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Preface

These notes accompany the B5 course, ‘Techniques of applied mathematics’. There
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http://www.maths.ox.ac.uk/ “fowler/courses/tech/tech.html

Edition numbers a.b mean the following: a refers to the edition available at the
Mathematical Institute reception, and b refers to the web-based updates. Institute
hard copies will thus always be 1.0, 2.0, etc. Amendments in updated versions will be
indicated here, in this preface, but these lists of amendments will disappear at each
new hardcopy edition.

My thanks to John Norbury for a rapid critical reading of the rapidly written
chapters 5 and 6.

A. C. Fowler
October 11, 2005
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Chapter 1

Introduction

Mathematical modelling is that abstruse subject which forms the connecting tissue
between the problems of the real world which we wish to solve, and the quantitative
analysis which we undertake to do so. Almost any problem which requires a quanti-
tative answer, whether it be in industry, medicine, economics, biology or geophysics
(for example) involves the formulation of the problem as a mathematical model, and
it is this formulation, and the techniques which one uses to solve the model, which
form the subject of these notes.

There are, perhaps, three kinds of model: statistical, discrete and continuous.
We can illustrate their difference with a simple (and topical) example. Suppose fox
hunting in England were to be banned. One of the arguments against this is that
hunting provides a control on the number of foxes. As with many such assertions,
this is one which might be true, or might not. It is a quantitative assertion, and the
only way to find out whether it is true is to examine it scientifically. We do this by
proposing a model, and examining its validity!. The statistical method examines the
probability that one of two alternative hypotheses is true, by using actual measured
data. For example, if hunting were to be banned, one might examine fox population
numbers during the five years preceding and following such a ban. As with all models,
it is in the interpretation of the results that the skill lies. This is particularly true of
statistics, where the aim is to eliminate possibilities, rather than propose constituent
mechanisms.

Statistical models have to deal with the issue of predictability. Suppose fox num-
bers double following a ban; then it would seem likely that there is a connection. But
there are other factors which are involved in determining fox populations, and it is
always arguable whether one particular factor has a deciding control.

Statistical models are diagnostic: they try to intepret process from measured data.
Discrete and continuous models are examples of prognostic models: they propose a
descriptive model of a phenomenon, and then predict what will happen in the future.
Such models require validation. This consists initially of matching observation to
theory, and often will suggest experiments which can be done to confirm the theory.

A discrete model will propose a difference equation for the variables of interest.

I This is in fact the scientific method: the models that we propose are no more than hypotheses,
and science should never present itself as purveying absolute truth.



In the case of foxes, this might be an estimate for the fox population density u, at a
particular time during the n-th year, and a simple such discrete model is the logistic
model with harvesting:

Upi1 = TUy (1 — %) — hu,, (1.1)

where 7 is the specific reproductive rate, and the term hu,, represents harvesting (via
hunting); the coefficient h represents the effort involved, which one might suppose
would be proportional to the number of hunts. This model contains the simple idea
that excess populations become limited by competition for resources (the nonlinear
term involving K implies decreasing growth rate at larger values of u,). A discrete
model such as (1.1) might be appropriate for fox populations, which have an annual
rut, so that the reproductive cycle is repeated annually.

Suppose, for the sake of argument, that (1.1) is a reasonable model. Note that
r > 1 is a pure number, and so also is h, while K has the same units as u,. In the
absence of hunting, there is a steady population K(r — 1)/r, and this is reduced if

h # 0 by a factor ll —

h
1]. So the efficacy of hunting in this model depends on
r—

this particular quantity; hunting is effective if h/(r — 1) is significant. This provides
a predicted outcome, provided the parameters A and r can be reasonably assessed.
Continuous models are used in the same way, but describe processes using dif-
ferential equations. It is this kind of model which forms the focus of these notes.
The rationale for continuous models is the continuum hypothesis, which states that
the actual behaviour of a discrete variable, such as a population, can be accurately
represented by the evolution of a continuous (and usually differentiable) variable.
The basis for this assumption is the ‘fine-grained’ nature of the variable: in a large
population, a change by one individual is a small relative change, and can be viewed
as being a finite difference approximation to the infinitesimal changes of the calculus.
A continuous version of (1.1) might be the ordinary differential equation

% = pu (1 — %) — pu, (1.2)
whose behaviour can be analysed in a similar way to its discrete counterpart.

There are two particular points of view which we can bring to bear on the math-
ematical models which describe the phenomena which concern us: these are the dy-
namical systems approach, or equivalently the bifurcation theory approach; and the
perturbation theory approach. Each has its place in different contexts, and sometimes
they overlap.

The bifurcation theory approach most usually (but not always) is brought to bear
on problems which have some kind of complicated time-dependent behaviour. The
idea is that we seek to understand the observations through the understanding of
a number of simpler problems, which arise successively through bifurcations in the
mathematical model, as some critical parameter is changed. A classic example of this
approach is in the study of the origin of chaos in the Lorenz equations, or the onset
of complicated forms of thermal convection in fluids.



In its simplest form (e.g., in weakly nonlinear stability theory) the perturbative
approach is similar in method to the bifurcational one; however, the ethos is rather
different. Rather than try and approach the desired solution behaviour through a se-
quence of simpler behaviours, we try and break down the solution by making approxi-
mations, which (with luck) are in fact realistic. In real problems, such approximations
are readily available, and part of the art of the applied mathematician is having the
facility of being able to judge how to make the right approximations. In these notes,
we follow the perturbative approach. It has the disadvantage of being harder, but it
is able to get closer to a description of how realistic systems may actually behave.

1.1 Conservation and constitutive laws

The basic building blocks of continuous mathematical models are conservation laws.
The continuum assumption adopts the view that the physical medium of concern
may be considered continuous, whether it be a porous medium (for example, sand
on a beach) or a fluid flow. The continuum hypothesis works whenever the length
or time scales of interest are (much) larger than the corresponding microscale. For
example, the formation of dunes in a desert (length scale hundreds of metres) can
be modelled as a continuous process, since the microscale (sand grain size) is much
smaller. Equally, the modelling of large animal populations or of snow avalanches
treats the corresponding media as continuous.

Conservation laws arise as mathematical equations which represent the idea that
certain quantities are conserved — for example, mass, momentum (via Newton’s law)
and energy. More generally, a conservation law refers to an equation which relates
the increase or decrease of a quantity to terms representing supply or destruction.

In a continuous medium, the typical form of a conservation law is as follows:

09

D +VfE=25. (1.3)
In this equation, ¢ is the quantity being ‘conserved’ (expressed as amount per unit
volume of medium, i.e. as a density; f is the ‘flux’, representing transport of ¢ within
the medium, and S represents source (S > 0) or sink (S < 0) terms. Derivation of
the point form (1.3) follows from the integral statement

%/V¢dvz_/avf.nds+/vsazv, (1.4)

after application of the divergence theorem (which requires f to be continuously dif-
ferentiable), and by then equating integrands, on the basis that they are continuous
and V is arbitrary. Derivation of (1.3) thus requires ¢ and f to be continuously
differentiable, and S to be continuous.

Two basic types of transport are advection (the medium moves at velocity u, so
there is an advective flux ¢u) and diffusion, or other gradient-driven transport (such
as chemotaxis). One can thus write

f=o¢u+J, (1.5)

3



where J might represent diffusive transport, for example. The very simplest conser-
vation law is that of conservation of mass, where the conserved quantity is the density
p, and the mass flux is entirely due to advection:

i + V.(pu) = 0. (1.6)
ot

Invariably, conservation laws give more terms than equations. In (1.5), for exam-
ple, we have one scalar equation for ¢, but other quantities J and S are present as
well, and equations for these must be provided. Typically, these take the form of con-
stitutive laws, and are based squarely on experimental measurement. For example,
diffusive transport is represented by the assumption

J=-DV¢, (1.7)

where D is a diffusion coefficient. In the heat equation, this is known as Fourier’s
law, and the heat equation itself takes the familiar form

aat(pcpT) + V.[pe,Tu] = V.[kVT] + Q, (1.8)

where () represents any internal heat source or sink.

1.2 The law of mass action

Apart from conservation laws, which typically involve transport terms in the form of
divergences, the other type of term which frequently arises in models is an algebraic
‘reaction’ term. The source term @ in (1.8) is a simple example of this. Slightly more
complicated is the Newtonian cooling law

dr

i h(To—-T), (1.9)
which represents cooling (or warming) of a material of temperature 7" in surroundings
of ambient temperature Ty. Here, AT, represents heat gain from the surroundings,
and hT is the corresponding heat loss.

A particularly common and interesting way in which source terms arise is in the
nonlinear interaction between different constituent populations. These may represent
individuals of a plant or animal species, or they may represent different types of
cells in the body, or concentrations of different reacting chemical species. The basis
for describing such interactions is called the law of mass action, and is most simply
understood in the reaction between two substances, which we denote as A and B.
The reaction is written as .

A+ B — P, (1.10)
indicating that a product P is formed at a rate r, which may typically have dimensions
mol 17! s7!; ‘mol’ indicates moles, and ‘I’ indicates litres. The law of mass action says
that

r x AB, (1.11)
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where A and B indicate the concentrations of the respective reactants. This law
represents the idea that the rate of a chemical reaction is proportional to the rate at
which the reacting molecules run into each other, and in a homogeneous, well-mixed
environment, this is simply proportional to the size of each population. Insofar as the
same basic assumption applies to any population, the law of mass action will apply
there too.

1.3 The S—/—R model

A simple illustration of the law of mass action is the STR model for epidemics in
a population of fixed size. The population is divided into three classes, susceptible
(those who have yet to catch the disease), infected, and removed (or recovered).
The removed class may represent those who have recovered from the disease and are
no longer susceptible (as, for example, in a flu epidemic) or those who have died
from the disease. Three equations which describe the interactions of these three
sub-populations are

S = —kSI,
I = kSI—rI,
R = rl (1.12)

The nonlinear interaction term kST represents the rate of infection, and assumes
free dispersal of the infected class amongst the general population. Also of note is
the first order decay term —rI, which describes ‘first order’ kinetics, and is indicative
of the law of mass action applied to a single population. However, in the case of an
epidemic, this term is of dubious provenance, as it implies that there is an exponential
distribution of infection times, whereas in reality diseases tend to last for a reasonably
fixed period. Consideration of this leads us to consider an age-structured model.

Let us suppose that i(¢,a) represents the density (with respect to a) of infected
individuals at time ¢ who have been infected for a time a (i. e., their ‘age’ of infection
is a). We suppose the rate of removal r(a) is a function of age, so that

di
d—z = —r(a)i, (1.13)
and the evolution of age with time is simply
da
— =1. 1.14

These are the characteristic equations for the age-structured evolution equation

0i Ot
= . 1.15
5 T g, = (@) (1.15)
The total infected class is o
1:/ i da, (1.16)
0
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which on integrating (1.15) implies

dI o0
pri —/0 r(a)ida+ i|,_, - (1.17)

Evidently i|,_, is the rate of addition to the infected class, thus we take
i| 0 = kST, (1.18)

and this provides the initial condition for ¢ on a = 0.

If r is constant we recover (1.12). For r = r(a), we solve (1.15) using the method
of characteristics, i.e., we solve the ordinary differential equations (1.13) and (1.14)
subject to the initial conditions on a = 0 which can be parameterised as

t=mn, i=io(n)=kSn)I(n), a=0, (1.19)

valid for n > 0. (The other part of the initial condition is applied at t = 0, a > 0, but
this part of the initial condition only contributes to a transient part of the solution
for a finite time.)

The solution of (1.13) and (1.14) is then found to be

i =1ig(t —a)exp [— /Oa r(s) ds] , (1.20)

valid for ¢ > a. For t < a, the solution depends on the initial condition at ¢ = 0, and
if, for example, ¢ = 0 initially, then ¢ = 0 for ¢ < a.

Now let us consider the particular case where there is a fixed period of infection,
7. This means essentially that r = 0 for a < 7, but becomes rapidly infinite? as a
increases through 7. As a consequence, we have that

/Oar(s) ds = { 0, a<m (1.21)

00, a>T,
and thus o
. 12
Finally we have that (for ¢t > 7)
I= ttTio(s) ds. (1.23)
In view of the definition of iy, we can deduce from this that
I=—S(t)+S(t—1), (1.24)
and therefore that S satisfies the differential delay equation
S=kS[S—S,], (1.25)

where S, = S(t — 7).

2 r is actually then what is called a generalised function, or distribution.
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1.4 Saturation and cooperativity

The simple quadratic interaction terms of the law of mass action become more compli-
cated either when there are more reactions, or when the reaction rates are themselves
modified by external factors. An example of the latter sort of term arises in the simple
model for spruce budworm infestations given by Murray (2002). The model describes
the evolution of spruce budworm moth density, denoted by B, as

. B BB?
B—rpB (1 - K—B) - (1.26)
The spruce budworm larvae develop in pine forests in Northern Canada, where
they feed on the foliage. The model describes the growth of the larval density as a
term proportional to population, rgB (representing the year to year growth of larval
populations through the successive stages of pupation, moth development and egg
formation). The specific growth rate rp is modified by a term which represents the
effects of crowding on the population. Thus we have the logistic growth model

. B
B=ryB (1 KB> . (1.27)
The quantity K g represents a saturation limit beyond which B cannot grow, and this
represents one way in which the effects of saturation may be modelled. It is not the
only way, and not necessarily the most realistic.

The second term on the right hand side represents predation of the larvae by
birds, for whom the larvae form part (but certainly not all) of the staple diet. The
form of this term is of some interest. It is apparently independent of the size of the
bird population. This implicitly assumes that there are so many birds that there is
always one available to eat available larvae. Alternatively, it assumes a constant bird
population, whose size is not controlled by larval density, but by other factors such
as climate.

At high values of B, the predation rate saturates. Presumably this represents
the fact that the appetite of birds and other predators is finite. Saturation is often

modelled by a logistic term o , which is a linear at small B, corresponding to

B+ B,
first order kinetics. When the dependence is quadratic, as in (1.26), the rate is said

to display the Allee effect. There are (at least) two motivations for such a quadratic
dependence. The first is that when B is very small, one can imagine birds finding other
prey more easily, and making less effort to locate larvae. A quadratic dependence
would indicate that the effort or time spent searching for larvae is proportional to their
density. The second is that at higher densities, the availability of larvae may attract
birds. If bird density is proportional to larval density, then a quadratic dependence
also ensues.

1.4.1 Cooperativity

Cooperativity refers to a biochemical reaction process in which an enzyme reacts with
a chemical species, often referred to as a substrate. The very simplest version (which

7



is not actually cooperative!) is the Michaelis-Menten reaction scheme

k1 k
S+Ef(%iE+R (1.28)
-1

which represents the reaction of a substrate (S) with an enzyme (F) to form a complex
(C) which produces a product (P), together with the original enzyme. The enzyme
thus catalyses the reaction (i.e., it is not absorbed by the reaction).

Although the law of mass action is applied to these reactions separately, it is
usually the case that the first reaction (the formation of the complex) is very fast,
essentially because there is normally not much enzyme present. As a consequence
of this, the forward rate k1 SFE is approximately equal to the backward rate k_,C.
In addition, the total enzyme is conserved, either as free enzyme F or in the bound
form C, so that F + C = Ej is constant. It follows from these observations that the
product rate formation, i.e., the rate of reaction, is

ko EoS
S+ Ky’

where K; = k_;/k;. This provides a reaction-based explanation for saturating rate
kinetics.

The actual phenomenon of cooperativity refers to the ability of some enzymes to
have multiple binding sites for certain substrates. For example, with two binding
sites we might consider the reaction scheme

k1

k
S+E§éa—iE+R
-1

k3 ka4
S+Cl k# Cg — Cg + P. (130)

-3

It is easy to analyse this in the same way, assuming the binding reactions are fast.
We find that the overall production rate is

2
p = (BaF0S + ka1 K3 S7) By (1.31)
1+ K;S+ K;K35?

where K1 = k_1/k; and K3 = k_3/ks. The predation rate in (1.26) is a particular
case of this, if K3 is large enough,

A k4K1K3E052

T 14+ K K3S?

It is easy to extend these ideas to enzymes with n binding sites, and we then

find that the reaction rates are expressible as ratios of n-th degree polynomials. In

particular, such models can produce the rates described by Hill functions, in the form

Y kSn .

T Sn 4 S

such models are often used as empirical rate terms, for example in respiratory control
modelling.

(1.32)

T (1.33)



1.5 Notes and references

There are quite a lot of books about mathematical modelling, but they do vary in
range. What you certainly don’t want are books on simple methods: how to do the
Laplace transform, and so on. There are a number of relatively recent books on the
principles of mathematical modelling, for example Tayler (1986), Haberman (1998),
Fowkes and Mahony (1994), Howison (2005); these are aimed at undergraduates, as
is the present text. Fowler (1997) aims at a more graduate level. The classic of the
type is the book by Lin and Segel (1974), now very dated but certainly an absolute
model of clarity.

There are obviously many books which describe the technical material which is
used here, but not so many which are written from the viewpoint of the practising
applied mathematician. Of several fitting this latter description. we mention Keener
(2000), Ockendon et al. 2003, and Carrier and Pearson (1976).

1.5.1 SIR model

The STR model was introduced to epidemiology by Kermack and McKendrick (1927).
It is described in the book by Murray (2002), where various extensions to the model
are described. Recovery of the susceptible population (for example by population
growth) can lead to oscillations, indicative of repetitive outbreaks. If these occur in
a spatially distributed domain, then population migration (modelled as a diffusion
term) can cause an epidemic to propagate as a travelling wave. Apparently this is
how the Black Death spread in Europe in the fourteenth century.

The short book by Hoppensteadt (1975) describes age dependent population mod-
els, as well as the SIR model.

1.5.2 Spruce budworm model

Murray’s (2002) book also describes the simplest version of the spruce budworm
model. This itself is a simplification of a three variable continuous model described
by Ludwig et al. (1979), which itself is an applied mathematician’s attempt to propose
a simpler version of the complex simulation model of Jones (1979). The Ludwig model
is analysed in greater depth by Fowler (1997), and the Jones ‘budworm site model’
has been analysed by Hassell et al. (1999). Royama (1992) discusses the ecological
background of the problem.

Exercises

1.1 Consider the discrete population model (1.1):

Upt1 = TUy (1 — 7;{—”) — hu,.



