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Lecture 1. Sliding over hard beds.

1.1 Weertman sliding

Glaciers slide at their base, and this sliding can be observed, for example in cavities
or subglacial tunnels. Sometimes, sliding accounts for most of the observed surface
velocity, for example in the Siple Coast ice streams.

Glacier motion is modelled as a slow, viscous flow, but when sliding occurs the
usual no-slip boundary condition appropriate to a frozen base must be replaced by a
relation between basal shear stress 7, and basal velocity u,. This relation is called the
sliding law."

The mechanisms of sliding were enunciated by Weertman (1957). When the basal
ice is temperate (at the melting point), a film of water is conceived to exist between
the ice and the underlying bedrock.? This allows slip. The resistance is then provided
by the roughness of the bedrock. Weertman identifies another mechanism, that of
regelation. Regelation (literally, re-freezing) occurs because as the ice flows over a
bedrock obstacle, the higher pressure upstream causes the ice to melt at the inter-
face (because the melting temperature depends on pressure, an effect known as the
Clapeyron relation). The water which is thus formed squirts round the rock, and cor-
respondingly refreezes on the downstream side. Weertman includes both mechanisms
in his discussion, as follows.

Consider a bed consisting of an array of (cubical) obstacles of dimension a a
distance [ apart, and suppose the ice flow exerts an (average) shear stress 7 at the bed.
The drag on each obstacle is therefore 712, and thus the pressure increase upstream of
an obstacle is (approximately) 71%/2a?, while the decrease downstream is —7I?/2a?.
The pressure difference causes a temperature difference (due to the Clapeyron effect)
of

AT =~ C1l*/a® (1.1)

where C is the slope of the Clapeyron curve, —dT},/dp = C ~ 0.0074 K Pa~!. Let ug
be the regelative ice velocity: then uza? is the regelative water flux. The latent heat
required to melt this is p; Lura®, where p; is ice density and L is latent heat. The
heat transfer is effected through the obstacle, at a rate (kAT /a)a? = kATa, where k
is the thermal conductivity of the bedrock. Equating these suggests that

u = ( kO ) s (12)

piLa ) v?’

where v = a/l is a measure of the roughness of the bedrock. Regelation is thus
effective at small wavelengths.

1Tt is interesting to note that the more usual no slip condition was a matter of controversy
throughout the nineteenth century, see Goldstein (1938, page 676), and was adopted finally on
account of agreement with experiment. On the other hand, no slip at a contact line between two
fluids at a wall leads to a discontinuous velocity and thus a non-integrable stress singularity (Dussan
V. and Davis 1974), and it has been proposed that some slip occurs there; Navier’s slip condition
Bu = pdu/0n is in fact a sliding law of the type discussed here.

2Such a film is in fact maintained to quite low temperatures by the thermodynamic mechanism
of pre-melting: see Dash (1989).



On the other hand, let uy be the velocity due to viscous shearing past the obstacle.
The upstream stress generated is &~ 7/2v2, and for a nonlinear (Glen’s) flow law
¢ = A", the resulting strain rate is ~ A(7/2v?)", with n ~ 3. Hence we infer

uy ~ aA(T/20°)". (1.3)
Weertman added these velocities, thus

C
u= ;1% + Coa(t/v)™, (1.4)
where Cy and Cy are material coefficients. It can also (more plausibly) be argued
that the stresses should be added, thus

7 = V¥[R,au + R, (u/a)"/™, (1.5)
where R, and R, are material roughness coefficients, given approximately by

~ pi L

~ig Bem 247", (1.6)

R,
We see that motion past small obstacles occurs mainly by regelation, while motion
past larger obstacles occurs largely by viscous deformation. There is a controlling
obstacle size at which the stresses are comparable,® and if we take a as this value, we
obtain the Weertman sliding law

T & VQRunLH. (1-7)

1.2 Nye-Kamb theory

Nye (1969, 1970) and Kamb (1970) extended Weertman’s scale analysis by means of
a mathematically precise model. Their analysis is limited to a linear viscous flow law,
and therefore inevitably leads to a linear sliding law, 7 o« u. However, the analysis is
not limited to a single roughness scale, and the role of the controlling obstacle size is
made more explicit in this theory.

