Honour Moderations: Linear Algebra Problem Sheet 5

Michaelmas Term 2004

1. (a) Determine whether the following sets of vectors in \mathbb{R}^4 are linearly dependent or independent:

(i)
$$\begin{pmatrix} 1\\ 2\\ -3\\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 3\\ 7\\ 1\\ -2 \end{pmatrix}$, $\begin{pmatrix} 1\\ 3\\ 7\\ -4 \end{pmatrix}$;
(ii) $\begin{pmatrix} 1\\ 3\\ 1\\ -2 \end{pmatrix}$, $\begin{pmatrix} 2\\ 5\\ -1\\ 3 \end{pmatrix}$, $\begin{pmatrix} 1\\ 3\\ 7\\ -4 \end{pmatrix}$;

(b) Consider the subspaces

$$U = \left\{ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \middle| b - 2c + d = 0 \right\} \text{ and } U = \left\{ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \middle| a = d, b = 2c \right\}.$$

Find a basis and dimension for (i) U, (ii) W, and (iii) $U \cap W$.

2. Defining $M_{n \times n}(\mathbb{R})$ to be the set of all $n \times n$ real matrices, compute the dimensions of the following vector spaces:

- (a) the subspace of $M_{n \times n}(\mathbb{R})$ consisting of all diagonal matrices (a matrix $\{a_{i,j}\}$ is diagonal if $a_{i,j} = 0$ for $i \neq j$);
- (b) the subspace of $M_{n \times n}(\mathbb{R})$ consisting of all matrices of zero trace (that is, where the sum of the diagonal entries is zero).

3. For each of the following statements about subspaces X, Y, Z of a vector space V either give a proof of the statement, or find a counterexample. [\mathbb{R}^2 and \mathbb{R}^3 will provide all the counterexamples required.]

- (a) $V \setminus X$ is never a subspace of V;
- (b) $(X \cap Y) + (X \cap Z) = X \cap (Y + Z);$
- (c) $(X + Y) \cap (X + Z) = X + (Y \cap Z);$
- (d) if $Y \subseteq X$, then $Y + (X \cap Z) = X \cap (Y + Z)$.

4. Let $V = M_{2 \times 2}(\mathbb{R})$, the set of all 2×2 real matrices, and let

$$U = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \middle| \text{ for all } a, b \in \mathbb{R} \right\}, \quad W = \left\{ \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix} \middle| \text{ for all } a, c \in \mathbb{R} \right\}.$$

Describe U + W and $U \cap W$. Find bases for the subspaces U, W, U + W and $U \cap W$ and hence find the dimensions of these four subspaces.

- 5. Let X and Y be subspaces of a finite-dimensional vector space V.
 - (a) Show that if X is a subspace of Y and if $\dim X = \dim Y$, then X = Y.
 - (b) Suppose that dim $V = \dim X + \dim Y$. Show that V = X + Y if and only if $X \cap Y = \{0\}.$
 - (c) Suppose that S and T are bases for X and Y respectively, and that V = X + Y, $X \cap Y = \{0\}$. Show that $S \cup T$ is a basis for V. [When V = X + Y and $X \cap Y = \{0\}$, then we say that V is the *direct sum* of X and Y, and write $V = X \oplus Y$.]
 - (d) Show that $M_{n \times n}(\mathbb{R})$ has a basis with the property that each matrix in the basis is either symmetric or skew-symmetric.

G.A.S.