1.2

1.3

14

1.5

By writing u,, = Lw, for some suitable choice of L, show that the model takes
the form
Wn41 = )\wn(l - wn)a

and determine A. What is the effect of increasing A on the behaviour of the
population? What happens if h > r — 17

Consider the continuous population model (1.2):

du ( )
—=pul(l——=)—pu.
a =" c) "

By writing u = Mw for some suitable choice of M, show that the model takes

the form p
d—if = aw(l —w),

and determine . What is the effective of increasing © on the population? What
happens if p < p?

Starting from an integral conservation law, derive the heat equation in the form

%(pCpT) +V.[pe,Tu] = V.[kVT] + Q,

and the mass conservation equation in the form

)
9P ¥ (pu) = 0.

ot
The SIR model of an epidemic is
S = —kSI,
I = kSI—rI,
R = rI ,

where S represents the susceptible population, I the infected population, and
R the recovered (or removed) population. Suppose that at t =0, S = Sp, [ is
very small (perhaps a single individual), and R = 0. Show that an epidemic
will occur if the reproductive rate

kSo

R=—
r

is greater than one, and find I as a function of S.

A model for the reaction of a substrate with an enzyme with two binding sites
is given by

k1 ko

k3 ka4
S+ C f Cy —» Cy+ P.
-3

10



If the reversible reaction rates ki; and ki3 are very fast, show that the rate of
formation of product P is approximately

(ko K18 + ka1 K35%) Ey
1+KIS+K1K3,S2 ’

where Kl = k_l/kl and K3 = k_g/k3.

11



Chapter 2

Non-dimensionalisation and
approximation

Once we have a model, we have to try and solve it. There are two kinds of solutions:
exact, analytical solutions, and approximate solutions. Exact solutions are explicit
formulae; for example we can exactly solve quadratic equations, and certain differen-
tial equations, such as that describing simple harmonic motion. We also consider that
solutions such as Taylor series constitute analytic solutions: they can be computed
to arbitrary accuracy. The same applies to quadratures, such as the solution of

du
i flu), u(0) = uo, (2.1)

which has an implicitly defined solution

et (2.2)

Approximate solutions are those where one solves an approximate equation, or an
approximating sequence of equations. Approximate methods are best applied when
the approximation is based on the size of certain terms. In this chapter we will
illustrate the use of such methods, firstly on simple algebraic equations, and then on
some differential equations. The whole subject of perturbation theory is extensive,
and a thorough discussion is beyond the scope of these notes.

2.1 Non-dimensionalisation

In order to approximate a solution, we need to be able to neglect terms which are
small. This raises a concept of fundamental importance, which is that ‘small’ and
‘large’ are adjectives which can only apply quantitatively when a comparison is made
between quantities of the same dimension. An equivalent assertion is that we can
only make approximations based on the small size of parameters if these parameters
are dimensionless. It makes no intrinsic sense to say a quantity is small if it still has
dimensions. A speed of 1 cm s~! is small if you are a rocket, but large if you are a
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giant African land snail. An ice sheet is thick if you are a human being, but thin if
you are a planet. So we always associate large or small quantities with dimensionless
numbers, that is, parameters which measure quantities with respect to some reference
value. The process of isolating these parameters is called non-dimensionalisation.

2.1.1 The wave equation

Putting a mathematical model into non-dimensional form is fundamental. Although
technically trivial, there is a certain art to the process of non-dimensionalisation, and
the associated concept of scaling, and the only real way to learn how to do it is by
example. Let us begin with a simple model, the wave equation, which one learns how
to derive in first year applied mathematics courses. We suppose a string, for example
a guitar string, is wound between two points a distance [ apart. If the tension in the
string is T and its density (per unit length) is p, then an application of Newton’s
second law to an infinitesimal segment of the string leads to the equation

0%y 0%y

Pop = y=0 on x=0,I, (2.3)

B T@xQ’
where z is distance along the string, and y is its transverse displacement.

The main assumption that is usually stated in deriving this equation is that the
displacement y is small. However, there are at least two other implicit assumptions
which are made. One is that gravity is unimportant; the other is that there is no
longitudinal displacement.

For a guitar string, these seem to be reasonable assumptions, but why? We expect
the effect of gravity to be a deviation of the displacement from the vertical, and this
is evidently valid for the guitar string. It is not valid for the hanging chain, or for
the wire between telegraph poles. Why? I would say, for the chain, the density is
too large; for the telegraph wire, the distance [ is too large; while the guitar string
is straight because it is tight: 7' is large. These facts suggest that the ‘size’ of the
gravitational acceleration g may in fact be measured by the dimensionless parameter
pgl/T, which appears to be the only independent dimensionless parameter which can
be formed from those in the model if we include gravity.

How can this suspicion be confirmed? From first principles, we derive the wave
equation, including gravity, in the form

0%y %y

P T@—pg, y=0 on z=0,1 (2.4)

Next we write the model in dimensionless form. We do this by non-dimensionalising
the variables so that they are numerically of order one (written O(1)). Specifically,
we write

z=Iz*, y=1ywy", t=(/c)t, (2.5)
where

(2.6)

T
c=4/—
P
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is the wave speed, and yg is a measure of the displacement: for example, it could be
the maximum initial displacement. The dimensionless model is then obtained in the
form

a2y* a2y*
502 — g2 P (2.7)
where 2
P9

with y* = O(1) initially, and y* = 0 on z = 0,1. All of the terms in the equations
and in the initial and boundary conditions are dimensionless, and all the coefficients
which appear (such as ) are dimensionless.

It is conventional at this dimensionless stage to dispense with the asterisks in
writing the variables, and this we now do. The process of choosing particular scales
for the variables, or scaling, is motivated by the following ideas. Firstly, there is a
natural length scale to the problem, [, which is the dimension of the geometric domain
on which the problem is to be solved. Further, there is a natural length scale for the
displacement, g, which is present in the initial conditions. Next, of the three terms
in (2.4), we anticipate (at least for the guitar string) that the gravity term will be
‘small’. It follows that the other two should be the same size, and we choose the
time scale so that these two terms ‘balance’, that is their dimensionless scales (here
Ty2/1?) are the same. When the model is written in the dimensionless form (2.7), we
then have equal dimensionless coefficients multiplying these two terms: here they are
both equal to one.

The final, essential idea is that, in general, a dimensionless function u(z,t) which
varies by O(1) over an z range of O(1) will have derivatives of O(1). This is true,
for example, for sinz, e=®, and z?: it is not true for the function e71%, which varies
rapidly over a distance of order x ~ 0.1 near z = 0. With this assumption, the
derivative terms §%y/0t* and 8%y/dz* are O(1), and it follows that the relative size
of the gravity term is given by 3. Thus gravity is negligible if 8 < 1, and indeed this
means large tension, small density or short length, as we surmised.

T

2.1.2 The heat equation

Next we consider a form of the heat equation, (1.8). We write it in the form (assuming
density p and specific heat ¢, are constant)

T
%—t +u.VT = kV?T + H, (2.9)

where H = @/pc,. We have assumed V.u = 0, which follows from the conservation
of mass in the form 3
a—': + V.(pu) =0, (2.10)
together with p = constant.
Suppose we are to solve (2.9) in a domain D of linear dimension /, on the boundary
of which we prescribe

T=Tg on 0D, (2.11)
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where T’z is constant. We also have an initial condition
T =Tyx) in D, t=0, (2.12)

and we suppose u is given, of order U.
We can make the variables dimensionless in the following way:

x =Ix*, t=[t", T =Ts+ (AT)T". (2.13)

Again, we do this in order that both dependent and independent variables be of
numerical order one, O(1). If we can do this, then we would suppose a priori that
derivatives such as V*T* (V = [71V*) will also be of numerical O(1), and the size
of various terms will be reflected in the dimensionless parameters which occur.

In writing (2.13), it is clear that [ is a suitable length scale, as it is the size of D.
For example, if D was a sphere we might take [ as its radius or diameter. We also
suppose that the origin is in D; if not, we could write x = x¢ + [x*, where xg € D:
evidently x* = O(1) in D.

A similar motivation underlies the choice of an ‘origin shift’ for 7. In the absence
of a heat source, the temperature will tend to the uniform state T'= Ty as t — oo.
If H # 0, the final state will be raised above T (if H > 0) by an amount dependent
on H. We take AT to represent this amount, but we do not know what it is in
advance — we will choose it by scaling. The subtraction of T from T before non-
dimensionalisation is because the model for T' contains only derivatives of T', so that
it is really the variation of T" about Tz which we wish to scale.

In a similar way, the time scale [¢] is not prescribed in advance, and we will choose
it also by scaling, in due course.

With the substitutions in (2.13), the heat equation (2.9) can be written in the

form 2\ 0T Ul HI?
— — | w. VT = V2T 2.14
() 3+ () =vor+ () (214

where we have written u = Uu*, so that u* = O(1). This equation is dimensionless,
and the bracketed parameters are dimensionless. They are somewhat arbitrary, since
[t] and AT have not yet been chosen: we now do so by scaling.

The solution of the equation can depend only on the dimensionless parameters. It
is thus convenient to choose [t] and AT so that two of these are set to some convenient
value. There is no unique way to do this.

The temperature scale AT appears only in the source term. Since it is this which
determines the temperature rise, it is natural to choose

HI?
AT ==, (2.15)
K
It is also customary to choose the time scale so that the two terms of the advective
derivative on the left of (2.14) are the same size, and this gives the convective time

scale
[t] = é (2.16)
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Finally, we remove the asterisks. When this is done, the dimensionless equation takes
the form

T
Pe laa_t + u.VT] = V°T +1, (2.17)
where the Péclet number is Ul
Pe=—, (2.18)
K

and the solution of the model depends only on this parameter (as well as the initial
condition). The boundary condition is

T=0 on 0D, (2.19)
and the initial condition is
T=6(x) at t=0, (2.20)
where Ty(x) - T
oltX)— 1B
= ———7 - 2.21
() = 0 (2:21)

2.2 Scaling

A well-scaled problem generally refers to a model in which the dimensionless param-
eters are O(1) or less. Evidently, this can be ensured simply by dividing through
by the largest parameter in any equation. More importantly, if parameters are nu-
merically small, then (as we discuss below) approximate solutions can be obtained
by neglecting them. The problem is well-scaled if the resulting approximation makes
sense. For example, (2.17) is well-scaled for any value of Pe. However, the problem
eT, = eV?T + 1, with € < 1, is not well scaled. One makes a problem well-scaled in
this situation by rescaling the variables, and we now consider the wave equation (2.7)
again in this light.

2.2.1 The wave equation, again

In the statement of the wave equation with gravity, there are in fact two dimensionless
parameters: l
Py Yo
B = T €= B
The parameter € is a measure of the amplitude of the motion, and it is on the basis
that € < 1 that we derive the linear wave equation in the first place. The parameter
B = B/e, so the assumption of negligble gravity is equaivalent to the assumption that
Bg<exk 1.

If B ~ ¢, then 8 = O(1). The problem is sensibly scaled, but gravity is no longer
negligible. There is a steady state y = 38z(l — z) (the hanging chain), and, because
the equation is linear, the string simply oscillates about this steady state.

Now suppose that S > 1. The model is now not correctly scaled (because the
limit f — oo gives no sensible approximation). In fact the model suggests that a

(2.22)
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steady state will have y ~ (3, and that the string will oscillate about this steady state
with a similar amplitude. In order to obtain a sensibly scaled problem, we simply
have to rescale the displacement by writing y = fY, and the discussion can proceed
as before, except that the initial condition has Y <« 1.

It seems that all is now well; we have discussed the cases § < 1, 8 = O(1),
and 8 > 1. However, ther is more concern when [ becomes as large as O(1/¢).
In this case, the model suggest oscillations about a steady state of order 8 ~ 1/e,
and dimensionally of order [. Because of this, the basis of the original derivation is
suspect, and the model must be re-derived: in fact this can be done (see question
2.1), so that the model equation (2.7) remains valid. However, the initial value scale
Yo is not now an appropriate scale for y; the appropriate (dimensional) scale is y ~ [,
and this a posteriori adjustment is the rescaling alluded to above. In dimensionless
terms, we rescale the model by writing y = (I/y9)Y = Y /e, and we find

oY 9%y

5 o B (2.23)

and this version of the model is appropriate if B = O(1). If B > 1, a further rescaling
simply takes Y ~ B.

2.3 Simple approximation methods
Suppose we wish to solve the equation
2 —er—1=0, (2.24)

where ¢ is relatively small: for example if ¢ = 0.1. Formulae do in fact exist for
writing solutions of cubic (and also quartic) equations, but they are fairly unpleasant
and are rarely used. A much better way is to use an approximation method, based
on the idea that the parameter ¢ in equation (2.24) is small.

Graphically, it is clear (see figure 2.1) that when ¢ is small, (2.24) will have a
unique, positive real root, and in fact it will be close to z = 1 (since 1 + ez ~ 1).
(In passing, note that there will be exactly one root for € < ., where ¢, is the value
corresponding to tangency of the line with the curve; at this value 2* = 1 + ez and
32?2 = ¢, so that e, = 3/2%3 ~ 1.89.)

A simple iterative method to solve (2.24) is

Tni1 = (1 +ex,)Y3. (2.25)
If we choose € = 0.1 and zy = 1, then successively

7, = 1.0322801,

zs = 1.0332889,
z3 = 1.0333204,
zs = 1.0333214, (2.26)

17



Figure 2.1: The graphs of 3 and 1 + ex, with ¢ = 0.1.

and this last value is the root. It is of course trivial to compute the positive root for a
range of ¢, but it would be convenient to have an analytic (as opposed to numerical)
approximation. We construct this by using a perturbation method.

We can use the binomial expansion to write (2.24) in the form

r=1+ex)? =1+ sex — §efn? + Sedad (2.27)

Since € < 1, we see that z &~ 1 [+0(¢): that is, terms of order ¢, i.e. of size about €.
A better estimation is then

1+ e =1+ e, (2.28)

and we can see that this relatively crude approximation is in fact accurate to four
decimal places when ¢ = (0.1! Repeating this idea, we would have

r ~ 1+ %5:3 — %82332
~ 1+3e(l+3e) —ge2(1+... )0 = 1+3e (2.29)

(there is no O(g?) term), but a more methodical procedure is to anticipate (by in-
spection) that the root can be written in the form of a series

T=x9+ex+ 2T+ ...; (2.30)

we substitute this into (2.24), expand in powers of ¢, and equate coefficients of powers
of e: a little thought indicates why this procedure is necessary. For (2.24), we thus
have

(xo+exy +e%x0+... ) —e(zg+ex +...)—1=0, (2.31)
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whence
(8 —1) + e(3zdz1 — m0) + £%(37372 + 32075 — 71)
+ &*(3zlzs + 3zeT1T2 + T3 —T2) + ... =0, (2.32)
so that, sequentially,
o —1=0,
31’31’1 —x9 =0,
32579 + 3zr] — 71 = 0,

3x3:r3 + 3zox12Z0 + xi’ — x5 =0,

. (2.33)

from which we obtain
xo=1 z = %, xz9 =0, xgz—sil, (2.34)

and hence the root is
14 36— 588+ 0(e). (2.35)

With € = 0.1, we have x ~ 1.033321: practically, the exact result. Even, for ¢ = 1,
the approximate result is 1.321, while the exact root is 1.3247.

Singular approximations

The approximation above is called a reqular approximation, because the limit when
€ = (0 gives an approximation to the root. Now consider the cubic

ex®—r—1=0, ex 1. (2.36)

Graphically (figure 2.2), there are clearly three real roots. One of these is near —1
and can be recovered by a regular approximation. The others are at large values of

|z|, and are determined by balancing ex® with z; that is, ez® ~ 2 when z ~ £7/2, so
we first write
z=¢ 12X, (2.37)
and then
X3 - X —¢'2=0, (2.38)

with approximate roots X = 0,+1. The root X ~ 0 corresponds to z &~ —1 and is
determined by the regular approximation for z. The larger roots are determined by
a regular approximation of (2.38), as a power series in £'/2. Thus

X=Xo+e’Xy+eXo+ ..., (2.39)
and substituting this into (2.38) and equating powers of £'/2
solutions (written in terms of z)

, leads to the approximate

1
TRE 3 FavEt et (2.40)

Ve
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Figure 2.2: The graph of ez® —z — 1, for ¢ = 0.1.

The upper sign gives the positive root, the lower the negative root. For example if
¢ = 0.1, the approximate positive root from (2.40) is 3.565567, while the exact root is
3.5770894. For € = 1, the approximate root is 1.1468753, while as we have seen, the
exact root is 1.3247. This is less good, but can be improved by taking further terms
in the series (2.40). We see that approximation methods can provide a very useful
way of solving algebraic equations.

Now suppose we wish to solve

tanz = tanhz. (2.41)

Each function is odd, so z = 0 is a solution, and graphically (figure 2.3) it is clear
that there is a sequence of positive roots zi,x3,... (and thus also negative roots
—zf, —x5,...), and that as n — oo,

z, ~ (n+ ). (2.42)
Suppose we put
z, = (n+ )T+ 6; (2.43)
then
—1)"
sinz; = (\/Q) (cos @ +sin®),
coszx, = (=D" (cos@ —sinf), (2.44)
V2
so (2.41) is

cosf +sinf 1-— e 2n
cosf —sinf 1+ e 2o

(2.45)

* Ju—
tanx, =
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Figure 2.3: The graphs of tanz and tanh z.

We expect 8 < 1, and also z;, > 1, and thus, since

cosf ~ 1-162

sinf =~ 0, (2.46)
we have, with use of the binomial expansion for (1 + y)™*,
—16%...+90...
2 =(1—e®)1—e2n4..)
1—36%...—-6...
= (1+0-10>.. )0 +{0+L0>+.. 3+{0>+..}..)=1—2e %" ..
= 14+20420%+... =12 nta)m=2
= 040+, = —CIT(1—29. ), (2.47)
so that, finally, .
g ~ —e (nta)m (2.48)
and
zh ~ (n+ Hr— e Gnta)m, (2.49)

Numerical approximation

Iterative numerical methods are widely used to solve algebraic equations. A general
iterative method to find a root of f(z) = 0 is to define a sequence z = xzg, 1, ...,
satisfying x,.1 = ¢g(z,), where the function g is chosen so that z = g(z) if f(z) = 0:
for example, g(z) = f(x) + . A simple iterative method to solve

L(z) = R(z) (2.50)

is as follows: define
L(z,11) = R(z,), (2.51)
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i.e. .41 = L' o R(z,). The sequence will converge if (L' o R)’| < 1 at a root, and
using the chain rule (via f = L™ o R if L[f(z)] = R(z), so L' f' = R, and at a root
f(z) =z, f' = R'/L') we find that this is |L’'| > |R'|. Consulting figure 2.3, we see
that the iteration

T, = tan"'[tanhz,] + nm (2.52)

will converge to x* (since tan™! is defined to be less than /2 on a calculator).
The lowest root (n = 1) is approximated by
51— e%"/2 = 3.9266026 (2.53)

4

S

compared with the exact value 3.9266024. Here an approximation based on the limit
n — oo is accurate even when n = 1.