Nye’s approach is to solve the Stokes flow equation V%) = 0 for the stream
function in the ice, in z > vh(z), and Laplace’s equation for the temperature 6 in
the rock, z < vh(z). By expanding for small v, one obtains problems in upper and
lower half spaces respectively, which are linear and can be solved easily via a Fourier
transform. Nye’s result is

k2u oo Py(k)k3
r=1 bR (1.8)
m Jo kZ4+k2
3More specifically, consultation of (1.5) indicates that, for fired slopes v, the stress is minimised

at a certain value of amplitude a: this is the controlling amplitude. Weertman actually chose a to
minimise u in (1.4); this gives essentially the same result (check this!).




where Py(k) is the power spectral density (formally we define hy = h for [z| < L,
hy = 0 for |z| > L, and then P,(k) = limp_,o |hz|?/L, where hy is the Fourier
transform of hr). Here the controlling wavenumber k, is defined by

k2 _ sz

where K is the thermal conductivity, and 7 is ice viscosity. This can be compared to
the controlling wave number in (1.5), which for n = 1 would be given by

™
= 42T
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of the same form since (2A4) ! here is the viscosity.
Nye’s theory emphasises the role of the power spectrum of h in determining the
roughness. Unfortunately, there is no generalisation available for nonlinear flow laws.

1.3 Nonlinear sliding laws

Lliboutry (1968, 1979) is the principal exponent of more complicated theories asso-
ciated with a nonlinear flow law and a fairly general bed. The key to a more precise
model is a variational principle for slow non-Newtonian flows. Fowler (1981) and
Meyssonnier (1983) used this to derive bounds for the roughness in the sliding law,
where regelation was neglected (i.e., the bedrock varies on a longer length scale than
2 /k*). One obtains the sliding law 7 = Ru!/™, with bounds for R, which are however,
rather wide for general h. For a pure sine wave, however, a very good approximation
can be derived. Research on these clean problems continues using numerical as well
as analytic methods. For a useful summary and an account of some new results, see
Gudmundsson (1997a,b) and Hindmarsh (2000).

1.4 Cavitation

Lliboutry was the person who emphasised the importance of cavitation in the sliding
law. Cavities exist in the lee of obstacles and have the effect of reducing the effective
roughness of the bed. Lliboutry framed his theory in terms of a pseudo-empirical
shadowing function, which determined the fraction of cavity free bed in terms of
the cavity roof slopes. He derived various forms for the sliding law, and raised the
possibility that the functional relation for u(7) could be multi-valued. Importantly,
he also demonstrated that the sliding law would depend on the effective pressure
N = p; — p., where p; is overburden pressure and p,. is cavity pressure (which will
be equal to the hydraulic drainage pressure at the bed). Iken (1981) suggested that
as N decreases (given 7) there is a critical N, > 0 below which unstable sliding will
occur. The argument is based only on a force balance;* the result can be interpreted
in terms of Fowler’s (1986) extension of Nye’s earlier theory. By reformulating Nye’s

4This is not quite enough, since determination of the forces in a viscous flow problem also requires
consideration of the rheological flow law.



model (neglecting regelation) as a Hilbert problem, Fowler showed that for typical
‘unimodal’ bedrocks (i.e. with one hump per period), the sliding law was

7 = Nf(u/N), (1.11)

where f first increases from zero to a maximum f* and then decreases to zero as
u — oo. Hence 7 < Nf* for all u, i.e. N > 7/f* which corresponds to Iken’s
separation pressure. Examination of the results indicates that the maximum drag
N f* is reached when the cavity from one bump begins to reach the next. In reality,
where bumps of varying sizes exist, Fowler (1987) suggested that in this case the drag
is simply shifted to larger bumps as the smaller ones become drowned. Since small
bumps are all cavitated in this theory, this justifies neglecting the effect of regelation.
An approximate method led to the generalised Weertman law

T =cu"N°? (1.12)

with typical values 0 < r, s < 1. More recent work on this problem has been presented
by Schoof (2005), who vindicates Tken and rebukes Fowler, although his results are
consistent with the discussion above.

1.5 Comparison with experiment

Sliding laws are not easily compared with data. There is a hint of field and ex-
perimental support for (1.12). Budd et al. (1979) found that experimental data on
ice sliding over solid slabs of various materials could be described by (1.12), with
r=s= % Bindschadler (1983) tested various sliding laws against measured data
from Variegated Glacier, and also found a best fit when r = s = 1. Bentley (1987)
tested a variety of sliding laws against data from Whillans ice stream in Antarctica,
and found them all wanting.

The main problem with (1.12) (assuming it is reasonable) is in the assessment of
a sensible value for ¢; this must rely on small scale details of the bed configuration,

which by its nature is not readily available for inspection.



