}\right.$ and \mathbb{R}^{3} will provide all the counterexamples required.]
(a) $V \backslash X$ is never a subspace of V;
(b) $(X \cap Y)+(X \cap Z)=X \cap(Y+Z)$;
(c) $(X+Y) \cap(X+Z)=X+(Y \cap Z)$;
(d) if $Y \subseteq X$, then $Y+(X \cap Z)=X \cap(Y+Z)$.
4. Let $V=M_{2 \times 2}(\mathbb{R})$, the set of all 2×2 real matrices, and let

$$
U=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right) \right\rvert\, \text { for all } a, b \in \mathbb{R}\right\}, \quad W=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
c & 0
\end{array}\right) \right\rvert\, \text { for all } a, c \in \mathbb{R}\right\} .
$$

Describe $U+W$ and $U \cap W$. Find bases for the subspaces $U, W, U+W$ and $U \cap W$ and hence find the dimensions of these four subspaces.
5. Let X and Y be subspaces of a finite-dimensional vector space V.
(a) Show that if X is a subspace of Y and if $\operatorname{dim} X=\operatorname{dim} Y$, then $X=Y$.
(b) Suppose that $\operatorname{dim} V=\operatorname{dim} X+\operatorname{dim} Y$. Show that $V=X+Y$ if and only if $X \cap Y=\{0\}$.
(c) Suppose that S and T are bases for X and Y respectively, and that $V=X+Y$, $X \cap Y=\{0\}$. Show that $S \cup T$ is a basis for V. [When $V=X+Y$ and $X \cap Y=\{0\}$, then we say that V is the direct sum of X and Y, and write $V=X \oplus Y$.
(d) Show that $M_{n \times n}(\mathbb{R})$ has a basis with the property that each matrix in the basis is either symmetric or skew-symmetric.

G.A.S.