2.4 Perturbation methods

Let us consider (2.17) with (2.19) and (2.20), and suppose that 6y < O(1). If Pe < 1,
we obtain an approximation by putting Pe = 0: V2T + 1 ~ 0. Evidently, we cannot
satisfy the initial condition, and this suggests that we rescale ¢: put ¢t = Pe T, so that

(approximately)

T
Z—T = V°T + 1; (2.54)

now we can satisfy the initial condition (at 7 = 0) too. Often one abbreviates the
rescaling by simply saying, ‘rescale ¢t ~ Pe, so that T, ~ V2T + 1°.

boundary
~layer

sub-characteristics

Figure 2.4: Sub-characteristics and boundary layer for the equation (2.17). The sub-
characteristics are the flow lines dx/dt = u, and the boundary layer (of thickness
O(1/Pe)) is on the part of the boundary where the flow lines terminate.

On the other hand, if Pe > 1, then T; + u.VT = 0, and we can satisfy the initial
condition but not the boundary condition on all of 0D, since the approximating
equation is hyperbolic (its characteristics are called ‘sub-characteristics’). To remedy
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this, one has to rescale x near the part of the boundary where the boundary condition
is not satisfied. This gives a spatially thin region, called (evidently) a boundary layer,
of thickness 1/Pe (see figure 2.4).

The other possibility is if § > 1, say 6 ~ 6 > 1. We discuss only the case Pe > 1
(see also exercise 1.2). Since T' ~ 6y initially, we need to rescale T, say T = 6T
then Pe[T, + u.VT] = V2T + 65", and with T = O(1), we have T, + u.VT ~
0 for Pe > 1. The initial function is simply advected along the flow lines (sub-
characteristics), and the boundary condition T = 0 is advected across D. In a
time of O(1), the initial condition is ‘washed out’ of the domain. Following this,
we revert to T, thus T; + u.VT = Pe '(V?T + 1). Evidently T will remain ~ 0
in most of D, with a boundary layer near the boundary as shown in figure 2.4. If
n is the coordinate normal to D in this layer, then u.VT ~ u,07/0n ~ PeT,
Pe V2T ~ Pe™'9*T/0n? ~ PeT, and in the steady state, these must balance the
source term Pe~!: thus in fact, the final state has the rescaled T ~ Pe~2, and this
applies also for 6, < O(1).

These ideas of perturbation methods are very powerful, but a full exposition is
beyond the scope of these notes. Nevertheless, they will relentlessly inform our dis-
cussion. While it is possible to use formal perturbation expansions, it is sufficient in
many cases to give more heuristic forms of argument, and this will typically be the
style we choose.

Y

2.5 Notes and references

Non-dimensionalisation is technically trivial, analytically essential, and difficult to get
right. You won’t find many books that dwell on it, because of its apparent triviality.
But, it is also clear that you can get it very wrong. The clearest precise exposition
for the uninitiated is in the book by Lin and Segel (1974), and other than that it is
largely a matter of example and practice. What is clear is that you can easily get it
wrong!

Exercises

2.1 Derive the wave equation describing oscillations of a string of length [/ from first
principles, when gravity is included, assuming displacements are small and of
order yo. Show how to non-dimensionalise the equation to obtain the form

Oy _ Oy
otz 0x2
and define (.

Now suppose that yo ~ [. Suppose that in the unstretched state where the
displacement y = 0, the density py is constant. By careful consideration of
the application of Newton’s second law to an infinitesimal segment of length
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2.2

2.3

24

ds (stretched from its original length dz), show that the (dimensional) wave
equation can be derived in the form

Oy _ 0%

assuming only that displacements are purely vertical, where T} is the horizontal
component of the tension exerted at the fixed end points at =0, x = [.

Non-dimensionalise the model in this case and describe the form of the resulting
oscillation.

A population of size N is subject to immigration at rate I, and mutual pair

destruction at a rate kN2, so that N = I — kN2. By appropriate scaling of the

variables, show that the model can be written in the form # = 1 — z2.

A model describing the interactions of populations of a herbivore (H) and plank-
ton (P) is

dP BH

— = rP|(K—-P)—

dt " [( e P] ’

dH P

— = DH | ——= —-AH|.

dt [C’ +P ]

Explain what the terms in the equations mean, and suggest ecological reasons
for their form.

Show how to non-dimensionalise the model to obtain the dimensionless pair of
equations

T = x[k—x— y ],
1+2z

= el
= « —a
y y1+x vl

and define the dimensionless parameters k, a amd «. By identifying the units
of the physical constants in the model, show that these parameters are indeed
dimensionless.

Suppose

T
Pe laa_t + u.VT] =V?T+1 in D,

with

T = 0 on 0D,
T = 6y0(x) in D at t=0,

and ©® = O(1), 6y > 1, Pe < 1. Discuss appropriate scales for the various
phases of the solution.
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2.5

2.6

2.7

2.8

Explain why the iterative method

Tni1 = (1 +ex,)Y3

used to solve (2.24) will converge to its solution. Does this depend on the value
of €7

(i) Find approximations to the solution of
e —r—1=0, e<1,

which is close to x = —1. Compare with the numerical solution when ¢ = 0.1;
e = 0.01.

(ii) Use perturbation methods to find approximate roots to the equation
re " =¢, O0<exl.

(Use graphical methods to find the location of the roots. For the larger root,
take logs and note that if z > 1, then z > Inz.)

Each of the equations
2 —ez—1=0,

e —2—-1=0,

has five (possibly complex) roots. Find approximations to these if ¢ < 1. Can
you refine the approximations?

Suppose that m satisfies the polynomial
S;Ym3 te(A+ Bym? — (A — A)ym — 2y(\ + B) = 0, (¥)

where a, v, A, B, A are O(1) and € < 1. Show that the roots are approximately
given by
_2y(A+B)

S 1A= V)"
0 A— )\ ‘

, My R+
e}

Now suppose that v = g/e and m = M/e. Show that M satisfies
%M?’ + A+ B)M? + (A= A M — 2g(\ + B) = 0. (+%)

Suppose that g is large. Show that the roots are approximately given in this
case by
(A+ B)g

(67

My~ +4/2g9, My~ —

By consideration of the roots of (xx) as g decreases, can you ascertain the path
of the roots in the complex plane, and how M, and M, are transformed to the
roots my and mg of (%)?
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2.9

2.10

The Lorenz equations are
T =—0z+ 0y,

y:(’l"—Z)l'—y,

z=u1xy — bz.

These equations are already dimensionless, and 7, b and ¢ are dimensionless
parameters. Is it possible to rescale the equations in order to reduce the number
of independent parameters? If so, how? If not, why not?

Suppose the parameter r is large. Show how to rescale the equations so that
the damping terms in the equations are small (of size ¢ = 1/4/r), and show that
if the terms in € are put to zero, there are two first integrals of the equations.
What does this imply about the solutions when ¢ = 0?7

The SIR model of an epidemic of a fatal disease is
S = —kSI,
I = kSI—rI,
R = rI ,

where S represents the susceptible population, I the infected population, and
R the removed (dead) population. Suppose that at ¢t = 0, S = Sy, I is very
small (perhaps a single individual), and R = 0.

Non-dimensionalise the model to obtain the form

5§ = _Sfa
: f
f - Sf R,
1
P=Tg
where the dimensionless parameter
k
R kS0
r

is called the reproductive rate.

Find a first integral for f in terms of s, and show that an epidemic will occur if
R> 1

Now suppose that the epidemic is weak, in the sense that R — 1 = ¢ < 1. Show
that a suitable approximation of the model can be made by defining

s=1—¢co, f=¢’F, t:E’

and show that the (scaled) death rate F' of the resultant approximation is ap-

proximately given by
F = %sechQ%T.
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Chapter 3

Perturbation methods

In chapter 2 we were introduced to the basic ideas of approximation techniques,
which are central to the art of the practical applied mathematician. In this chapter
we introduce some of the formal analytic methods which have been devised to provide
approximate solutions to problems which we will suppose are framed as differential
equations. We begin with some generalities, but the subject is best taught and learned
by way of example, because by its nature there is no general theory which will provides
a method of solution for all problems.

Suppose we have an ordinary differential equation for a function w(t), which we

write in the formal way
N(D,e;u) =0; (3.1)

here N denotes a nonlinear differential operator of the ordinary derivative D = —.

Often N will be a polynomial function of both D and e. If we suppose that N is
analytic in €, then we can expand the equation as

N(D,e;u) = No(D;u) + eNi(Dju) + ... =0, (3.2)

and this suggests that we seek a perturbation series for the solution of the form

u = Z 5Sus, (33)
s=0

and if we substitute this into (3.2), then we find that
Z N, (D ;us,us 1,...) =0. (3.4)

r,s

Here we have expanded each operator term as

N, (D > asus> =Y &Nyo(Djus, us1,...). (3.5)
s=0

s=0

Note that each operator NN, depends on functions w, with indices up to s. By
changing the indices of summation, we can write (3.4) in the form

Z&ij(D;Uj,Uj_l,...) = 0, (36)

Jj=0
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where

A

J
Nj(D;Uj,’LL]'_l, .- ) = Z Nj_s,s(D;us,us_l, .. ) (37)
s=0

The formal procedure is now to equate powers of ¢ to zero, yielding a sequence of
equations

A

It is clear that we can, at least in principle, solve these sequentially for u; to find
U; = F(Uj_l, Uj—2, - - ) (39)

This sequential procedure then yields our solution.

Apart from the fact that there are differential operators involved, what we have
described above is simply an iterative procedure for evaluating a Taylor series solution
for u in terms of €. What makes perturbation methods interesting is that the series
that is so constructed is rarely convergent. The more usual divergent power series is
called an asymptotic series, or an asymptotic expansion, and is written

un~ Y Elu,. (3.10)
s=0

The symbol ‘~’ denotes asymptotic equivalence, and in general we write u ~ v (as
¢ — 0, for example) if the ratio u/v tends to a fixed limit as ¢ — 0; we also write
u = O(v) in this case. Other notation is to write u = o(v) (or u K v) if u/v — 0 as
e — 0.

Despite its divergence, the series (3.10) can still yield a good approximation to

the solution when ¢ is small. The reason for this is that the terms will then initially
N

decrease, and so the finite sum Z u, will yield an increasingly accurate solution if N
0
is fixed and ¢ is decreased.

Why should the series for u diverge if the original operator N is analytic in v and
e? The divergence of an asymptotic series such as (3.10) indicates that the function
u(t,e) has a singularity at € = 0. This must certainly be the case if u does not
approach the solution ug of the unperturbed equation

and this is often the case. It is, for example, generally true for singularly perturbed
problems, and these are precisely the types of problem which are of most interest
(because they are the most difficult).

3.1 Regular perturbation theory

We illustrate some of the above abstract discussion by consideration of some specific
examples. Let us consider the boundary value problem

' —u=ceu?, u(0)=0, u(l)=1, (3.12)
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where € < 1, and we will denote the independent variable as z, since boundary value
problems usually arise in a spatial context.

Following our description above, we seek a solution in the form (3.10), and sub-
stituting this into (3.12) and equating powers of ¢, we find the sequence of equations

ug—ug = 0,
n _ 2
uy —uz = 2ugu, (3.13)

and so on. The boundary conditions are also expanded in this way, so that we have

Uu=uyr =u2=0 at = =0,
w=1 uy=u=0 at z=1 (3.14)

It is easy, if messy, to solve this sequence of equations. We have

_ sinhz
Y7 b1
1,1 1 1_ 1 1 i
14 1.5h?2 1 cosh — zcosh2 — 3 cosh1)sinhx
u = 2T & T+3 x+(2 6 3 ) , (3.15)

sinh? 1 sinh® 1

for example. We can see that ug contains terms in € and e™*, while u; contains

terms from e?* down to e~22. It is not difficult to show by induction that u, contains
terms from e"*1® down to e"("+1)* This suggests that the perturbation series will
be convergent for sufficiently small ¢; see also question 3.2. Note that this will not
be true for an infinite interval of integration, for example if we prescribe two initial
conditions at x = 0 and require solutions valid in 0 < z < co. We discuss this case
further in section 3.3 below.

3.2 Singular perturbation theory: boundary layers

Next we consider an equation which is fairly similar to (3.12), but with the small
coefficient € multiplying the highest derivative:

e —u' =u?, wu(0)=0, u(l)=1, (3.16)

and € < 1.
We use the same procedure as before, writing

u~ ug(x) +eus(z) + ..., (3.17)

and then equating terms of the same order to obtain

/ 2
/ n
Uy + 2upur = uy,
! . n 2
Uy + 2ugus = uy — uj, (3.18)
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and so on. The associated boundary conditions are

u=u=us=0 at =0,
u=1, ur=us=0 at z=1. (3.19)

The essential distinguishing feature about this problem is that the small coefficient
multiplies the highest derivative of the equation. Because of this, the leading order
problem (for ug) is of lower degree than the full equation, and in general this means
that it is not possible to satisfy all of the boundary conditions.

An issue of choice then arises, because this leading order ‘outer’ solution may be
chosen differently depending on which boundary conditions are satisfied. In addition,
nonlinearity of the equation may allow the possibility of genuinely multiple solutions.

In the present case, we have at leading order

uy = —ul. (3.20)
Let us suppose, apparently arbitrarily, that we apply the left hand boundary condition
u=0 at z=0, (3.21)

and in general we will then aim to satisfy the boundary conditions on u, at x = 0.
As we shall see, the issue of choice is generally resolved by requiring consistency of
the solution procedure.
Picard’s theorem tells us that
ug =0 (3.22)

is the only solution of (3.20) with (3.21). Since ug is constant, it is not difficult to
see that the successive terms u;, us and the rest will also all be zero, so that this
outer solution is given by u = 0 to all orders of . Evidently, v = 0 cannot be
the exact solution (though it exactly solves the equation) because it does not satisfy
the boundary condition at + = 1. Here we have an early glimpse of the notion of
exponential asymptotics: the outer solution for u is smaller than any algebraic power

1
of €, and this suggests that it may be exponentially small, or u = exp [—O (—)]

In any event, we have an approximation to the solution which does not satisfy the
boundary condition at x = 1. This is associated with the loss of the highest derivative,
and such problems are called singular perturbation problems, presumably because
the resulting perturbation solution is singular (having, in this case, a discontinuity at
xz = 1). In order to resolve the failure of the method, we need to be able to bring back
the highest derivative term into the approximation scheme, and the way in which we
can formally do this is by adjusting the length scale. We do this near z = 1, since
that this where we have the problem. We put

z=1-6X, (3.23)

and suppose that §, as yet unidentified, is small. Changing the independent variable
in (3.16), we find that u, now taken as a function of X, satisfies the equation

1
%u” + gu' = u? (3.24)
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where now v’ = du/dX.

This scaling of x places us in a boundary layer next to the boundary at x = 1.
Since the object of the rescaling is to bring back the highest derivative term at leading
order, we see that we must choose

§ =g, (3.25)
and with this the equation can be written
u’ +u = e’ (3.26)

The issue of appropriate boundary conditions for (3.26) is crucial to the procedure.
One is fairly clear, that we specify

u=1 at X =0; (3.27)

this is just the right hand boundary condition.

The other condition is less clear. We already have an outer expansion (3.17) which
satisfies the left hand boundary condition, so the other condition can not be that.
Nevertheless, we press on, aiming to find an inner expansion for (3.26) of the form

u~Ug(X)+elUy(X)+ ..., (3.28)
and then, equating powers of ¢, we have
Ul +U, = 0,
U/ +U, = UZ, (3.29)
and so on.
The leading order solution for Uy is
Uy=e X+ A (1 — e_X) , (3.30)

where A is a constant, and further constants arise in the determination of higher order
terms. The issue is how we choose the constant A (and the other constants which
arise at higher order). The idea is this: we have two expansions, an inner and outer
expansion, each representing an approximation to the solution in different regions; one
where 1 — z ~ O(1), the other where 1 — z ~ O(g). We suppose that each expansion
should blend into the other in a fuzzy intermediate zone where ¢ < 1 — 2 < 1.
This region is called a matching region, and the method is thus called the method of
matched asymptotic expansions.

There is a methodical procedure for matching the expansions, which is beyond
the scope of the present discussion, but is necessary if matching is to be carried out
for the higher order terms. However, its implementation for the leading order terms
is usually fairly straightforward. The simplest situation is when the outer solution
tends to a constant at the boundary adjoining the boundary layer, while the inner
solution tends to a constant as the inner variable becomes large. This is exactly the
situation that applies here. In this case the matching condition is to ensure that
these two constants are the same. Comparing (3.22) and (3.30), we see that the two
solutions match if A = 0. Thus we have

u~0, 1-—z~0(Q),
u~exp[—(1—z)/e], 1—z~O0(e). (3.31)
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Uniform solutions

Although the inner and outer expansions formally blend together, actual graphical
illustration of them generally indicates discontinuity, and it is attractive to write a
solution which is uniformly valid. It is possible to do this. The trick is to realise
that, since both inner and outer expansions are supposed to be valid in the matching
region, we can get a uniform solution by adding the inner and outer solutions and then
subtracting that part of the solution which each represents in the matching region.
In the present example this is trivial, since the common part of the outer and inner
solutions is zero, and in fact the inner solution is uniformly valid.!

05 | |

Figure 3.1: Inner, outer and uniform solutions to (3.33) when ¢ = 0.1.

An easy illustration of this idea is the function

u(t) = et —et/e, (3.32)
which is a uniform first order expansion of the solution to the initial value problem
1
ei+u+u=0, u(0)=0, u(0)= o e 1. (3.33)

The first order outer solution of this problem is u = Ae*, while the first order inner

solution is u = 1 — e T, where t = €T. Matching requires A = 1, and the common
part of both approximations in the intermediate matching region is then just their
common limit, which is one. Thus the uniform first order solution adds the inner
and outer solutions and subtracts one. Figure 3.1 shows that both inner and outer
approximations are well approximated in their regions of validity by the uniform
expansion.