Lecture 2. Subglacial drainage theory

2.1 Weertman films

Weertman (1972) conceived of water flowing at the base of an ice sheet or glacier as
a thin water film. Walder (1982) showed that such a flow would be unstable. The
mechanism is pervasive to channel forming flows: a local increase in film thickness
leads to increased flow, hence increased frictional heating, increased meltback, and
thus further channel widening. This positive feedback provides an initial instability,
which is limited at short wavelengths by a dissipative mechanism, for example heat
conduction. Even though a uniform film is not feasible, one can argue that an uneven
‘patchy’ film may exist, and this is one possibility under the Antarctic Siple Coast
ice streams (Alley 1989).
The water flux @) per unit width through a film of mean thickness A is given by

3

h ) Op
Q = m (pwgsme — g) y (21)

where p is the viscosity of the water, 6 is the inclination of the bed to the horizontal,
p is water pressure, and s is distance downstream. For a patchy film, this relation
would be modified by a pre-multiplicative tortuosity coefficient. If « is the ice surface
inclination, then the ice pressure is p; = p;gH, where H is ice thickness, and 0H/0s ~
tan @ — tan o, so Op;/0s ~ —p;g[tan o — tan 6], and (2.1) is

h3 ON
QN@[‘I"FE]a (2.2)

where @ is the gravitational head,
® = p,gsinf + p;g(tan a — tan 6) (2.3)

(cf. equation (2.2)), and N = p; — p is the effective pressure. Normally, the hydraulic
(gravitational) head is much bigger than the effective pressure gradient term.

2.2 Rothlisberger channels

Outlet streams from glaciers frequently flow from a single channel, often carved as
a large tunnel in the ice. The basic theory of drainage through such channels was
elaborated by Réthlisberger (1972), followed by Nye (1976). The mechanism of flow
is that, firstly, the channel water pressure is below the ice overburden pressure, thus
the effective pressure N = p; — p,, is positive. (This is an observation, but is also
necessary for integrity of the ice.) As a consequence of this excess pressure, viscous ice
creep tends to close the channels. This is counteracted by the frictional heat release
by the turbulent flow in the channel. This balance enables channels to be maintained
in a steady state.
The Nye/Roéthlisberger model is
as  0Q m

—+——=—+4+M 2.4
ot = Os pw+ ’ (24)
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where S is channel cross section, () is the water flux, m is the melt rate, and M is
the water supply (e. g., from surface meltwater through moulins, etc.). This expresses
conservation of mass. The closure condition for the channel is actually a kinematic
condition® for the ice flow, and is

oS m
P KSN® 2.
o SN™, (2.5)

where N is effective pressure and K is proportional to the constant in Glen’s flow

law.©
Momentum balance is expressed through a turbulent friction law,

oN _FQ?

R R TER

(2.6)

where F is a roughness coefficient”; equation (2.6) is due to Manning, and is an
empirical correlation.

Lastly the frictional heat generated is due to potential energy release, and the
consequent melting is given by an energy equation in the form®

mL = Q (@ + %—f) : (2.7)

where L is latent heat. Elimination of () and m gives the hyperbolic equation for S:

28 0 s (42" (a4 2)*"

4/3
=+ 32 Fi72 = S48 + M, (2.8)
together with the closure condition
3/2
0S ((I) - 86_15) 4/3 n

5The kinematic condition at the interface between two fluids is a consequence of their continuity,
and states that fluid elements in the interface remain there, i.e., the speed of the interface is the
same as that of the fluid which is at the interface. There are two such equations, one each for ice
and for water, which is why we get two evolution equations for S.

6More precisely, K = 24/n", where A and n are the constants in Glen’s flow law ¢ = A7™.

"In terms of Manning’s roughness coefficient n’, F = p,,g[2(7 + 2)?/7]?/3n/? for a semi-circular
channel. Typical values of n' range from 0.01 for a smooth walled channel to 0.1 for a rough (boulder
strewn) channel. Nye found a good fit to the 1972 Grimsvotn hydrograph with a value of n’ = 0.12.
Clarke (2003) considers this to be too high, since the ice walls would be very smooth; he thinks
the unnecessarily high value is because Nye neglected advection of heat in his simplified theory.
However, it is also the case that turbulent sediment transport in the channel would increase the
effective value of n’ beyond what one might expect.

8This assumes that the water temperature is isothermal, and at the melting temperature. This
is a reasonable assumption under normal circumstances, but may not always be accurate during
jokulhlaups.



Rothlisberger solved the steady state model numerically. We see two space derivatives
(for S (or Q) and N), and we therefore require two boundary conditions: these can
be taken as

Q=0ats=0, (stream head),
N=0ats=1[ (outlet). (2.10)

If we neglect ON/0s (a singular perturbation) and approximate (2.4) as 0Q)/0s ~ M,
then @) = Ms is known, and in a steady state

F3/8
S = 3 Q%4
d
QL ~ KSN", (2.11)
Pi
whence 1 )
(I) n q) 3/8n
Nm(p.LK) (F) Q4. (2.12)

We see that N increases with (), and this explains the arterial nature of Rothlisberger
channels (they like to be on their own).