!This lends substance to our earlier comment concerning exponential asymptotics.

32



3.2.1 Internal layers

The question of which boundary or boundaries one should attach boundary layers to
is a matter of possibilities. Because the rapidly varying solution in a boundary layer
must blend into a slowly varying outer solution, it needs to decay in the matching
region. Very often, this decay is exponential, and the choice of exponential decay
rather than exponential growth determines the boundary layer location. For example,
we found that (3.16) allowed a boundary layer at a right hand boundary, but (3.33)
will only allow boundary layers on the left.
More generally, the equation

ey +a(z)y +b(z)y=0 (3.34)

will allow left hand boundary layers where a > 0 and right hand boundary layers
where a < 0 (see also question 3.6). This raises a potential problem, which we can
illustrate by consideration of the nonlinear problem

ey’ + 2yy’ +y(1 —y?) =0, (3.35)

with 0 < e <« 1 and
y(-1) = -1, y(1)=1. (3.36)

As we expect both the derivative terms to be important in any boundary layer
(why?), we see that the sign of y at the boundaries precludes boundary layers there,
and any region of rapid change must occur in the interior of the domain. Such
regions are called interior layers, or in partial differential equation models they are
called shocks (there will be more on these in chapter 7).

(3.35) has outer solutions satisfying both boundary conditions given by

y==1 for =S o, (3.37)

where x( is indeterminate. There is also a possible outer solution y = 0, which we
will ignore in this discussion. If the solution is unique, then it is odd (since —y(—z) is
also a solution), and then 2o = 0. But because the problem is nonlinear, uniqueness
(or even existence) is not guaranteed.

In the transition region, we put

T =220+ eX; (3.38)
then to leading order y satisfies
y' +2yy =0, y(Foo)==+l1, (3.39)
and thus
y = tanh X, (3.40)

where a constant of integration which fixes where y = 0 can be absorbed into the
definition of xzg.
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This solution describes the interior layer, but there is nothing to determine the
position xq of the transition. The reason for this is that the outer solutions y = +1 are,
like that of (3.16), accurate to all orders of . Consequently, as far as the asymptotic
solution is concerned, the location of the boundaries is immaterial, and it is because
of this that the interior position of the transition layer is indeterminate. Its position
(if a solution exists) presumably depends on the exponentially small correction terms
which lie beyond all orders of the expansion in powers of ¢.

A less degenerate case occurs if we modify the boundary conditions to be

y(-1)=-B_, y(1)= B4, (3.41)
where By > 0. Suppose that By < 1, and define
B:t = tanh Ai, (342)

where AL > 0. The previous boundary condition (3.36) corresponds to the double
limit Ay — oco. The outer solutions are y = 0 or

1 2A
y+ = ttanh (%) . (3.43)
Now at an internal transition layer, (3.39) allows solutions
y =y tanhy* X; (3.44)

the jump is thus from —y* to y*, and this allows us to determine z from (3.43):
rg=A, — A . (3.45)

Thus we obtain a self-consistent asymptotic solution, but only for a restricted range
of boundary conditions. We can also see the degeneracy as AL — oo.

This example, apart from illustrating the occurrence of an interior layer, also
shows how asymptotic solutions are not always straightforward, and often require
guile to discover their intricacies. This is particularly true of nonlinear problems.
To some extent, the problem arises here because the boundary conditions (3.36) are
exact solutions of the equation. But it is also emblematic of the artificial nature of
the example. It is more generally the case that good mathematical models of real
physical systems do not have such pathological behaviour.

3.3 Multiple scales and averaging

A different kind of singular limit can occur if the domain of integration is infinite. This
is typically the case in time dependent problems, and the usual sorts of illustrative
example are models of oscillators. As an example, suppose that u(t) satisfies the
initial value problem

i+u=cu?, u0)=1, u(0)=0, (3.46)
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where ¢ < 1, and @ = du/dt. This is the equation of a weakly nonlinear oscillator,
a spring with a weak amplitude-dependent spring constant oc 1 — cu. We seek a
perturbation expansion of the form

U~ U+ Eeu + .., (3.47)

and substituting this into (3.46) we have the sequence of equations

’&0 +uy = 0,
’ELl + Uy = ug,
’&2 + Uy = 2UOU1, (348)

and so on. The initial conditions at ¢t = 0 for these are

Up = ]-7 '[1'0 = 07
Uy = 0, ’lll = 0,

It is straightforward but tedious to solve these, and we find the resultant expansion
for u to be

1

g COS 2t — % Cos t}

U~ cost+ ¢ [% —
+&? [—% + 2 cost + 5 cos 2t + 4z cos 3t + 15—2tsint] oo (3.50)

This is a perfectly good asymptotic solution for bounded times, but the series becomes
disordered at large times; specifically the third term becomes as large as the first
when t = O(1/e?). This contradicts the assumption that the terms are decreasing
asymptotically.

The breakdown in the expansion is associated with the occurrence of the secular
term tsint at O(g?), which arises through a resonance between the basic linear os-
cillator and the forcing terms in the expansion. Now we know that the solutions are
indeed oscillatory, and so we know that the amplitude cannot grow in this way. It is
also clear why the method must break down. The period of the nonlinear oscillator is
not constant, and depends weakly on the amplitude. But the unperturbed oscillator
has fixed period, and our expansion method forces this period on the perturbation
solution. It is this incorrect implicit assumption of an unperturbed period which
generates the secular terms.

This idea is simply illustrated. The function cos[(1 — €)¢] has period 27 + O(e).
If we expand in powers of ¢, we find

cos[(1 —e)t] = cost + etsint +...; (3.51)

the secular terms arise through a misguided expansion of the oscillatory term.
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3.3.1 Poincaré-Lindstedt method

There are various ways to fix this breakdown, of which the simplest is the Poincaré-
Lindstedt method. Essentially we need to generalise our naive perturbation method
to allow for a drift in the period of the underlying oscillator.

We do this by straining the time variable; we define a new time 7 via

7= (14ew +%wy +.. )¢, (3.52)
so that (3.46) becomes
[1 + 26wy + €2 (w% + 2w2) +.. ] u' +u = eu?, (3.53)

where now v’ = du/dr. The constants w; are to be chosen precisely to eliminate the
secular terms in the expansion.
Expanding u as a perturbation series as before, we find

"
uy+up = 0,
" 2 n
U +ur = Uy — Wiy,
uhy +uy = 2ugu; — (w% + 2w2) ug, (3.54)

and we solve these successively as before. There are two little tricks which make it
less algebraically nightmarish than our earlier calculation. One is to write the general
solution of (3.54); as

ug = Ae* + (cc), (3.55)

where (cc) denotes the complex conjugate, and A is in general a complex amplitude.
The second is not to specify A = %, but to leave it as an undetermined constant at this
stage. The point is that we can in principle subsume all the fundamental solutions
e* which occur at each order into the definition of A, or equivalently we allow A to
have its own expansion in powers of ¢.

The O(e) terms imply

uf +uy = A%* + |A]? 4+ wy Ae + (cc); (3.56)

terms oc e (or its complex conjugate) are secular producing terms, and so we must
choose

wy = 0; (3.57)

there is no secular term at O(¢), and the (particular) solution is
uy = |A]? — §A%e* + (cc). (3.58)
At the next order, we find (taking care to ensure we have all the nonlinear terms)?

Uy + ug = 2 [3|A|2Aeilt — 3 A3 4wy Ae't + (cc)] ; (3.59)

2Note that (a + a@)(b+ b) = (a+ a@)b + (cc), where the overbar denotes the complex conjugate.
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suppression of secular terms requires us to choose
wy = —3| A%, (3.60)
and the (particular) solution is

uy = A% + (cc). (3.61)

As we surmised, the period P (in t) is weakly amplitude dependent,
P=2r(1+52AP+..), (3.62)
and the coefficient 2 if |A| = 1 is consistent with the secular term in (3.50). This
procedure can be carried on sequentially, but usually it is only the leading order

frequency correction which is of interest, which is also why it is not really necessary
to determine the amplitude of the fundamental beyond leading order.

3.3.2 Van der Pol oscillator

The Van der Pol oscillator is the equation for z(t),
.. 2 . .
ite(s?—1)i+z=0, (3.63)

and we suppose ¢ is small and positive. Unlike the conservative nonlinear oscillator
of the preceding section, there is a unique stable limit cycle of the Van der Pol
equation. The Poincaré-Lindstedt method will find this limit cycle, both its leading
order amplitude and the frequency correction (see question 3.7), but to prove stability
of the limit cycle, a more subtle approach is necessary.

This retains the idea that the leading order solution will be of the form

r ~ Ae + (cc), (3.64)

but rather than locking the time scale to a fixed modification of the original one, we
instead allow the amplitude A to vary slowly in time. This is a generalisation of the
Poincaré-Lindstedt method, insofar as we can replace Aexpli(1 + ew; + ...)t] (with
constant A) by A(f)e', where the slow time t here could be taken to be t. Yet more
generally, one can choose both a new strained fast time t* = #(1 +...) as well as a
slow time, and for strongly nonlinear equations (unlike the weakly nonlinear (3.63)),
fast and slow times may have complicated functional dependence on t. At higher
order, yet more slow time scales may be necessary.

However, in its simplest form, such complications are not necessary. Consideration
of (3.63) suggests that we define fast and slow times

t* =wt, t=et, (3.65)

where
w=(1+¢%wy+...), (3.66)

37



and we then formally seek the solution as a function z(¢*,%) of the two times ¢* and
t. These give the method of multiple scales its name.

The chain rule relates the t-derivatives to the partial t*- and #-derivatives, so that
the equation (3.63) is embedded in the hyperbolic partial differential equation

0’z 0’z 0’z or  Ox
2 2 2
W' + 26w ~te—+e(lz°—1)|w—=+e—=|+2=0. 3.67

ot*? ot*ot ot? ( ) ot ot (3.67)
We actually construct a perturbation solution of this equation in the two-dimensional
(t*,f) space, but are only concerned with its value on the characteristic through the
origin. There is some flexibility about how we impose initial conditions. If z(0) = z,
and #(0) = vg, then the most natural initial data for (3.67) is to specify

r=x9 on t=0,
Ox ~
Wap =0 on t=0. (3.68)

As in our discussion of the Poincaré-Lindstedt method, we shall not be much con-
cerned with initial conditions.
We now expand the solution in the usual way,

T ~Tog+ET+..., (3.69)
where each z; = z;(t*,). We then gain the following sequence of problems:

82330

W +x9 = 0,
82331 621'0 2 Oz
ezt = 2 (23— 1) o (3.70)

and luckily for us we need go no farther, since secular terms appear already at O(e).
(If they did not, then there would be no need of the O(1/¢) slow time scale, and a
slower time scale would be relevant.) The solution at leading order is

zo = A(t)e™ + (cc), (3.71)

and therefore the equation at the next order is
821'1
at*Z

We do not even need to solve this, we simply need to choose A in order to remove
the secular terms o< e®t". We do this by requiring A to satisfy the Ginzburg-Landau
equation

+ 3y = —2iA'e" — [iA%¥" 4 (2|A]” — 1)ide" —i|APA"] + (cc).  (3.72)

dA

=a-l4 (3.73)

Multiplying this by A and its conjugate by A and adding yields the equation for | A,
d|AP? 2 4

S AR A, 3.74

2= AP - 4] (3.74)
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which shows that |A| — 1 as t — oo, and there is a stable limit cycle
x ~ 2cost. (3.75)

The amplitude of the limit cycle is two, and the frequency is shifted by O(g?), but
to find the magnitude of the frequency shift would require evaluation of the O(&?)
terms.

3.3.3 Averaging

The method of averaging is another formal method which is particularly useful for
weakly nonlinear oscillations, and also can be used rapidly to give a leading order
evolution equation for the amplitude of motion. It relies on the fact that the unper-
turbed system has a constant of integration, which will usually be the energy. We
illustrate its use with the Van der Pol equation,

i+e(@®—1)i+z=0. (3.76)

The unperturbed equation is that of simple harmonic motion, with constant amplitude
a and phase velocity 6. This suggests the exact change of variables

T+ it = ae®, (3.77)

as a consequence of which

12?4+ 14% = 1a%. (3.78)

The energy %a2 is conserved when € = 0, and therefore we can expect that a will be
slowly varying in the motion. Specifically, we have from (3.76)

ag = —e(z? — 1)2%; (3.79)
using (3.77), this implies
a = ea(1 — a® cos® §) sin? 4, (3.80)
and we can also deduce that .
§ =—-1+0(e), (3.81)

though this is of less concern. The central idea of the averaging method is that
since a and 6 are approximately over the underlying period of the oscillation, we can
effectively integrate the amplitude equation over this period keeping a constant. The
result of doing this to (3.80) is to take the average (in ) of the right hand side, and
this yields the approximate amplitude equation

amea(}—1a?). (3.82)
Putting a = 2A, we have the same evolution equation as (3.73), and

a—2 as t— oo, (3.83)

as we found before.
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3.4 Notes and references

There is a wealth of books on perturbation methods. A rapid assessment is that by
Hinch (1991); longer classics are those by Kevorkian and Cole (1981) and Bender and
Orszag (1978); the last of these annotates its text with many illustrative numerical
examples.

Exercises

3.1

3.2

Find two terms of a regular perturbation expansion of the form
U~ Z ey,
0
to the boundary value problem
' +u=eu’, u(0)=0, u(r/2)=1,

when ¢ is small and positive.

Show by induction that u, can be written in the form

Repeat the exercise for the equation
" 4+ u = eu®,

with the same boundary conditions. Can you modify the inductive step to find
a general form of expression for u,,”

Suppose that z(t) and y(t) are real and satisfy the pair of first order equations
T = —y—2eazry,
y = z+e(@®—y?),
in which a is constant, and z and y satisfy initial conditions
z(0)=1, y(0)=0.
By eliminating y, find a second order equation for x of the form
Z+z=cf(z,2;a),
and give an expression for the function f. Write down the associated initial
conditions for .
Use perturbation theory to find two terms of an expansion for x in powers of ¢.

Find an exact solution for the case a = 1 by writing z = = + iy, and show
that the expansion of this solution in powers of € agrees with the perturbation
expansion. Deduce that in this case the perturbation expansion converges for
sufficiently small €.
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3.3

3.4

3.5

3.6

The functions u(t) and v(t) satisfy the initial value problem
U = v-—u,
Vo= —u

with the initial conditions

Show that if the outer solution is chosen to satisfy the initial condition for v,
then this outer solution is v = e~*. Show that there must be a boundary layer
near t = 0, and by rescaling ¢, write down a suitable version of the equations in
this boundary layer, and find a leading order approximation for v and v in the
boundary layer.

Hence write down a uniform approximation for w.

The Michaelis-Menten model of enzyme kinetics is the pair of equations

$ = —s(l—¢)+ (K — L),
e¢ = s—(s+ K)c,

where ¢ < 1 and K, L = O(1). The initial conditions are that

and the constants ¢, K and L are all positive. Find leading order approximations
to the solution.

Find leading order approximations (including boundary layers, where necessary)
to the solutions of the boundary value problems
ey’ +2y +e=0, y(0)=y(1)=0,
ey —a*y' —y =0, y(0)=y(1) =1
Suppose that y(z) satisfies the boundary value problem
ey" +a(z)y' + b(z)y =0,

with 0 < e < 1 and
y(0)=A4, y(1)=B.

Suppose also that a(z) and b(z) are analytic in [0,1] (i.e., have convergent
Taylor series about any point in this interval).

(i) If @ > 0, find an approximate solution and show that it has a boundary
layer at z = 0.
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3.7

3.8

(ii) If a < 0, find an approximate solution and show that it has a boundary
layer at z = 1.

(iii) Finally, if a < 0 for z < zg and a > 0 for z > g, where 0 < zo < 1,
show that no boundary layers at the end points can exist, and therefore that
an interior layer must exist at xg.

Suppose that
b(zo)

a'(zq)

B =
Show that as £ — z¢=%, the outer solutions in z ; xo satisfy
y ~ cilz — zol?,

where the constants c. should be specified.

Hence show that by rescaling x and y as
y = {ed (20)YP/?Y, & =xo+ {ed (z0)}?X,
the equation can be approximately written in the transition region as
Y+ XY' 4+ 8Y =0,

and explain why suitable matching conditions for the solution of this equation
are
Y ~celX[P as X — +oo.

The Van der Pol oscillator is represented by the equation
ite(s?-1)i+z=0,

and we assume that 0 < ¢ < 1.

Use the Poincaré-Lindstedt method to find the amplitude and frequency cor-
rection of the periodic solution of the equation.

Duffing’s equation is
i+x+ex’=0.

By first finding a first integral, show that all solutions are periodic if ¢ > 0. If
€ < 1, use the Poincaré-Lindstedt method to construct approximate solutions,
and find the frequency correction of a periodic solution in terms of ¢ and its
amplitude A.
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Chapter 4

Stability and oscillations

If we move from first order systems to second order systems of the form

= f(xvy)a
= g(x,y), (4.1)

more interesting phenomena can occur. There is indeed a hierarchy of complexity
which one ascends as the order of the equation increases. As we saw in the preceding
chapter, first order equations have steady state solutions which are alternately stable
and unstable, and the instability is direct, in the sense that loss of stability as a
parameter changes leads to a transient migration towards another fixed point.

In second order systems, a different kind of instability can occur. As well as the
direct instability, or exchange of stability, between different fixed points, oscillatory
instability can occur, and the consequence of such instabilities is that permanent oscil-
latory (periodic) solutions may exist: in two dimensions there is dynamic behaviour.!

4.1 Linear stability

We illustrate the technique of linear stability analysis for (4.1). The analysis applies
(and is easy) in two dimensions, but evidently the method applies in n dimensions,
although the classification of behaviour takes its essence from the two-dimensional
example.

A steady state of (4.1) is a constant pair (xg,yo) which satisfies the equations,
i.e., f(zo,y0) = g(xo,yo) = 0. For small perturbations about this state, we write

z=x0+X, y=uy+Y, (4.2)
and linearise the system (4.1) to obtain the approximate equations
X oo R (X
= , 4.3
(Y> <9m 9y><Y> (3

"'When one proceeds to third or higher order systems, more exotic behaviour can occur: period-
doubling, quasi-periodic oscillations, and chaos, for example.
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where the partial derivatives are evaluated at (zo, o). The matrix
M:<ﬁ~@> (4.4)
9z Gy

is sometimes called the community matrix (particularly in applications in population
biology), and its trace and determinant will be denoted

T =trM, D =detM. (4.5)

Because M is a constant matrix, solutions of (4.3) are of the form

(g):uw, (4.6)

where u is an eigenvector of M and A is the corresponding eigenvalue; thus A is a
root of the quadratic equation

N —TX+ D =0. (4.7)

Classification of the different kinds of behaviour follows from the different combina-
tions of pairs of values of \. For D > T?/4, the roots are complex, and the consequent
phase portrait is a spiral; unstable if 7" > 0, and stable if 7" < 0. Examples are shown
in figure 4.1.

e

Figure 4.1: Unstable (left) and stable (right) spirals solving (4.3) with

M:(j_j@)@mmﬁM:(é_;>m@u

If 0 < D < T?/4, the fixed point is a node, with two real eigenvalues of M having
the same sign. The node is unstable if 7" > 0 and stable if 7" < 0. An example is
shown in figure 4.2.

Finally, a saddle point is shown in figure 4.3. This occurs if D < 0. The eigenvalues
are real and opposite in sign. There is one stable direction and one unstable, and
the fixed point is thus unstable. Putting these results together, we see that stability
occurs if and only if D > 0 and T < 0, and the classification of fixed points as spiral,
node or saddle can be represented in (D, T') space as shown in figure 4.4.
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Figure 4.2: Unstable node with M = ( 015 11 )

\

B

Figure 4.3: Saddle point: M = ( 01 _11 )



S.Sp. u.Sp.
s.n. u.n.

saddle

Figure 4.4: T-D parameter space indicating location of stable and unstable spirals
and nodes, and saddles.

4.2 Linear systems

It is easy to extend the discussion of two-dimensional systems to systems of n dimen-
sions. We consider first autonomous systems, i.e., of the form

& = Az, (4.8)

where z € R"” and A is an n X n constant matrix.? Problems of this type arise when
studying the stability of steady states of n—th order ordinary differential equations of
the form & = f(x), when A = D f(z) is the Jacobian of f at the fixed poinbt zq. As
before, solutions exist of the form

r=eMu, Au=)\u, (4.9)

and solutions grow or decay according as Re A ; 0. z = 0 is stable if Re A < 0 for all
eigenvalues )\, but is unstable if at least one A has positive real part.

A succinct representation of the general solution follows from defining the expo-
nential matrix e*4. This slightly strange looking beast is defined in the obvious way,

as
2 A2

t
etAzl-l—tA-i—T—i-.... (4.10)

For this definition to make sense, we need to borrow some ideas from linear algebra
and functional analysis. We need to define convergence in the space of n X n matrices,
which requires the definition of an appropriate norm. Matrices being overgrown

2We are straying into the territory of dynamical systems, in which it is conventional not to use
the bold x for vectors, and we will follow this convention in this section.
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vectors, these are supplied in the usual way. Convergence of the exponential series is

then automatic, and indeed the usual exponential laws apply, in particular eMe” =

eM*N for matrices M and N, and thus also (etA> T4,

The general solution of (4.8) can be written
r = etag, (4.11)

where £ = o at ¢ = 0. That this is a solution follows from first principles, since

the definition of e’ implies that t4 = Ae!, and Picard’s theorem implies it is the

—e
) dt
only solution.

With the exponential matrix in hand, it is easy to find the solution of the inho-

mogeneous problem

&= Az + g(t). (4.12)
Noting that
% [e_tAx} = —e Az + e, (4.13)
it quickly follows that
T = ez + /Ot el=94g(s) ds. (4.14)

4.2.1 The fundamental solution

We now generalise the preceding discussion to non-autonomous systems of the form
(4.8), in which A = A(t). Let £ denote the solution of this with

1, i=k,
z?(0) = 6y = { 0. ik (4.15)

Six is the Kronecker delta. The vectors z(*) are initially linearly independent, and
the matrix whose columns are these vectors is called the fundamental matrix, or
fundamental solution, ®(t), and &, = xgk). In particular,

d=Ad, @(0)=1. (4.16)

The fundamental matrix plays the role of (and, indeed, is) the exponential matrix
of an autonomous system. It is easy to show that the solution of the inhomogeneous
equation (4.12) is

v = 0(t)zo + | " B(0)D(s)g(s) ds. (4.17)

4.2.2 Floquet theory

Floquet theory concerns the case where the matrix A(t) is periodic. Without loss of
generality we will suppose that its period is 2. Such systems arise when considering
the stability of periodic orbits. Suppose, for example, that the system of ordinary
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differential equations ¢ = f(x) has a 2r—periodic solution z,(t). To study its stability,
we put £ = z, + X, and linearise the equation for small X. We obtain

X = A@)X, (4.18)

where A = D f{z,(t)} is the Jacobian of f on the periodic orbit, and is evidently
periodic. The question we ask is whether the solutions X grow or decay in time.

It is not possible to provide such a good recipe as when A is constant (calculate the
eigenvalues of A), but thanks to Floquet’s theorem we can come close. Again, we let
® be the fundamental solution for A, thus (4.16) applies. We define the monodromy
operator to be the matrix

M = o(27); (4.19)

in the language of dynamical systems it is the Poincaré map on the surface of section
t = 0 mod 27. The difficulty with Floquet theory lies precisely in determining this
map. As we shall see, stability is directly determined by the eigenvalues of M.

We need to show that zero is not an eigenvalue of M. To do this, we define the
Wronskian W of the system to be the determinant of ®. From first principles, we can
deduce Liouville’s theorem, that

W = (tr A)W, (4.20)

and it follows from this that W is never zero (since W = 1 at ¢ = 0). This implies,
in particular, that det M # 0, and since the determinant of a matrix is the product
of its eigenvalues, we see that the eigenvalues of M are non-zero.

If the eigenvalues of M are u,, we can therefore define quantities A\; by

s = 2™ (4.21)
and we note that Re A > 0 if and only if |u| > 1. Next we define the diagonal matrix
A = diag (), (4.22)

and we define a matrix U(t) of fundamental type by
¥ =AU, U(0) =1, (4.23)

Now suppose that M is diagonalisable, as is normally the case, thus there is a
matrix P such that

P7'MP = diag (e*™). (4.24)
We then have that
PY(0) =P =®(0)P, (4.25)
and
PY(271) = ®(27) P, (4.26)

and it follows from this that the matrix

B(t) = Py~ tp! (4.27)
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is 2m—periodic. Further, if we define X = B(t)Y, then
Y = (PAPTY)Y. (4.28)

Therefore the stability of the periodic orbit # = z,(t) is determined by the sign of
the real part of the eigenvalues A; of A, or equivalently by whether the characteristic
multipliers s of M lie inside or outside the unit circle in the complex plane. Unfor-
tunately, these must in general be computed numerically, since M must be computed
numerically. On the other hand, this is a relatively simple computational task, if
the periodic orbit can be computed. Of course, the computation itself then tells us
directly whether the periodic orbit is stable or not.

4.2.3 Mathieu equation

4.3 Nonlinear stability

4.4 Phase plane analysis

To go beyond linear stability analysis and complete the phase portrait of solution
trajectories is the subject of phase plane analysis, and the most interesting feature
of the phase plane is that periodic oscillations can occur. An illuminating example is
illustrated in figure 4.5, and is typified by (but is not restricted to) the equations

& = g(z) -y,
y = y—h(z), (4.29)

where the functions g and h are as shown in the figure: ¢ is unimodal (e.g., like
g = xze ®) and h is monotonic decreasing (e.g., like h = 1/(z — ¢)). The graphs of
g(z) and h(z) (and more generally, the curves where £ = 0 and § = 0) are called
the nullclines of x and y, and it is simple to see that where they intersect, there is
a steady state solution, and also that in the four regions separated by the nullclines,
the trajectories wind round the fixed point in an anti-clockwise manner.

The next issue is whether the fixed point is unstable. If we denote it as (z*,y*),
write x = z* + X, y = y* + Y, and linearise for small X and Y, then

() e

where the derivatives are evaluated at the fixed point. The stability of this two-
g -1
!
and determinant of A, as indicated in figure 4.4. In the present case, tr A = ¢’ + 1,
det A = ¢’ — A/, so that for the situation shown in figure 4.5, where A’ < ¢’ < 0,
det A > 0, and the fixed point is an unstable spiral (or node) if ¢’ > —1. When
g’ = —1, there is a Hopf bifurcation, and if the system has bounded trajectories (as is
normal for a model of a physical process) then one expects a stable periodic solution
to exist. Figure 4.6 illustrates an example.

by-two system with community matrix A = is governed by the trace
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Figure 4.5: Nullclines for (4.29).

Figure 4.6: Typical form of limit cycle for a system with nullclines as in figure 4.5.
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4.4.1 An example of Murray

Murray (2002, p. 116) gives an example of a population interaction model repre-
senting aquatic populations of herbivores (e.g., zooplankton) and (phyto-)plankton.
Denoting the populations as z (phytoplankton) and y (herbivore), the model is

r = a:[k:—x— Y ],

, (4.31)

y = ay

and as normal in population models we are concerned only with the first quadrant
x > 0,y > 0. We suppose the constants k, a and a are positive.

0.8

0.6 r /

Figure 4.7: z and y nullclines for (4.31), with @ = 1 and k = 1. Arrows indicate the
direction of the trajectories in the four sectors bounded by the nullclines.

Define the functions

Flz)=(k—2)1+2), Gz)=-—

1+z
The z and y nullclines are y = F(z) and y = G(x)/a, respectively, and a typical
situation is shown in figure 4.7. There are two fixed points at (0,0) and (k,0), and
there is always a fixed point (zg, yo) in the positive quadrant. If £ < 1 as in the figure,
then this fixed point is uniquely defined as there is only one intersection point of the
nullclines (in which both z and y are positive).

The stability at the origin can be found by expanding for small x and y, whence
we find

(4.32)

txkr, U= ay(z—ay). (4.33)

Note that the origin is degenerate in the sense that the linear approximation for y is
just ¥ &~ 0. It is clear from the behaviour of the solutions of (4.33) that the origin is
a kind of saddle point. It is similarly easy to show that (k,0) is a saddle.
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To find the stability of the other fixed point, we write
r=x0+X, y=y+Y, (4.34)
and linearise, so that
X B X [ ayF"  —ay
BRI R —
where we use the fact that at (zo,y0), ayo = zo/(1 + zo); F' and G’ are evaluated at
Zg.

Figure 4.8: Phase plane trajectories for (4.31), with a =1, « = 0.4 and k = 0.5.

From this we find that

trM = ayo(F' — a),
det M = aayi|G' — aF’]. (4.36)

It is evident from the way the nullclines intersect (since their slopes are just G'/a
and F") that for the situation shown in figure 4.7, det M > 0. Therefore stability is
associated with the sign of tr M, and in particular there is a Hopf bifurcation to a
periodic orbit if F’ > a. For the situation of figure 4.7, where k£ < 1 and thus F’ < 0,
we see that this fixed point is a stable node or spiral. Figure 4.8 shows this behaviour.

The possibility of instability and the consequent occurrence of a periodic oscilla-
tion occurs if F'(xg) > 0. Since z¢ depends only on a and k, we see that in this case,
there will be instability if a is small enough. The question then arises, for what a

k—
and k is F'(zg) > 07 Since F'(z¢) = k — 1 — 2z, we need z( < (remember we

also must have k > 1). Since F(z9) = G(x9)/a and G is monotonically increasing,

we thus also have C L lh1
F(z) = (20) ( - ) (4.37)

a a\k+1
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and since F(zo) < F(k —1) = 1(k + 1)?, we see that a necessary condition for
instablity to occur is that

4(k —1)
(k+1)%
When £k is close to 1, the upper boundary of this region becomes a good estimate
of the true upper limit. Figure 4.9 shows an example of periodic behaviour when
a=0.05, a=0.9, and k£ = 3.

0<a< (4.38)

Figure 4.9: A stable periodic solution when a = 0.05, « = 0.9, and k£ = 3. The
nullclines are shown as the dashed lines.

15+

05

50 100 150

Figure 4.10: Relaxational solution of (4.31) when a = 0.02, « = 0.9, and k = 3. The
graph is that of z(¢).

It is evident from this phase portrait that the limit cycle has a relaxational char-
acter, in the sense that there is a (longish) period when z is very small. Of the
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parameters used in figure 4.9, we see that a is small, suggesting that the limit a — 0
is responsible for this behaviour. This is confirmed in figure 4.10, which shows the
time sequence of z(t) when a = 0.02, « = 0.9, and k = 3. It is not uncommon to see
near extinction oscillations in population models. It is possible, though not entirely
straightforward, to analyse such oscillations using singular perturbation methods.

Multiple steady states

There is always at least one steady state with y > 0, but inspection of F(z) and G(z)
shows that there can be more than one. Figure 4.11 shows an example. Preceding
discussion indicates that if we label the three equilibria in this case as (z;,y;), with
i=0,1,2and zy < 71 < x5, then the middle steady state (z1,y;) is always an unstable
saddle (det M < 0), the upper steady state (x2,y2) is always stable (det M > 0 and
tr M < 0), and the stability of (zg,yo) is determined as before.

40
4 G()/a
30 |
20 | F(X)
10
0 ’JJ’ L
’ ’ 4 6 8 10

Figure 4.11: Nullclines of x and y when k£ = 10 and a = 0.027.

It is clear from figure 4.11 that, since F' increases with k, there will be an interval
of k—values, k_ < k < k., for which multiple steady states occur. The values k. can
be evaluated by the condition that there be a double root of F(z) = G(z)/a, and this
leads to the parametric prescription for ky as

212 r—1

T = 4.39
pas L A e (4.39)

which describes a narrow sector in the (k,a) plane, as shown in figure 4.12. The
upper and lower boundaries of this sector are given, from (4.39), by

1 4
@~ o, g as k — 0. (4.40)
Figure 4.12 suggests that oscillations do not occur when there are multiple steady
states.
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Figure 4.12: The regions in which instability of (zg, o) may occur (U) and in which
there are multiple steady states (M). The figure suggests (but does not prove) that
when multiple steady states occur, both the upper and lower branches are stable.

4.4.2 Travelling waves on the Martian north polar ice cap

Phase plane analyses often arise when one seeks travelling wave solutions of partial
differential equations, as will be discussed further in chapter 7. An example of this
approach occurs in the study of a model describing accretion and sublimation of ice
on the north polar ice cap of Mars. As can be seen in figure 4.13, a series of arcuate
canyons occur on this ice cap, marked by dust deposits on the steep scarps. The ice
cap is some three kilometres deep and 1000 kilometres wide, while the canyons are of
typical depths 500 m, and spaced some 50 km apart. Their occurrence is mysterious,
and unlike anything seen on the ice sheets of Earth.

One model which has been studied with a view to explaining them monitors the
effect of atmospheric dust concentration on sublimation rate. To explain the spiral
wave like form of the troughs, travelling wave solutions of the model are sought, and
these are described by

s = ws—gq,

uc = d¢gq, (4.41)

in which ¢ = q(c, s); s represents surface slope, ¢ is the net rate of sublimation, and ¢
is the atmospheric dust concentration. The prime denotes a spatial derivative in the
moving frame of the travelling wave. v denotes the travelling wave speed, while u is
the atmospheris wind speed, and ¢ is the dust fraction of the ice, and these are all
taken as constants; u and ¢ are positive, but v is unknown.

The sublimation function ¢ is taken to be

q = f(c) +ms, (4.42)
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Figure 4.13: The spiral canyons of the Martian north polar ice cap.

with m being positive and f(c) having a typical cubic shape exemplified by

£(6) = (c= D)(c—2) (1 - %) . (4.43)

The model has three steady states where s = 0, and ¢ = 1, ¢ = 2 or ¢ = M;
we denote these steady states as P, @), R, respectively, as shown in figure 4.14. The
results of a phase plane analysis are then the following. When 0 < v < m, P and R
are saddles, while () is a node or spiral, which undergoes a Hopf bifurcation at

of

— g =m—2L 4.44
v=ve=m— (4.44)

assuming v, is positive. @) is unstable for v > v,, and numerical computations suggest
that the Hopf bifurcation is supercritical, so that there is a stable periodic solution
for v > v.. This orbit exists up to a value v = v, at which it becomes heteroclinic to
P, and disappears in a ‘blue skies’ bifurcation. The stable orbit and its disappearance
are shown in figures 4.14 and 4.15.

If v > m, P and R are still saddles, and @) is an unstable node or spiral. It is
possible that the limit cycle may still exist, and this probably depends on the size of
f; it is also possible for the limit cycle to disappear by coalescence with R, but this
seems unlikely for large M. In fact, it is found that as M — oo in (4.43), the limit
cycle remains finite and independent of M.

4.5 Relaxation oscillations

It is a general precept of the applied mathematician that there are three kinds of
numbers: small, large, and of order one. And the chances of a number being O(1) are
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Figure 4.14: Approach to stable limit cycle solution of (4.41) using (4.43) with M =
1000, and v = 0.05, ¢ = 0.2, m = 0.14, and u = 2. The parabolic curve is the
nullcline ¢ = 0.

Figure 4.15: Disappearance of limit cycle in heteroclinic connection with P. Param-
eters as for figure 4.15, except that v = 0.06.



Figure 4.16: Typical form of relaxation oscillation in phase plane for (4.45).

not great. Thus for systems of the form (4.1), it is often the case in practice that the
time scales for each equation are different, so that in suitable dimensionless units, a
second order system might take the form

EL = y_g(x)a
y = hz)-y, (4.45)

where the parameter ¢ is small. The system (4.45) is essentially the same as (4.29)
with time reversed, but now suppose that the nullclines are as shown in figure 4.16, i.e.
g has a cubic shape. Trajectories now rotate clockwise, and linearisation about the
fixed point yields a community matrix A with tr A = —(¢'/e) —1,det A = (¢’ — h') /e,
thus with ¢’ > A’ the fixed point is a spiral or node, and withe < 1,tr A ~ —¢'/e > 0,
so it is unstable. Thus we expect a limit cycle, and because ¢ < 1, this takes the
form of a relaration oscillation in which the trajectory jumps rapidly backwards and
forwards between branches of the z nullcline. For ¢ < 1, z rapidly jumps to its
quasi-equilibrium y & g¢(z), and then y migrates slowly (¢ ~ [h(z) — g(z)]/¢'(z))
until ¢’ = 0 and z jumps rapidly to the other branch of g. Figure 4.17 shows the time
series of the resulting oscillation. The motion is called ‘relaxational’ because the fast
variable z ‘relaxes’ rapidly to a quasi-stationary state after each transient excursion.