2.3 Jokulhlaups

A spectacular success of Nye and Rothlisberger’s theory was in its application to
the study of jokulhlaups, glacial outburst floods, and in particular those from the
subglacial lake Grimsvotn in Iceland (Nye 1976). A compendium of information on
Icelandic jokulhlaups is given in the review by Bjornsson (1992), and in his earlier
book (Bjornsson 1988). A recent, very thorough review is that by Roberts (2005).
The drainage model is now supplemented by an upstream boundary condition on the
discharge () which is related to changes in the upstream lake volume. Changes in
lake volume (and thus elevation) cause alteration in the hydrostatic inlet pressure,
and thus to the effective pressure N. It turns out that the new inlet condition can be
written as

AL ON
_pw—gﬁ_mL_Q’ (2.13)

where Ay, is lake surface area and my, is the lake refilling rate (at Grimsvdtn, this is
by subglacial geothermal melting). When this boundary condition is applied, and in
addition a hydraulic seal exists near the inlet (in the case of Grimsvétn, this is due
to the caldera rim surrounding the lake) then regular oscillations occur as observed,
and they share many of the observed properties of the floods, in particular that flood
initiation occurs when the lake is below the level necessary to float the overlying ice
(Fowler 1999).



2.4 Linked cavities

When ice flows over rough bedrock, cavities form in the lee of obstacles. These
cavities may be full of subglacial water, and the possibility exists that subglacial
drainage may occur through such cavities. This possibility was advanced by Kamb et
al. (1985) based on observations of the surging Variegated Glacier, and was studied
theoretically by Kamb (1987) and Walder (1986). The basic idea is that the cavities
will be linked by orifices in the bed which act like little Rothlisberger channels. The
flow rate is controlled by these orifices, which are described by a similar theory to
that for channels. A difference is that the local overburden stress in the orifices P is
given by

sP+ (1 - s)py = pi, (2.14)

where s is the shadowing function defined by Lliboutry (1979): it is the proportion
of uncavitated bedrock, and importantly depends on the sliding velocity. Therefore
the drainage relation between P — p,, and local water flux () becomes a relation
between N = p; — p, and @ which also involves the sliding velocity u (which is itself
determined in terms of shear stress 7 and N). The drainage effective pressure N is
thus determined implicitly in terms of u.

Which drainage system?

A channelised drainage system is always possible, but if cavities exist, drainage can
occur through a linked cavity system. Indeed, observations on Variegated Glacier
indicate that the surge in 1982-3 was initiated by a switch in drainage systems. This
can be understood as follows. Suppose a linked cavity system with flux () x and effec-
tive pressure Nk coexists with a channel system with flux Qr and effective pressure
Ng. In equilibrium, Ng = Nk (otherwise water flows from one system to the other
up effective pressure gradients); if the water flux is perturbed, say increased by AQ
in the cavity system (and therefore decreased by AQ in the channel system), then
the effective pressures are perturbed by —(dNg/dQr)AQ in the channel system and
(dNk/dQK)AQ in the cavity system. The system will be unstable, leading to further
decrease in channel flux, providing

ONr  ONgk

aQ = Q-
We have seen that ONg/0Q > 0, and theory indicates that ONg/0Q < 0. (The
reason for this is that a decrease in N corresponds to an increase in cavity pressure,
and thus a corresponding decrease in pressure over the bed; the resulting smaller
closure rate of the inter-cavity conduits allows an increased transmissive flow between
cavities.) Since Nk also depends on sliding velocity u, this instability really depends
on u: if u is large enough, there will be a transition from channel drainage to cavity
drainage. Kamb (1987) studied the detailed mechanism of the opposite transition,
from cavity drainage to channel flow, which is effected through frictional heating
induced enlargement of the interconnecting orifices. The switch from channel to
cavity systems is associated with the onset of a surge.

(2.15)
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Figure 2.1: Variation of drainage effective pressure with sliding velocity

2.5 Drainage transitions and surges

In the simplified drainage theory of Fowler (1987), N takes values Ng or N < Ng,
depending on the mode of drainage, and there is an instability which is flow dependent,
and causes the transition from channels to linked cavities if a parameter A = u/N™
(n is the exponent in Glen’s law) is larger than some critical value. Kamb (1987)
describes the opposite instability, when a cavity system is unstable to a channel
system. The Kamb instability can be interpreted as occurring when ON/OQ shifts
from negative (stable cavity drainage) to positive (channelised flow), and this occurs
as A decreases through a second critical value (lower than the first).

The result of these two instabilities is the diagram in figure 2.1 which shows that
N is a multivalued function of u. When this is coupled with a sliding law of the type

T =cu"N?, (2.16)

we find the multi-valued sliding law shown in figure 2.2. The existence of such a multi-
valued sliding law can explain glacier surges, and is consistent with observations on
Variegated Glacier.

Figure 2.2: A drainage-induced multi-valued sliding law
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Lecture 3. Basal processes and geomorphology

3.1 Soft glacier beds

Glaciers and ice sheets erode their beds. Stress fracturing plucks boulders from the
bed, and these are ground up to cobbles, gravel, and finally to a glacial flour which
gives (as suspended sediment) proglacial streams their milky colour. This mass of
eroded sediment is carried along at the base of a glacier as a kind of moving conveyor
belt, if the ice is temperate, and is known as till. It can form a layer several metres
thick, and its deformation can be responsible for the bulk of a glacier’s motion. One of
the best known examples is Trapridge Glacier, a surge-type glacier which is underlain
by about six metres of till (Clarke et al. 1984). Part of the interest in the basal till
in this context is that the surge must be associated with sliding, and the mechanism
cannot be identical to that responsible for Variegated Glacier surges.

A deforming basal layer also occurs where an ice sheet overrides sediments, such
as in the lowlands of Europe or the plains of North America (in the last ice age).
A modern example of till-based ice flow is in the Siple coast of Antarctica, where
five ice streams (A to E)? exist, which are (except for C) zones of fast flowing ice
underlain by several metres of wet deforming till (Alley et al. 1987): almost all of the
deformation is due to the conveyor-belt sliding of the till. It is therefore important to
understand the corresponding sliding law, particularly as this may be instrumental
in explaining why ice streams exist, and also how large scale oscillations occurred in
the Pleistocene events, associated with Heinrich events (MacAyeal 1993).

Till rheology

When basal ice resting on subglacial sediments is temperate, basal meltwater floods
the till, so that it is water-saturated. The motion of wet, granular materials is com-
plicated but is often simply modelled as a Herschel-Bulkley fluid. That is, subjected
to a shear stress 7, there is a yield stress 7p: the particulate medium cannot deform
unless it overcomes the frictional resistance between particles. A common assumption
is the Coulomb yield criterion:

To = ¢g + N tan 1), (3.1)

where N is the effective pressure, v is the angle of friction, and ¢ is a small cohesion
due essentially to the clay fraction of the till. If this stress is exceeded, then a
non-zero strain rate € results, which depends nonlinearly on the stress; for a pseudo-
plastic (Herschel-Bulkley) material, € oc (7 — 79)%, where a > 1. Experiments on sub-
Antarctic marine sediments (Kamb 1991) suggest that for these the creep is better
described by a sharp exponential dependence on stress.

The role of the effective pressure is also important in the flow behaviour. The
effective pressure is N = P — p,, where P is overburden pressure and p,, is pore

91ce stream B has been renamed Whillans ice stream, in memory of the glaciologist Tan Whillans.
The others have now also been renamed.
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water pressure, and is essentially a measure of the pressure transmitted between the
solid particles. As we expect the frictional resistance to the flow to increase with N,
this suggests that for given 7, € will decrease as N increases. The simplest realistic
type of viscous rheology is then the Boulton-Hindmarsh (1987) law

= AT*N7° (3.2)

if we neglect g, or
¢ = A(T —19)°N7?, (3.3)

if a yield stress is included.

Dilatancy

A further complication to the rheology is that when a till deforms, it dilates (the
particles have to move round each other) so that the porosity ¢ (which under normal
consolidation conditions will be a function of N) depends on both 7 and N; this may
be of less significance cryodynamically, however. The law (3.2) is a very useful form
for practical use, although the issue of viscous versus plastic rheology is controversial,
and a matter of much current debate.

Boulton and Hindmarsh’s (1987) values for (3.2) were a = 1.33, b= 1.8, A = 3 x
10 ° Pa® 25! (= 4 bar® @y !). Measurements on other glaciers typically give a value
of viscosity of about 10'° Pa s (Fischer and Clarke 2001). One physically inappropriate
inference from (3.2) is that the strain rate becomes infinite (or the viscosity tends to
zero) as N — 0. This would be appropriate for an unconfined mixture, where the
limit N — 0 is associated with fluidisation and slurry like behaviour. However, under
a glacier, it seems unlikely that even in free flotation (with N = 0) the resistance
would be negligible, since the deformation of the till still requires cobbles and clasts
to move past each other. Furthermore, lubricated flow over bed topography produces
resistance, just as in classical sliding theory.

Geotechnical theory

Boulton and Hindmarsh’s law is purportedly based on seven data points, although the
primitive data is not available, and (3.2) cannot be considered to be experimentally
substantiated. The creep behaviour of saturated granular materials such as soils has
been extensively studied. As stated above, there is a yield stress (which depends on
effective pressure and porosity, i.e. consolidation history), and when this is exceeded,
plastic deformation occurs. According to Kamb (1991), longer term creep at large
strains is typically described by a constitutive law of the form