4.5.1 The Van der Pol oscillator

The relaxational form of the van der Pol oscillator is

ei+ (2> —1Di+z=0, e<1. (4.46)
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Figure 4.17: Time series for = corresponding to figure 4.16.

This form of the equation is appropriate when the ‘damping’ (first derivative) term
is large. If we define
y = e+ 32° —z, (4.47)

then the appropriate phase plane equations are

et = y—S(x),
R (4.48)

where

S(z) = 32° — z. (4.49)

The z—nullcline is the cubic y = S(z); above this, trajectories move rapidly to the
right, and below it they move rapidly to the left. Thus, from an arbitrary initial
location, a trajectory will rapidly approach either upward sloping part of the slow
manifold y = S(x), on which the motion is slow. On the right side, in z > 1, y
decreases until it reaches the base of the curve at z = 1, where it undergoes a rapid
transition (an interior layer, in fact) to the left side of the curve in x < —1. There,
it increases until a symmetric transition occurs at £ = —1. In this way, a periodic
oscillation occurs. The typical form of the trajectories is shown in figure 4.18, which
shows that the relaxational form is already appropriate when ¢ = 0.1. The time series
of x versus ¢ is very similar to figure 4.17.

It is possible to derive characteristics of the oscillation very simply from this
description. The maximum amplitude is z = 2, following which there is a slow
decline to x = 1. Because of the symmetry of the oscillation, the time to get from
x =2 to x = 1 is approximately P/2, where P is the period (since the fast transitions
between are very short). Thus the period is

=1 2 Q!
PmQ/ ¢ﬁm/'igﬁ@z3—2mz (4.50)
=2 1 Xz
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Figure 4.18: Trajectories of (4.46) approaching the limit cycle (thick line) when € =
0.1. Also indicated is the nullcline for = given by y = S(z).

This follows because on the slow manifold, dt ~ —dy/z and y ~ S(x).

4.6 Belousov-Zhabotinskii reaction

4.7 Notes and references

Phase plane methods are described in many books on ordinary differential equations,
for example that of Jordan and Smith (1999).

The blue skies catastrophe and various other bifurcations of exotic type are de-
scribed in a number of books on dynamical systems, for example that of Thompson
and Stewart (1986).

The model of formation of the the spiral troughs on the Mars north polar ice cap
is the subject of a dissertation by Zammett (2004).

Linear systems of ordinary differential equations are the stuff of many basic text-
books on the subject. A particularly clear and direct discussion is that by Arn’old
(1973).

Exercises
4.1 u and v satisfy the ordinary differential equations

u = kl — k‘zu + k3u21},

v o= k:4—k3u2v,
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4.2

4.3

where k; > 0. By suitably scaling the equations, show that these can be written
in the dimensionless form

U = a—u+uv,

= b—u’y,

where a and b should be defined. Show that if u,v are initially positive, they
remain so. Draw the nullclines in the positive quadrant, show that there is a
unique steady state and examine its stability. Are periodic solutions likely to
exist?

Suppose that
X = A(1)X, (%)
where X € R" and A is 2r—perodic. Define what is meant by the fundamental

matrix and write down the solution of (x) satisfying X = X, at ¢t = 0.

Define what is meant by the monodromy matrix M, and show that it has no
zero eigenvalues. Describe how it can be used to prove Floquet’s theorem, that
there is a 2r—periodic matrix B(t) such that X = BY, and

Y =CY,

where C' is a constant matrix. Explain how the eigenvalues of C are related to
those of M.

Use a phase plane analysis (with y = &) to analyse the solutions of the nonlinear
oscillator
i+ V'(z) =0,
where
V(z) = 32° — 3z*.
In particular, show that the origin is genuinely a centre.

Construct the phase planes for the systems
(i) ¢=y, g=-V'(z)—ey,

(i) =y, y=-V'(z)— ey’
where ¢ is small.

Show that if
&=y, y=-V'(z)—eD(E)y,

where

E=3y+V(z), DE)=E-g,
then there is a stable limit cycle in the region 0 < F < i, and draw the

corresponding phase plane.
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4.4

4.5

An energy balance model for the average atmospheric (absolute) temperature
T of the Earth is given by

pephT = 1Q(1 — a) — oy,

where p is air density, c, is the specific heat, h is the effective height of the
atmosphere, () is the received short wave solar radiation, a is the albedo coef-
ficient (reflectivity) of the Earth’s surface, o is the Stefan-Boltzmann constant,
and 7 < 1 is a numerical factor which represents the blanketing (greenhouse)
effect of the atmosphere.

Non-dimensionalise the equation using a temperature scale 7Tj and a time scale
to, so that it takes the dimensionless form

T=1—a-—T"

Show that if the observed albedo is 0.3 and the observed (steady state) temper-
ature is 288 K, then Ty = 315 K.

Use the values Q = 1370 W m~2 and 0 = 5.67 x 1078 W m~2 K~* to find what
the greenhouse factor v must be to obtain this value of Tj.

Use this value of 7, and the values p =1kg m™3, ¢, = 10®* J kg=! K~!, h = 10*
m, to compute the adjustment time scale .

The albedo of the Earth varies principally due to the extent of sea and land
ice, which in itself depends on temperature. Sea ice varies seasonally, but land-
based ice sheets grow over time scales of thousands of years. Suppose that as
a consequence the albedo adjusts towards an equilibrium value A(T) on a time
scale t; ~ 1000 y (years), and is modelled by the equation

tia = A(T) — a.

Show that the non-dimensional form of this equation is
a=v[A(T) — a],

where v = ty/t;.

We can expect A(T') to be a monotonically decreasing function, with, say, A ~
0.8 for very low T', and A ~ 0.2 for very high 7. If A changes rapidly enough
with 7" in an appropriate range, show that it is possible to have three steady
states, and construct the phase plane for (7', a) in this case. Hence show that
the smallest and largest steady states of T are stable, and the intermediate state
is unstable.

The sizes of two populations, one being a predator and the other its prey, are
described by the equations
auv
v = u(l—u)—
( ) u+d’

v o= bv<1—3>,
U
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4.6

4.7

where a, b and d are positive constants.
Show that if v and v are non-negative, then they remain so.

Show that there is a unique steady state in the first quadrant, and show that
there is a region in (d, a,b) space where this steady state is unstable.

Draw the possible form(s) of the first quadrant phase plane in this case.

A nonlinear oscillator is given by the equation
ei+(z*—1)i+r=0, e<x 1.

A suitable phase plane is spanned by (z,y), where y = ei+32°—z. Describe the
motion in this phase plane, and find, approximately, the period of the relaxation
oscillation. What happens if € < 07

The Belousov-Zhabotinskii chemical reaction can be approximately described
by the two component pair of ordinary differential equations

eX=X(1-X)- (%) Z,

Z=~X -7,

where ¢ and ¢ are very small, and « is O(1). Show that relaxation oscillations
will occur for y within a certain range (-, 7, ), and give approximations for the
values of ..
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Chapter 5

Oscillation and comparison
methods

The study of the stability of fixed points of systems of ordinary differential equations
leads to the computation of the growth rate exponents o as eigenvalues of matrices. In
a similar way, the computation of the frequencies of small oscillations of Hamiltonian
systems leads to algebraic eigenvalue problems.

Both of these situations arise because of the underlying linearity of the system,
which allows the possibility of finding separable solutions. In partial differential equa-
tions, the same situation arises, but now the computation of eigenvalues requires the
solution of differential, rather than algebraic, equations, and the corresponding solu-
tions of these are called eigenfunctions (as opposed to eigenvectors). In this chapter
we discuss properties of these eigenvalue problems.

5.1 Derivation of Sturm-Liouville systems

We begin by giving some examples of eigenvalue problems which arise through the
technique of separation of variables in partial differential equations. All of these
examples take the form of (second order) Sturm—Liouville systems, that is, ordinary
differential equations for y(z) of the form

(py) + (A\r —q)y =0, (5.1)
together with suitable homogeneous boundary conditions of the general form
Y +ay=0 at z=a,b. (5.2)
In this chapter we will mostly take @ = oo, thus
y=0 at z=a,b. (5.3)

Sturm-Liouville systems possess the functional analytic property of being self-
adjoint (the definition of which will appear in due course). Indeed, our discussion
of Sturm-Liouville systems will frequently skirmish with concepts from functional
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analysis, but the material will be presented more in the manner of a tour, and will
not dwell overmuch on the niceties of detailed proofs. For these, reference must be
made to any number of classical textbooks (see section 5.4).

5.1.1 Waves in a bucket

The first example we consider is that of free surface fluid flow in a cylindrical container:
waves in a bucket, or a petri dish, or a pond. We suppose that the fluid, when
undisturbed, occupies the region —h < z < 0, 0 < r < a, where r, z (and 0)
are cylindrical coordinates. When the fluid is disturbed, the upper (free) surface is
perturbed to a surface z = 7(r,0,t), whose location forms part of the problem to be
solved: it is therefore a free boundary problem.

For irrotational flow, there is a velocity potential ¢, which satisfies Laplace’s
equation

1 1
V2 = G+ —br + 500 + 622 = 0 (5.4)
together with the boundary conditions of no flow through the base and the sides:
¢, = 0 on r=a,
¢, = 0 on z=—h. (5.5)

On the top surface, the kinematic and Bernoulli conditions imply

¢ +gn=0, ¢,=m on z=0, (5.6)

where it is assumed that the free surface elevation 7 is small, so that the boundary
conditions can be linearised about z = 0. In all these equations, subscripts indicate
partial differentiation.

The equation and boundary conditions are linear, and are autonomous in ¢, § and
z (though not r), so that separable solutions can be found. These take the form

¢ = R(r)e“™ ™ cosh{k(z + h)}, n= A(r)e“tmb (5.7)

where, because of the linearity, we allow R and A to be complex, and it is understood
that we may take the real part of the solutions. Note that we require m to be an
integer, so that the solutions are well-defined.

Substitution of the expressions in (5.7) into (5.4)—(5.6) leads to the ordinary dif-
ferential equation for R,

1 2
R" + ;R’ + <k2 — ﬁ) R=0, (5.8)

r2

where k is a real constant, which is in essence the wavenumber. Satisfactrion of the
surface boundary conditions leads to the dispersion relation

w? = gk tanh kh, (5.9)
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which relates wave speed w/k to wavenumber, but is not of immediate concern here.
The equation (5.8) can be written in the form

(rR) + (k%« - m;) R=0, (5.10)

and as such represents a Sturm-Liouville system of the form (5.1) (do not confuse the
function r(z) in (5.1) with the polar radius r in (5.10)).
The question of appropriate boundary conditions for (5.10) is an interesting one.
We require
R(a) =0 (5.11)
to satisfy the no flow through condition on the tube wall, but the other condition
required is more subtle. Since ¢ satisfes Laplace’s equation, we require V¢ =

1
<¢T, ;d)g,d)z) to be regular, and in particular, bounded. It follows from this that

we require

R(0) = 0, m+#0,
R(0) = 0, m=0. (5.12)

The solutions of (5.8) are Bessel functions R = J,,(kr), to which we will return in
due course.

5.1.2 Laplace’s equation

The second example we consider is that of solving Laplace’s equation in spherical

polars. This has a variety of applications, the most obvious of which are associated

with properties of the Earth. For example, deviations of the Earth’s gravity field

from a purely radial one are usually expressed in terms of spherical harmonics, which

are essentially the separable solutions of Laplace’s equation in spherical coordinates.
We suppose

2y L9 (20% L0 (6ne2% 1 9% _
vw_T’?@r " or +r25in089 sm@ae +r2sin296¢2_0’ (5.13)

where (7,0, ¢) are spherical polar coordinates. Separable solutions exist in the form
Y =r"e™Oe(0), (5.14)

where we require m to be an integer in order that the solution be single-valued. Sub-
stituting (5.14) into (5.13), we find that © satisfies the ordinary differential equation

2

1 . " m
n(n+1)© + g [sinf ©'] — - 0@ = 0. (5.15)
. . . 1 d
It is convenient to write y = cos#, so that — = ———— and then
du sin 6 df
2
o ]’ m .
[(1—/1)@} +ln(n+1)—1_ﬂz 0 =0. (5.16)
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This is Legendre’s equation. The solutions are usually denoted as P (u), Qm(u);
when m = 0, P? = P, are the Legendre polynomials, if n is an integer.
We see that Legendre’s equation is of Sturm-Liouville type, with A = n(n+1). In

1 1
spherical polars, Vi = (¢T, —g, i 9¢¢>, and thus the requirement that Vi be
r 7 rsin

bounded implies that n = 0 or n > 1, if the solution domain encloses the origin. If it
encloses the poles at © =1 and pu = —1, then we require

O(+1) = 0 if m=0,
©(x1) = 0 if m#0. (5.17)

5.1.3 Instability in thermally activated shear flow

A classical problem of some interest and relevance is that of thermal runaway. In
its origins, this problem concerns combustion (why does a match light when you
strike it?), but a different application occurs in the flow of fluids with temperature-
dependent viscosity. The process of injection moulding (of, for example, telephones)
fills a mould with a molten polymer, which then solidifies to form the manufactured
object. If the flow rate of the polymer is high enough, charring can occur at the edges,
which is evidently not desirable!

The mechanism for this charring is that there is frictional heat released by the
viscous flow of the melt, and this depends on the temperature, through the dependence
of viscosity on temperature. The heat released increases the temperature, which
further increases the heat released. This kind of circular reinforcement is called a
positive feedback, and provides a mechanism for instability and, in some cases, what
is called blow up: this is discussed further in chapter 9.

A simple model which represents the injection moulding process is that of an
axial flow of an incompressible fluid in a cylindrical tube. We use cylindrical polar
coordinates (r,0, z), and suppose that the tube wall is at 7 = a. If there is a purely
axial fully developed velocity u(r,t), then the only stresses are a shear stress 7 and
the pressure p, and these satisfy the axial component of the momentum equation,

which is 19 P
~5, 7)) = 3—5 (5.18)
Because of the purely radially dependent velocity, mass conservation (incompressibil-
ity) is identically satisfied, and the acceleration terms in the momentum equation are
identically zero. This latter situation is also approximately true for low Reynolds
number (slow) flow.
The viscous flow law is

ou
T=Hy (5.19)

where p is the viscosity. We assume that p = u(T), where T is the temperature,
whose evolution must therefore also be determined. The energy equation takes the

IThis was the subject of an industrial problem brought to Cornell University in 1975 by the Bell
telephone company.
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form (assuming axial symmetry)

oT orT 10 (0T o’T| 2
PCp lg + U&] =k l;a (TE) + ﬁ] + M (5.20)

where the terms represent successively heat advection, heat conduction and viscous
dissipative heating: p is the fluid density, c, its specific heat, and %k is the thermal
conductivity. The last term in (5.20) is normally completely insignificant in ordinary
laboratory scale fluid flows, but is important in the flow of molten polymers and
plastics, and also in some larger geophysical flows.

If we suppose that the temperature field is also fully developed, i.e., T = T'(r, t),
then the z derivative terms in (5.20) may be ignored. From the momentum equations
: : : : ... 0
it follows that p' = 8_p is constant (since also radial momentum implies 8_p =0), and

z r
therefore Ly
rdr
T = %rp', U= —%p’ — (5.21)
ro M
and the temperature satisfies the equation
or ko ([ oT N r2p
Cp—— = ——— | T——
Prar ~ rar " ar dp’

(5.22)

and is evidently uncoupled from the determination of the velocity field. We suppose
temperature is prescribed on the tube wall, thus

T=Ty on r=a. (5.23)

Non-dimensionalisation

We suppose that pg is a typical value of the viscosity, and AT is the temperature over
which it varies significantly; generally u decreases with T (think of maple syrup), and
to be specific we will suppose

(5.24)

K= Ho €XPp l—
We non-dimensionalise the temperature equation and boundary conditions by writing

(12

r = af, T = T() + (AT)H, t= T, (525)

where k = k/pc, is the thermal diffusivity. This leads to the dimensionless differential
equation
00 10 |, 00 9 8
A P 5.26
o = 1 |65 e (5.20
with the boundary conditions
f = 0 on r=1,
. = 0 at r=0, (5.27)
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this last condition following from the requirement that 6 be bounded at » — 0. The
single dimensionless parameter « is given by

CL4 pl2

L 5.28
O 4k AT (5.28)

and we suppose that viscous heating is significant, i.e., @ > O(1).

Steady state

The steady state solution y(r) of (5.26) satisfies the nonlinear ordinary differential
equation

(€65) + +ag’e™ =0, (5.29)
with boundary conditions
6o(1) =0, 6;(0) =0. (5.30)
We put
z=—In& 6y=4z+1, (5.31)
so that v satisfies
V" +ae? =0, (5.32)
with boundary conditions
=0 at 2=0, ' —>—-4 as z— oo. (5.33)

A first integral of this can be found, which is
W2+ aet =38, (5.34)

and the problem reduces to a quadrature, which determines the solution as

= —2In [\/g cosh(2z + c)] , (5.35)

/8
c=+cosh™/—. (5.36)
(6]

There are thus two solutions if o < 2\/5, and none if a > 2v/2. For a greater than
this critical value, the solution to the initial value problem for (5.22) blows up in finite
time, and no steady state solution exists. It is this phenomenon which is associated
with the charring which is observed if the injection moulding flow is too fast.

where c is given by
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Linear stability
We study the stability of a steady state solution by putting

0 =06y+ 6. (537)

Linear stability follows from assuming that (remember the variables are dimension-
less) © < 1, and linearising the resulting evolution equation for ©, to obtain

10
O = o

This has separable solutions of the form

lgg—?] + ag?e®0. (5.38)

6 = " P(¢), (5.39)

where P satisfies
(gPI)I _+_ I:_O_é' _+_ aggeeﬂ(g)] P = 0, (540)

together with boundary conditions
P'(0)=0, P(1)=0. (5.41)

This is of the same form as the Sturm-Liouville problem (5.1). If written in terms of
z given in (5.31), the problem becomes

P" + [—0’6722 + 8sech?(2z + c)] P =0, (5.42)
where now P’ = dP/dz; this is to be solved on 0 < z < oo, with

P(0) =0, P'(c0)=0. (5.43)

5.2 Sturm-Liouville theory
The general Sturm-Liouville system is written in the form

(py') + (A\r —q)y =0, (5.44)

where p, ¢ and r are functions of the space variable z, and to be specific we solve the
equation in the domain [a,b] and apply boundary conditions

y(a) = y(b) = 0. (5.45)
This is an eigenvalue problem: as we shall see, solutions exist only for a discrete
set of eigenvalues Ay, Ay, ..., for which the corresponding functions ¢;(z), ¢2(z),. ..,

are called eigenfunctions. We wish to demonstrate this, and elucidate some of the
properties of these eigenpairs.