¢ = Aexplar/Ty] (3.4)

for 7 > 7y, the stress at failure (for example given by (3.1) above), with very large
values of a. In effect, this would imply almost perfectly plastic behaviour, that is,
T~ 77 if € > 0. Kamb used till from Whillans ice stream (ice stream B) in Antarctica
to measure 7; ~ 0.02 bars, and this low value has prompted the idea (Whillans and
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van der Veen 1993, 1997, Alley 1993) that the Whillans ice stream till is so weak that
the resistance to flow must be due to ‘sticky spots’ or lateral drag. However, Kamb’s
experiment was effectively at zero confining pressure. If the yield stress is given by
75 = uN, with N = 0.4 bar and p = 0.4, we find 7; = 0.16 bars, close to the observed
basal value. In addition, it is not clear how the deformation of clast-rich till relates to
Kamb’s small pot experiment. Hooke et al.’s (1997) recent results are inconclusive,
but may be consistent with an almost perfectly plastic rheology. Iverson et al. (1998)
report results of ring shear tests consistent with a Coulomb plastic law, 74 oc N; they
also remove larger clasts from the apparatus.

Since one expects on average that effective pressure would increase with depth in
till (because of hydrostatic effects), so also would the strength, or yield stress, of a
perfectly plastic till; in which case one might expect failure at the ice-till interface
only. This is inconsistent with observations of deformation with depth (e.g., Porter
and Murray 2001), and has led to somewhat ad hoc theories to explain this within
the context of a plastic rheology (Iverson and Iverson 2001, Tulaczyk 1999). The
controversy continues to rage. A useful account of differing points of view is in
the issue of Quaternary International on ‘Glacier Deforming-bed Processes’, volume
86 (2001). See also Clkarke’s (2005) review of these and other issues concerning
subglacial processes.

Ice sliding over till

If we neglect the vertical variation of effective pressure due to gravity (an unwarranted
assumption: the effective gravitational head over 5 metres of till with Ap = ps—p,, = 2
kg m~2 is 1 bar, compared to inferred values of N ~ 0.4 bar at the base of ice stream
B) then a sliding velocity u of ice over a till layer of thickness hy will give a strain
rate

u/hy = AT°N~°, (3.5)
following (3.2). It follows that the sliding law in this case is
T =cu N?, (3.6)

with ¢ = (hpA)™Y% r = 1/a, s = b/a. If we include the gravitational head, this
relation is modified slightly. Most importantly, the yield stress criterion (3.1) suggests
that the till does not deform if

N > (71— ¢y)/ tanp, (3.7)

and this leads to the concept of a deforming ‘A’ horizon overlying a non-deforming
‘B’ horizon (Boulton and Hindmarsh 1987). In a glacier, with 7 ~ 1 bar and if
tan ~ 1, then the A horizon corresponds to a depth of ~ 5 metres. In an ice stream
with 7 ~ 0.1 bar, it may be only 0.5 metres. Notice that the effect of the finite A
horizon is to increase the roughness c in (3.6) (or decrease u, or decrease A).

It is clear that different choices of rheological behaviour will lead to different
forms of sliding law. In particular, failure may occur at the ice-till interface and
the till-bedrock interface, if one exists, and prescription of corresponding slip rates is
problematical.
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3.2 Drainage over till

If ice slides over till, the sliding law depends on N; hence we need a drainage law to
determine N. Unfortunately, there is little to constrain how water drains over a till
bed. One possibility is by Darcy flow downwards through the till to an underlying
aquifer. Indeed, if we assume such a downward flow to be ¢ (volume flux per unit
area) then Darcy’s law implies

k

Opw
q= _E l@z - ng] ) (3-8)

where z is depth, k is permeability, and 7, is water viscosity. With hydrostatic
overburden pressure 0P/0z = psg, where p; is the till density, then

— + Apg. (3.9)

To estimate these terms, we take ¢ ~ G/p, L, where G is geothermal heat flux, L is
latent heat. With G ~ 0.05 W m™2, p, ~ 103 kg m=3, L ~ 3.3 x 10% J kg!, we have
g~15x10"""m s ~ 5 mm y~!. Then for 5, ~2x 1073 Pas, and k ~ 3 x 10~ 14
m?, we have 7,g/k ~ 107* bar m™!, which is insignificant compared to Apg ~ 10~
bar m~!.

On the other hand, if subglacial till is underlain by bedrock, so that the meltwater

must be evacuated along a flow line, then along this flow line, the integrated water

flux is
i [0

ol el Pwg Sin 0] , (3.10)

where € is the bedslope in the z direction. If we take ice pressure to vary as dp;/0x =
—pig[tan o — tan 0], where « is the surface slope, then

gz =

%—];] = (;—T> (%) — [pwgsin@ + pig{tan a — tan }]. (3.11)
Consider, for example, the Siple Coast ice streams, for which z ~ 1000 km, Az ~ 10
m, a ~ 1073, Then (with 8 = 0), (z/hr)(mgq/k) ~ 10 bar m~!, while p;ga ~ 10~
bar m~!. In this case we see that the required flux will lead to negative effective
pressures, and in this case we infer the existence of some kind of channelised flow.

Two possibilities have been suggested for this flow. A patchy Weertman type
film has been advocated by Alley (1989). Essentially, the water collects in puddles
and would have a Darcy type law governing its behaviour. As described earlier, this
flow may be subject to instability. If that is the case, then a channelised flow could
occur. Now, two distinct end-members are possible: Rothlisberger channels as before,
and also ‘canals’: channels cut down into the till. The mechanism governing their
behaviour is similar to that of Rothlisberger channels. However, till creep replaces
ice creep and sediment erosion replaces melting.

Walder and Fowler (1994) analysed these types of channel flow, and suggested
that the end-member states were distinguished by a critical value N* of the effective
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pressure. Essentially, for N > N* Rothlisberger channels would exist if o were large
enough, while for N < N*, canals would exist (for any «). Thus for ice sheets (or
ice streams) with small o, canals would provide the drainage mechanism. These have
low N (as inferred for Whillans ice stream) and importantly they have N decreasing
with increasing water flux ), which provides for a stable anastomosing pattern (as
opposed to the isolated, arterial R channels) and also is a possible source of instability.
It ought to be said that the Walder/Fowler theory was rather primitive, but has
in certain features received support from the much more detailed analysis of Ng
(1998). Engelhardt and Kamb (1997) report consistency of the canal description
with observations on Whillans ice stream.

The property that 9N/9Q < 0 is fundamentally due to the assumption that sub-
glacial canals, like sub-aerial rivers, choose their own depth, essentially by a balance
between erosional shear stress and the critical Shields stress. The film versus canals
argument cannot then solely rely on the Walder (1983) stability argument, since that
invoked ice melting. In forming canals, it is essential to thicken the film sufficiently to
enable the sediments to be eroded. Otherwise, we would speculate that the Walder
instability would deform the ice upwards but that in the absence of erosion, the till
would simply creep into the uplifted ice regions. A possibility is thus a water film
over a wavy till interface. The 5 mm y~! geothermal basal melting would give a film
thickness over a 700 km long flow line of 0.6 mm. A puddly base is then feasible under
ice streams, but perhaps less likely for the larger melt-water fluxes below glaciers.

3.3 Geomorphological processes

Actually, we essentially know how drainage works in large ice sheets. Eskers (see
figure 3.1(a)) are long ridges of gravel and sand deposits which are presumed to form
in subglacial channel flows. They could form from either canal-type or channel-type
flows; the separated channels evident in figure 3.1(b) are suggestive of a channel type
drainage system. Sediment deposition raises the channel floor (and thus also the ice
roof) until the channel is pinched off and drainage shifts elsewhere.

A different evolution occurs in the formation of tunnel valleys, for example in the
lowlands of Northern Germany (Ehlers 1981). These massive structures, hundreds of
metres deep and kilometres wide, are evidential of an anastomosing drainage pattern
(hence of canal type, sediment-controlled). However, the flow is sufficiently rapid
(and thus N is low and the sediments are very mobile) that the sediments which are
squeezed in to the channel can be efficiently removed, and the channel thus eats its
way into the substrate. Figures 3.2 and 3.3 show plan view and section of tunnel
valleys in Northern Germany.

Eskers are, in this scheme, indicative of weak flow, while tunnel valleys suggest
larger flows. Shaw and co-workers (e.g. Shaw et al. 1989) argue that in fact many
of these features are formed in huge floods by fluvial action, but there seems little
necessity for supposing this.
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Figure 3.1: (a): aerial view of a Swedish esker (Sugden and John 1976, page 329);
(b): eskers near Trim in Ireland (Embleton and King 1975, page 478).

Figure 3.2: Plan view of tunnel valleys in Northern Germany, indicative of anasto-
mosing pattern (Ehlers 1981).
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Figure 3.4: Formation of drumlins from the basic Rogen instability (Sugden and John
1976, page 246).

Sedimentary features

A variety of land forms, notably drumlins and Rogen or ribbed moraine, may be
formed subglacially due to the erosive properties of ice moving over deformable sed-
iments, by analogy with dune formation in deserts and rivers. Rogen moraine is a
ribbed wave-like formation transverse to ice motion, and drumlins represent a three-
dimensional development of it (Lundqvist 1989), much as ripples and dunes under
water evolve to bars; presumably the different subglacial land forms are associated
with different parametric conditions: see figure 3.4. Figure 3.5 shows the prevalence
of ribbed moraine in Ireland, and figure 3.6 shows a typical swarm of drumlins in
Canada.