We will assume that p, ¢ and r are positive and smooth, that is to say continuously
differentiable (€ C'), which provides the simplest case. It is possible to relax some of
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these assumptions; in particular, it is often found (as in our examples (5.10), (5.16)
and (5.40)) that p = 0 at an end point; in this case the Sturm-Liouville system is
referred to as a singular system. Depending on the singularity, the basic results which
we describe below will still hold, with some modifications.

The system (5.44) and (5.45) is a boundary value problem, which is why it is
difficult to prove existence results. We therefore begin with a corresponding initial
value problem, that is, (5.44) together with the initial conditions

y(a) =0, v'(a)=1. (5.46)

u = Mu, (5.47)
where the matrix M is

1
M = p |, (5.48)
0

and

EER 6

By our assumptions, the matrix M is smooth and therefore Mu is Lipschitz contin-
uous: hence Picard’s theorem implies that there exists a solution which is unique so
long as u is bounded. Being a linear system (with bounded coefficients), the solution
can grow no faster than exponentially, and therefore the solution will exist for all .

The matrix M depends on A, so that the solutions do also, and in particular
y = y(x, ). The dependence on X is smooth, and indeed analytic, as can be shown

0
simply by constructing the solution % of the differentiated system
uy = Mu, + 0 (5.50)
A A —rz )’ '

using the fundamental solution as in chapter 4. Thus the value of y at x = b,

y(b,A) = yp(N) (5.51)

is an analytic function of A. If y =0 at x = b (as well as z = a), i.e., yp(A\) = 0, then
we say A is an eigenvalue of the Sturm-Liouville system. The solution function y(z)
is called the corresponding eigenfunction.

5.2.1 Eigenvalues and eigenfunctions

It will not have escaped the observant reader that Sturm-Liouville systems represent
a generalisation of the simple harmonic oscillator

v+ y=0, y(0)=y(1)=0, (5.52)
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where p = r = 1, ¢ = 0. Evidently the eigensolutions are y,, = sinnmx, where n is an

integer, and the corresponding eigenvalues are \, = n?w2. We note that the eigenval-

ues form a denumerable sequence which tends to infinity, and the eigenfunctions are
1

orthogonal, in the sense that / YmYn dx = 0 for m # n. It is as a consequence of this

that the functions {y,} form a basis for the expansion of functions in Fourier series,
which is in fact complete, i.e., any smooth (or in fact piecewise continuous) function
can be expanded in a Fourier series. We will find that these results carry across to
the general Sturm-Liouville system.

Let us denote w = % We then have

(ry) +(\r—qy = 0,
(puw") + (M —q@uw = -—ry. (5.53)

Multiplying by w and y respectively, subtracting and integrating, we find

[p(y'w — yw')]2 = /b ry* dz > 0, (5.54)

assuming r > 0. Since y = 0 at a, b, and w = 0 at a, it follows that

b
(py'w)], = / ry?dz > 0, (5.55)

a

0
and therefore w = a—i # 0 at © = b. It follows from this that the zeros of y,(\) are

isolated, since ¥, is analytic, and if there an infinite number, the only limit point can
be at o0.

An eigenvalue exists

It is by no means obvious that any eigenvalues will exist. To show that there is
at least one, we consider the initial value problem (5.44) with the initial conditions
(5.46). If p > 0, then we can suppose without loss of generality that p = 1, and we
suppose that ¢ and r are positive.

If A <0, then " > 0 as long as y > 0. Since y > 0 for z close to a, this shows that
y will continue to increase if A < 0, and therefore y,(A) > 0 for A < 0. By continuity,
this can be extended to state that y,(\) > 0 for X positive and sufficiently small.

Next we consider two solutions y; and y, with different values of A = \; and
A = Ao, and we suppose \; < Ay. Multiplying the equations for y; and y, by y» and
Y1, respectively, and subtracting, we find

(Y1y2 — 1193) = (A2 — M) Ty10. (5.56)

Integrating, and then dividing by y2, we obtain

) ()\2—)\1)/ TY1Yy2 dx
(y—2> - 2 > 0. (5.57)
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By I’Hopital’s rule, we have N qatz= a, therefore y; > yo as long as y» > 0.

This implies that y,(A) is %ﬁonotonicaﬂy decreasing with )\ as long as it is positive,
and also that, if z1()\) is the first zero of y (if it exists), then z; is monotonically
decreasing with \; in particular, z; > b for small positive .

On the other hand, it is fairly obvious that if A > 1, then by comparison of the
solution of (5.44) (with p = 1) with that of

2"+ pz=0, 2(a)=0, 2'(a)=1, (5.58)

Tmin

x1 — 0 as A — oco. Since z; varies continuously with A, is monotonically decreasing
with A, and x; > b for sufficiently small A, this implies that there is a unique positive
value \; where z1(A\1) = b, and this is an eigenvalue of the Sturm-Liouville system.

where \ > and p is positive, we can show that z;(\) does indeed exist, and

¢
Extension to the case p # 1 is trivial, by defining the new space variable X = / %,
a p

and suitable redefinition of ¢ and 7.

This proves that there is an eigenvalue. Moreover, we have in passing proved that
all the eigenvalues are positive, their only limit point is oo, and that the minimum
eigenvalue A; has a corresponding eigenfunction ¢;(z), say, which is of one sign.
In addition, it is simple to repeat the argument for A > A; (simply redefine the
left endpoint a; to be at x1())) to show that there must be an infinite sequence of
eigenvalues, and the sequence is denumerable since it can be exhaustively constructed
in the above way.

Eigenfunctions are orthogonal

A fundamentally important property of the eigenfunctions of Sturm-Liouville systems
is that they are orthogonal. Orthogonality is a property which we associate most easily
with vectors. In three dimensions, two vectors a and b are at right angles if their scalar
product Z a;b; is zero, and we extend the definition to less geometrically accessible

n—dimensiz)nal vectors simply by allowing the same definition of scalar product.

The language we are using to discuss eigenvalues is very suggestive of the fact
that we are here dealing with the same algebraic and geometric structures as occur
in finite-dimensional vector space. There is, in fact, a direct analogy: functions are
essentially (countably) infinite dimensional vectors; the finite number of eigenvalues
of a matrix is replaced by the denumerable sequence we have discussed, and just as
the eigenvalues of a real symmetric (or self-adjoint) matrix are real and orthogonal,
so also a Sturm-Liouville system is self-adjoint (this will be elaborated in chapter 6),
and has real eigenvalues which are orthogonal. The definition of a scalar product
for a function space is called an inner product, and its definition is the extension of
the finite sum Z a;b; to its limit — an integral. To be specific, we define the inner

product of two functions v and v with (positive) weight function r(z) to be

(u,v) = /ab ruv dz, (5.59)
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and we say that u and v are orthogonal if (u,v) = 0.
For the eigenfunctions y; and y, with corresponding eigenvalues A\; and Ay, we
find from the differential equation that

[p(1y2 — 1195)]" + (A1 — A2)ryaye = 0. (5.60)

Integrating from a to b and using the boundary conditions, we find

b
/ ry1y2 dz = 0, (5.61)

that is, y; and y, are orthogonal.

Just as we construct bases for vector spaces from sequences of orthogonal vectors,
so we can attempt to construct ‘bases’ of orthogonal functions for function spaces.
This is the realm of Fourier series. We have an infinite sequence of eigenfunctions, and
if we take these to be orthonormal, in the sense that (¢,,¢,) = 1, then a candidate
Fourier expansion of an arbitrary function f(z) is

f=>2(f,6:)8: (5.62)

and the issue of whether this candidate expansion is actually correct resides in whether
the eigenfunctions form a ‘complete’ sequence. The answer is that they do, but a
complete proof of this lies somewhat beyond the scope of these notes. We will sketch
a proof in chapter 6.

A variational principle

Multiplying the Sturm-Liouville equation for y by y and integrating, we find that
each eigenvalue A satisfies

b
/a (qy” + py?) dz

b
/ ry? dz

Since this expression is homogeneous, we can take the denominator to be equal to
one without loss of generality. In different phrasing, we define the norm of a function

u to be
b 1/2
| = {/ ru? dw} , (5.64)

that is, ||u|| = 1/(u,u), in analogy with the Euclidean vector norm, so that we may
take ||y|| =1 in (5.63). In that case

A= (5.63)

A= / qy”? + py?) (5.65)

It is a simple observation of the calculus of variations that the functional A[y] de-
fined by (5.65) (or (5.63)) takes stationary values when the Sturm-Liouville equation
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is satisfied, and in fact is also a local minimum (since p and ¢ are positive). The first
eigenvalue A; is equal to the global minimum of A[y], and then the next one ), is the
global minimum of A[y| subject to (y,y1) = 0, and so on. It is somewhat easier to
prove these statements when the Sturm-Liouville system is rewritten as an integral
equation, and this is done in chapter 6.

5.2.2 Singular Sturm-Liouville systems

5.3 Comparison methods

Related to eigenvalue problems are the oscillation and comparison theorems, which

apply generally to second order differential equations, and concern the existence and

location of zeros of the solutions. We will prove four related results of this type.
Suppose first that

(py) =@ = 0,
(pys) — @22 = 0, (5.66)

and ¢q; > qo. Then y, has at least one zero between two successive zeros of y;. For,
if this is not the case, let us take x; and x5 to be two successive zeros of y;, and
suppose without loss of generality that y; > 0 for 1 < & < x5. If y5 is non-zero in
the same interval, we may suppose that it is also positive. Using a by now familiar
construction, we have that

[p(y1y2 — y192)]" = (@1 — ¢2)y192 > 0, (5.67)

and integrating this between x; and x5 yields

(Py291)le, > (Y211, » (5.68)

which is impossible since we must have y;|, <0 and y;|, > 0.
Next we show that the zeros of independent solutions of

(ry) —qy=0 (5.69)

interlace. Suppose y; and y, are independent solutions of (5.69): then their zeros are
distinct (since if y; = y2 = 0 at some value of z, then Picard’s theorem implies that
one is a multiple of the other). If z; and z, are successive zeros of y;, then as above,
we can find that

[p(vhy2 — 1hyy)]s: =0, (5.70)
whence

(Py2y1)la, = (PY291)l,, - (5.71)

Because yj(z1) and ¢} (x2) have opposite signs, it follows that so also do y,(z1) and
y2(x2), and thus that y, has a zero between z; and xz3. The same argument works
the other way round. This proves that the zeros of y; and y, interlace.
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Now we turn to the Sturm-Liouville eigenvalue problem. If y; and y, are two
eigenfunctions with eigenvalues A\; and ), so that
(Py) + (r—qyr = 0,
(pya) + (Aor —q@)y2 = O, (5.72)

let us suppose that x; and x5 are two successive zeros of y;, with y; positive between
them, and suppose also that y, > 0 in this interval. If A\; < A, then

Pyl = e = \) [

1

T

’ ry1ys dx > 0, (5.73)

which is impossible. It follows that if A\; < As, then the eigenfunction y, has a zero
between any two zeros of y;.

Finally we prove again the result on the number of eigenvalues. For (5.44), we
define

£ = /a ’ ]%, (5.74)
so that with ¢y’ = dy/d¢, we have
y" + [A\pr — pqly = 0. (5.75)
We compare the solutions of this equation with those of
2"+ (AR—Q)z =0, (5.76)

where R and () are positive constants such that pr > R and pq < @), and we suppose

A> % > 0. Then @ — AR > pq— Apr, and the first result in this section (after (5.66))

then implies that y has a zero between any two of z. Since by construction, z has an
infinite number of zeros, it follows that so also does y.

Denote these as z,(\), n = 1,2,.... From (5.55) it follows that y'yy > 0 at z,,
where also y[z,(A), A\] = 0. Thus we find

N
z,(\) = — e <0, (5.77)
and thus all the zeros decrease as X increases. From all this we can (again) deduce
that there are an infinite number of eigenvalues \,, with A\, — 0o as n — o0.

5.4 Notes and references

A good source for the material on separation of variables and the derivation of the
main equations of mathematical physics is the classic text by Jeffreys and Jeffreys
(1946). This book has been reprinted many times and is still in print.

There are many books on differential equations which cover Sturm-Liouville equa-
tions. A classical text is that by Courant and Hilbert (1937). Other books, no less
valuable, are those by Mackie (1965), Coddington and Levinson (1972), and Stakgold
(2000). Oscillation and comparison theorems are nicely discussed in the little book
by Burkill (1956). Simmons (1972) is a very accessible entry level text.
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Exercises

5.1

5.2

9.3

Show that the second order differential equation
w” + a(z)w' + [b(z) + Ace(z)w] =0
can be written in the Sturm-Liouville form
(py) + (A\r — qJy =0,

by suitable definitions of the functions y, p, ¢ and 7.

If the boundary conditions are
w4+oaw=0 at =01,
what are the corresponding boundary conditions for y?

Bessel’s equation of order v is
" 1 / V2
wt-—w+|1-—|w=0,
z z
and the solutions are called Bessel functions of order v. Show that the solutions
of the Sturm-Liouville equation
2

(rR)) + (k%« - 1) R=0 (¥

r

can be written as Bessel functions of order m.

By seeking solutions near z = 0 of the form w ~ z#, show that if v # 0, then
independent solutions w. are possible with w4 ~ z*”. Deduce that if we require
R(0) = 0 when m is a positive integer in (x), then we must have R oc w, (kr).

(wy is normally written J,, and is the Bessel function of the first kind; the
Bessel function of the second kind is singular at z = 0 and is denoted Y,,.)

Show that if v = 0, then independent solutions are possible in which
Jo~1—122 Yy~Inz
A function u(z,t) satisifies the nonlinear reaction-diffusion equation
U = Uge + f(u) on [0,1],
with boundary conditions

u=0 on x=0,]1.
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5.4

Suppose that wug(z) is a steady solution. By writing u = ug + U, derive a
linearised equation for small perturbations U. Show that is has separable solu-
tions of the form U = v(z)e?, and deduce that v satisfies the Sturm-Liouville
equation

v+ [s(z) —oJv =0, v(0)=0(1)=0,

where

s(z) = f'Tuo(z)]-

By consideration of a suitable variational principle, or otherwise, show that if
s(z) < 0, then all eigenvalues o are negative, and hence the steady state is
stable.

If s(x) > 0, show, by writing ¢ = Smax — s and A\ = Spyay — 0, that instability
can occur (o > 0) if

. /OI(U'2 — s(z)v?) dz

1
v
/ v2dz
0

(This shows that the constraint that ¢ > 0 in Sturm-Liouville theory is not
necessary. )

< 0.

A shear thinning fluid (like tomato ketchup or Guinness) has a viscosity which
decreases with increasing stress. Suppose such a fluid flows in a cylindrical tube
of radius a, and has viscosity

Mo _(T-To)
“_|T|nle"pl AT |’

where 7 is the shear stress, and the power law exponent n > 1 (n = 1 corre-
sponds to Newtonian flow).

Show that a suitable dimensionless formulation of the temperature profile across
the tube satisfies the dimensionless equation

90 10

06 n+1_60
E—ga—glf ]+5§+6,

o€
with the boundary conditions
=0 on r=1,

and
f,=0 at r=0.
Give the definition of the parameter 3.

Find a steady solution of this problem, and find a Sturm-Liouville eigenvalue
problem, whose eigenvalues determine the linear stability of the steady solution.
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Chapter 6

Integral equations and
eigenfunctions

6.1 Integral equations

Like differential equations, the formulation and solution of integral equations is of
interest in its own right. In this chapter, we will however focus on one particular
class of integral equations, those which arise through the reformulation of a Sturm-
Liouville differential equation system as a Fredholm integral equation. More generally,
we begin by illustrating how this reformulation occurs.

6.1.1 Volterra integral equations

Volterra integral equations are those in which the integral occurs in indefinite form
(i. e., the space variable x occurs as the upper limit of the integral). Typically Volterra
integral equations are associated with initial value problems. Consider for example
the inhomogeneous differential equation

(y') —aqy=—f, (6.1)
together with the initial conditions
y(a) =y'(a) = 0. (6.2)

We can solve this using the method of variation of parameters, as follows. Suppose
that y; and y, are independent solutions of the homogeneous equation (i.e., with
f(z) = 0) satisfying

(a) =1
, Y(a) =0. (6.3)

y = A(x)y: + B(z)ye, (6.4)



where the coefficient functions A and B are to be found. We require two equations
for A and B, and we take the first of them to be

Aly; + B'y, = 0. (6.5)
With this choice, we have that

Y = Ay + By, (6.6)
and the initial conditions for y in (6.2) require A and B to satisfy

A(a) = B(a) = 0. (6.7)

Multiplying (6.6) by p, differentiating, and substituting into (6.1), we find the
second equation for A and B:

/
WA +UB = (6.8)

Inverting the matrix equation formed from (6.5) and (6.8), we find

(w525 e

where W = y1y5 — yjy2 is the Wronskian. Directly from the equations for y; and ys,
we know that pW = C is constant (non-zero, since the solutions are independent),
and therefore the solutions for A and B satisfying the initial conditions (6.7) are

A= [(w@r©de B=-2 [n©nede (6.10)
We can thus write the solution compactly as
v=[ K@or©d, (6.11)

where the integral kernel is defined by

y1(2)y2(8) — y1(§)y2(z)

K(z,¢) = )2 .

This simply defines the solution. An integral equation occurs if we put f = Ary,

thus regaining the Sturm-Liouville equation (with initial conditions) of chapter 5. In
this case, (6.11) becomes

(6.12)

v =2 [ K@ or@©u(e) de. (6.13)

This is now an integral equation of Volterra type, because of the upper limit x in the
integral. In principle it can be solved using Picard iteration.