Although the literature on drumlins is extensive and goes back well over a hundred
years, dynamic theories are conspicuously absent. Recent work by Hindmarsh (1996,
1998a,b) has demonstrated that the shearing flow of ice over a deformable layer of till
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Figure 3.5: Digital elevation model of ribbed moraine in south central Ireland. Image
supplied courtesy of Chris Clark.

can be unstable to the formation of landforms; the instability mechanism is that ice
flow over a till protuberance causes increased normal stress on the till, and this decel-
erates the till flow, causing an enhancement of the bump. Hindmarsh demonstrated
instability numerically in a wide variety of conditions, and Fowler (2000) derived ana-
lytic criteria for the instability in terms of two parameters, £ = rs/N and Y = a7/N,
where s is till thickness, NV is till effective pressure, 7 is basal shear stress, and r and
« are two material parameters having values 7 ~ 0.1 bar m~!, and o ~ 10 is assumed
(this is the same rheological exponent as in (3.4)). The instability region is shown in
figure 3.7.

Figure 3.6: A field of drumlins in Saskatchewan. Ice flow was from the bottom left
(Boulton 1987, page 66).
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Figure 3.7: Instability region of a layer of till of thickness s. Undulations form under
a wide variety of conditions.

The fact that deformable beds create their own microstructure represents a mech-
anism for enhancing basal friction (and thus sticky spots). Elevated drumlins have
relatively high N and are thus stiff and immobile, while the sediments at lower ele-
vations are less viscous. Indeed, this feature may well be an essential constituent of
the mechanism of their formation.

Exercises

1. Ice of depth A slides over topography of wavelength [ and amplitude a. Use the
sliding law (1.5) to assess typical sliding velocities for various values of a, h and
[ relevant to valley glaciers or ice sheets. Given that shearing within the ice is
given by 2* = Ar(z)", where 7(2) = pig(h — z)sina, « is the surface slope,
and z is the height above the bed z = 0, use dimensional reasoning to estimate
up/us, the ratio of sliding to surface velocity, for different scenarios, in terms
of the parameters ¢ = [/h and v = a/l. (Use values p; = 0.9 x 10® kg m~3,
L=3x100Jkg, k=2Wm 'K, C=08x102KPa!, A=6x10"*
Pa3s ! n=3)

2. Use dimensional estimates to estimate the sizes of the terms in Rothlisberger’s
(steady state) model of channel drainage, and justify (if you can) the neglect
of the ON/0s term. Can the resulting solution for N still satisfy the boundary
conditions? (Use values n' = 0.1 m /3 s, and K = 0.25 x 1072 Pa~% 57!, and
other values from exercise 1.)

Explain why, if N is an increasing function of (), one might expect an arterial
drainage network, whereas if it is a decreasing function of (), one might ex-
pect a distributed drainage system. [Hint: imagine what would happen to two
neighbouring channels if there is a pressure or flow perturbation in one of them.]
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3. If N decreases as the water flux @) of a canal system draining through sediments
increases, then the following positive feedback is potentially operative. An
increase of u increases frictional heating, and hence increases water flux @): this
decreases N, which leads via the sliding law to a further increase of u. Suppose
that

N =¢/Q",
and a suitable sliding law is

T =cu" N°.
Now the meltwater at the base of an ice sheet or ice stream (or cold glacier with
temperate base) is due to geothermal heat G, frictional heat 7u, but is balanced
by cooling into the ice g. The melt flux per unit area is thus (G + 7u — q)/p,, L,

and in a simple model we equate this with the water flux () per unit width, thus

(G + Tu — q)wy
PwL

Q=

)

where wy is the stream spacing. The cooling rate depends on ice thickness and
flow. For fast flow, a boundary layer approximation gives q &~ (p;c,k/ml)Y/2AT u'/?
where [ is the downstream flowline length. Show that the above equations then
collapse, in suitably scaled units, to

14 7u— u1/2]s/3 = pu' /T,

with the single parameter x4 (which you should define) being a measurement of
roughness: small p means slippery till. If » = s = 1/2, show that if y is small
enough, u will be a multi-valued function of 7. Use values p, = 10% kg m 3,
pi=09x103kgm 3 L=335kIkg ! c,=2k] kg! K! wy=3km (cf.
figure 3.1), k = 2.1 W m~! K=!, [ = 2000 km, AT = 50 K, G = 0.05 W m~2,
7 = 0.15 bars, u = 500 m y~!, to infer values of @), and hence also appropriate
estimates for c and ¢, if N = 0.4 bars. Hence calculate a typical value of y, and
investigate whether the sliding law is multivalued in this case. This behaviour

is relevant to the dynamics of ice streams and surging Pleistocene ice sheets.

4. One objection that might be raised to the idea that drumlins always form
through an instability in a deformational layer of till is the observation that
some drumlins appear to have a stratigraphy consistent with water deposited
sediments. Is this a real objection? Can you think of a way in which till defor-
mation could occur and yet allow such stratigraphy to occur? Or if not, can you
think of another physical mechanism whereby such drumlins could be formed?
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