More generally, if we seek eigenfunctions satisfying y(a) = 0, y(b) = 0, they can
be formally constructed by solving the initial value problem with y(a) = 0, ¢'(a) = 1,
thus

v=2 [ K@ or©u(e) ds +u(@) (6.14)

and then choosing A so that y(b) = 0. Practically, though, this is not a very good
idea.
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6.1.2 Fredholm integral equations

Now we consider the boundary value problem for (6.1), i.e.,

Ly= () —qu=—f, y(a)=y) =0. (6.15)

The solution for this can be written in terms of a Green’s function, which is con-
structed from independent solutions y; and y,, which we now take to be defined as
solutions of the homogeneous version of (6.15) (i.e., f = 0) with

yl(a’) = 07 yi(a’) = 1;
y2(b) =0,  y3(b) = L. (6.16)
We explicitly assume that zero is not an eigenvalue for the corresponding Sturm-

Liouville system, so that this choice gives independent solutions.
The Green’s function G(z, ) satisfies the homogeneous equation

LG =(pG') —¢G=0 in =S¢, (6.17)

with
[GEF =0, PG = -1, (6.18)
where the primes denote differentiation with respect to z, and []gf indicates the

jump from z just less than £ to x just greater than £. In terms of the independent
homogeneous solutions y; and y,, the Green’s function is explicitly given by

_yi(@)y2(8)

) x < g’
G(z,€) = ¢ (6.19)
y1(8)y2()
_Ta T > ga

where C = pW is constant (and non-zero), W being the Wronskian for this pair y;,
Y2-

If now we consider a Sturm-Liouville system in which f = Ary, then the eigen-
functions y and eigenvalues A satisfy the Fredholm integral equation

y(@) = A [ 6z, e e, (6.20)

This is called a Fredholm integral equation because the limits on the integral are
fixed.

We may also derive an inhomogeneous Fredholm equation by consideration of the
inhomogeneous Sturm-Liouville equation

py) + (W — gy =—F, (6.21)
subject to y(a) = y(b) = 0. This leads to the integral equation
y(@) = A [ 6@, Or@u(e) de +g(z), (6:22)
where
b
9(@) = [ Gla,&)F(©) de. (6.23)
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6.1.3 The delta function

Although not essential to the discussion, it is difficult to go past the derivation of
the Green’s function without some reference to the delta function d(z). The delta
function is like an administrative tool; it makes things easier to treat, once you have
the confidence to use it, but at first sight it is very strange.

For a start it is not a function. It is called a generalised function. It has the
property that it is zero everywhere except at x = 0, where it is ‘infinite enough’ that

/jo d(z)dz =1. (6.24)

Obviously this is not really satisfactory. There are two formal ways of thinking
about generalised functions. The first is that we think of a generalised function as
being defined as a ‘limit’ (more precisely, an equivalence class) of a family of smooth

functions; for example, the delta function is associated with the family of functions
n __.2 .
—e " as n — oo. (Note that there are many such families.)

s

But the main way of manipulating generalised functions is not to manipulate them
directly at all, but to define their action by means of integrals. If {g,(z)} is a family
of functions in the equivalence class of a generalised function g(x), then we define the
integral

| i@y da= Jim [ f@)gn(a) da. (6.25)

Using this definition, it is possible to prove that one can manipulate generalised
functions directly by using this integral property, so that for example, one can define
the delta function through the requirement that

| 1@ie)dz = £(0) (6.26)

for all smooth functions f(z).
With this rudimentary description of the delta function in hand, we can more
conveniently define the Green’s function G to be the solution of

(pG") — G = —d(z — &) (6.27)

which satisfies the boundary conditions G = 0 at + = a and x = b. Integration of
(6.27) across x = & then implies the second equality in (6.18).

6.1.4 The Fredholm alternative

The Fredholm alternative concerns the solution of the inhomogenous Fredholm equa-
tion (6.22). To put this in more familiar shape, it is convenient to define an integral
operator

Gu = [ Gla, r(©ue) de (6.28)

We should think of this in the same way that we (should) do of functions and linear
transformations. Both define mappings: a (real-valued) function of one (real) variable
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f(z) defines a mapping from the real numbers to the real numbers; a linear transfor-
mation M on a finite-dimensional vector space maps a vector v to another vector Mv.
In a similar way, an integral operator such as G in (6.28) or a differential operator
such as L in (6.15) maps a function to another function. These functions reside in a
suitable function space, and the issue of what a suitable function space should be is
of technical concern, and forms a focal point of functional analysis. It will only be
of diversionary interest in these notes, but it is as well to be aware that many of the
proofs of the subject really require attention to the detail of what function space the
operators are defined on. Unlike, say, linear transformations, it is usual for mappings
of functions to be defined on one function space, but to have their range, or image,
in another function space. As a simple example, we might define the operator L in
(6.15) as acting on the space C?[a, b] of twice continuously differentiable functions on
[a, b], but its image is then clearly only the continuous functions C|a, b]. Apart from
this, we should think of operators on function spaces in much the same way as we do
linear (or nonlinear) transformations on vector spaces.

With the definition of G in (6.28), we might take u € C|a, b], and then its image
is also in C|a, b] if, as we suppose, G is continuous. The inhomogeneous Fredholm
integral equation (6.22) can then be written in the compact form

y=AGy+g. (6.29)

The Fredholm alternative is essentially the same statement we would make about
this equation if y and g were finite-dimensional vectors, and G were a matrix. It
is this: either the homogeneous equation g = 0 has no non-zero solution, and then
(6.29) has a unique solution; or, the homogeneous solution has a solution ¢(z) (an
eigenfunction), and then the inhomogeneous equation has no solution at all unless
g is orthogonal to ¢, in which case there are an infinite number of solutions (a one
parameter family). The particular form of the statement above applies to self-adjoint
linear operators G; this was touched on briefly, as was the definition of orthogonality,
in chapter 5; it is discussed further in section 6.2.2 below. The proof of the Fredholm
alternative will emerge as we discuss eigenfunctions further.

6.2 Eigenfunction expansions

6.2.1 Neumann series

Just as Picard’s iterative method for Volterra integral equations leads to a convergent
series form of solution, so also does an iterative method for the inhomogeneous Fred-
holm integral equation. It is most easily written using the operator notation, thus we
solve (6.29) by defining the sequence of functions
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This leads to the sequence y,, = Z A"G"g, and suggests that we may write the solution

0
as the formal series

y=> A"G"g. (6.31)
0

This is known as a Neumann series, or Neumann expansion. Note that the solution
can be written in the formal way

y=(-XG)g, (6.32)

where I is the identity operator, and that the Neumann series results from the formal
expansion of (I — \G) ! as a Taylor series. In fact, the issue of convergence of this
series (and hence of validity of this formal solution) requires consideration of the norm
of the operator G. So now we revisit the definitions given in chapter 5 of norms, and
we extend their definition from norms of functions to norms of operators.

6.2.2 Inner products and norms

We recall the definition of an inner product from chapter 5. If r(z) > 0, then we can
define an inner product on a suitable space of functions as

(u,v) = /ab ruv dz. (6.33)

In reality, the space is often taken to be L?, the space of Lebesgue square-integrable
functions, but in practice, we will limit ourselves to considering the space of contin-
uous functions. In general, an inner product (u,v) is a quantity which is symmet-
ric ((u,v) = (v,u)), bilinear (i.e., linear in both u and v arguments), and satisfies
(u,u) > 0, with equality only if © = 0.1

We have already mentioned the idea that an operator be self-adjoint. The adjoint
L* of an operator L is defined (uniquely) by the property that

(Lu,v) = (u, L*v), (6.34)

and the operator is self-adjoint if L = L*. It is easy to see that the Sturm-Liouville op-
erators of chapter 5 and the integral operators of the present chapter are self-adjoint.
It is this property which ensures the eigenvalues are real, and the eigenfunctions are
orthogonal.

A space which has an inner product is called an inner product space, and an inner
product space is also endowed with a norm:

lJull = (u,u)"2. (6.35)

In general, a norm ||u|| is a distance-like measure of an element u of a space which is
positive (unless u = 0), linear under scalar multiplication, and satisfies the triangle
inequality

llu+ || <|u|| + |]v|| V u,v. (6.36)

1As we do throughout this discussion, we ignore the possibility that u and v are complex, and
restrict ourselves to the case where they are real.

84



Spaces having norms are called metric spaces, and they allow the notion of conver-
gence. If every convergent sequence of elements converges to an element of the same
space, then the space is called complete. A complete, normed linear space B (i.e., if
u € B and v € B, then au + fv € B for all o, € R) is called a Banach space. A
complete inner product space is called a Hilbert space.

In an inner product space, we have that ||u + sv||?> = ||u||? + 2s(u,v) + $?||v||? is
always positive, and from this follows the Cauchy-Schwarz inequality:

(u, 0) < |[ul] [[o]]- (6.37)

It is as a consequence of this that the inner product defines an associated norm (6.35),
since the triangle inequality can be deduced from the Cauchy-Schwarz inequality.
One of the reasons we bother so much with what space a function is in is that
we want convergent sequences to converge in the same space: we want to deal with
complete spaces. It is not difficult to see that apparently nice looking spaces, such as

the continuous functions on [0, 1], denoted C0, 1], are not complete. Endowed with
1 1/2
the norm ||ul| = { / u? dac} , the sequence of functions u, = e

—nx

converges, in the

sense that ||u,|| — 0 as n — co. But the limit function is clearly u(0) =1, u(z) =0,
x > 0, which is not continuous. So C|a, b] is not complete with this norm. The reason
that the square-integrable function space L? is of interest is that it is complete with
this norm.

Given the property of a norm, we can also define norms of operators. We define
the norm of an operator G to be

g
1] = sup 1751 (639

or equivalently, ||G|| = sup ||Gu||. We leave it as an exercise to show that this
[ful|=1

definition indeed defines a norm. It is then immediate that the Neumann series

(6.31) converges if
1

A < gl (6.39)
and is an analytic function (or functional) of A within this circle of convergence.
The series convergence is compromised by a singularity on the circle of convergence,
and this singularity occurs at an eigenvalue. More generally, analytic continuation of
(I —XG)~! to other complex ) is limited only by singularities at the (real) eigenvalues
A1y, Agy et

It remains to show that the integral operator G defined by (6.28) is indeed bounded,
so that its norm exists. For each z, we have in fact

Gu = (G,u) < |G| [ul], (6.40)

and thus

= ab/abr(ﬁ)r(n)G2(§,n) d¢ dn, (6.41)
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whence G is bounded if the right hand side of (6.41) is bounded (for example, if G is
continuous), and then

ol < { [ [ ermeriemacan) (6.42

This property defines G as a Hilbert-Schmidt operator.

6.2.3 Spectral theory

The discussion of eigenvalues and eigenfunctions sits within the more general func-
tional analytic subject of spectral theory. For a general operator G, the values of A
where the equation (I — AG)u = 0 has a non-trivial solution are the eigenvalues, and
in the present situation, where we have a Hilbert-Schmidt operator, the eigenvalues
constitute the entire spectrum. More generally, the eigenvalues constitute the point
spectrum. If we suppose that G maps functions in a space U to U (e. g., we might have
U = Cla,b]), then values of A for which (I — AG)u = 0 has no non-trivial solution,
but where the range of (I — AG) is not the whole of U, constitute the continuous
and residual spectrum; the continuous spectrum is that part for which (I — A\G) !
unbounded.

6.3 Variational methods

Most of what we have said so far applies to general Fredholm integral equations with
real symmetric kernels, and this will continue to be the case. For the particular
integral operators which are the inverse of the Sturm-Liouville operators, we already
know that the eigenvalues are characterised by a variational principle, specifically

b
A1 = min {/ (qu® + pu') d{} ) (6.43)

Ilull=1

with similar variational principles for the other eigenvalues. It is easiest to prove such
assertions when the problem is formulated as an integral equation.

6.3.1 A variational principle

Now let us address the Fredholm integral eigenvalue problem

u

Gu= [ Ga er(Epuc de =1, (6.44)

where we assume G is real and symmetric, so that G is self-adjoint. The Cauchy-
Schwarz inequality states that (Gu,u) < ||Gul| ||u|| < ||G]| if ||u|| = 1, and it is simple

to show that when this upper bound is obtained, then Gu = oW and thus we have
1

1
sup (Gu, u) = = = |G (6.45)

|lull=1
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All that is missing from this characterisation of the first eigenvalue is a proof that
the supremum is actually attained. This takes us to the periphery of our exposition.
From the definition of a supremum, we have that there is a sequence of functions
{um} such that (Gum,un) — ||G|| = 1/\ as m — oo. For u,, € U = Cla,b], Gu,,
is an equicontinuous, uniformly bounded sequence of functions (an equicontinuous
family is one which is uniformly continuous over both z and m). The Arzela-Ascoli
theorem states that an infinite equicontinuous, uniformly bounded sequence of func-
tions contains a convergent subsequence. Taking this sequence to be {u,, }, this shows
that Gu,, — ¢1(z), where ¢, is continuous, and it is straightforward to show that
gp, = ﬁ; ¢, is the first eigenfunction.

A1
Now consider the modified integral equation

b u
Gau = [ Gale, )r(E)u(€) dé = 5, (6.46)
where
Ga(z,§) = G(z,§) - %ﬁbl(@ (6.47)
As in the process of Gram-Schmidt orthogonalisation, we can write
u =0+ ap, (6.48)
where
V=U— (u7 ¢1)¢17 = (u7 d)l)a (649)

and thus (v,¢;) = 0. By direct calculation, we find that (Gou,u) = (Gv,v), and as
before, we can deduce that

1
sup (Gou,u) = sup (Gv,v)=— (6.50)
full=1 (v:61)=0 Az

is obtained at a second eigenfunction ¢s, which is orthogonal to the first.
We can go on iteratively in this way to construct a sequence of operator equations

b U
Got = [ Ganle, r(E)ul) d = 5, (6.51)
where .
1 j
and we find that the n-th eigenvalue )\, satisfies
= sup (G, ) = |Gl (6.53)
nolull=1

and this bound is attained when u = ¢,,, the n-th eigenfunction. The eigenfunctions
(with ||@;]| = 1) form a denumerable orthonormal set.
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We already know from chapter 5 that A\, — oo as n — oo, at least for the Green’s
function kernel G(z, ). We can also show this directly by calculating

[[ e or@r@ drs = ['[ o) deas Z 650

from which it follows that the infinite sum converges, and we have a form of Bessel’s
inequality:

i:j% </ b/a Gz, €)r(x)r(€) dr d. (6.55)

In particular, there is no finite limit point for A;, and A\; — oo as j — oo.

Since ||Gn|| = 1/An — 0 as n — o0, it follows that for any u on the unit sphere
llu|| = 1, the sequence {||G,u||} — 0 as n — oo. As before, Arzela-Ascoli implies
that there is a subsequence such that {G,u} — 0, and since G, is equicontinuous,
this implies that G,, — 0, and thus that GG,, — 0; hence we have the expansion of the
kernel in the form

5,6) = i%ﬁ”@. (6.56)

6.3.2 Fourier series

Having constructed an orthonormal sequence of eigenfunctions, we would like to be
able to solve some of the general initial value problems which give rise to the Sturm-
Liouville problems of chapter 5. Whether we can do this depends on whether the
orthonormal sequence of eigenfunctions is complete. To see this, let us suppose that
the function f(z) € C?[a, b] (this is not actually necessary, but makes the demonstra-
tion simpler). With the Sturm-Liouville differential operator defined by (6.15), we
have that u = —Lf is continuous, and its inverse is f = Gu. We wish to show that f
can be expanded in a Fourier series,

f = i::(f, 6,)6;. (6.57)

Note that (f,#;) = (Gu, ¢;) = (u,G¢;) by the property of self-adjointness, and this
equals (u ¢;). Hence we can deduce that
m—1 m—1
f=2_(f8i)0; = Glu— > (u,6;)8;] = Gmu, (6.58)
1

1

and thus

m—1
||f—;(f,¢j)¢j||=|lgmu||Sllgm||||u||:||/\u—||—>0 as m—r oo (659)
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Again, equicontinuity of {G,,} implies that f — >7""'(f, ¢;)$; converges to zero, and
hence (since f is continuous) we have

£ =30 695 (6.60)

1

As a corollary (although it is in fact equivalent), we have Parseval’s relation:

Ik =§1°3|<f, b))% (6.61)

A version of (6.61) with inequality (left hand side > right hand side) is Bessel’s
inequality.

6.3.3 The Fredholm alternative revisited
6.3.4 Rayleigh-Ritz method

6.4 Notes and references

There are a good number of books on integral equations. Most of the material in
this chapter can be found in Courant and Hilbert (1937), a classic exposition, or
Stakgold (2000), which has a more up to date flavour. Generalised functions are
treated elegantly in the little book by Lighthill (1958).

Exercises

6.1 Show that the Wronskian W = y,y) — ¢} y2 of two solutions yq, y» of the differ-
ential equation

[p(z)y’] — q(z)y =0, p(z) >0,

satisfies pW = C, a constant. Show that the solutions are dependent (one a
multiple of the other) if C'= 0, and independent if C' # 0.

Use the method of variation of parameters to find the solution in integral form
of

y' +w'y=—f(z), y(0)=y(0)=0.

By constructing the Green’s function, find the solution of

y' +wly = —f(z), y(0)=y(1) =0,

in the form
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6.2

6.3

6.4

The integral operator G is defined on the space of continuous functions on |[a, b],
Cla,b], by

Gu = [ Gl r(E)u(e) de,

where G is real, symmetric and continuous on [a, b] X [a, b], and r is positive and
continuous on [a, b].

Suppose that the eigenfunctions ¢, with corresponding eigenvalues )\, of
(I -—XG)p=0

form a complete, orthonormal sequence, and that a continuous function f has
a Fourier expansion
f= Z Ci ;.-
i

By writing (I — AG) ' = > _ A"G", show that a formal solution of the inhomo-

geneous Fredholm integral nequation
(I =Gy =f

can be found in the form

y=3 5%

z

1
Show that the derivation is only valid for |A| < IR but that the series in (%)

converges for all \ except the eigenvalues (where there are simple poles).

In deriving the Neumann series
y=) A"G"g
0

for the solution of

we implicitly assumed that the operator G is associative, that is, GoG" = G"0 G
for all positive integral n. Demonstrate this explicitly, first for n = 2, and then
by induction for all n, by deriving an expression for the kernel of the integral
operator

Gru= [ G, pu(e) e

An integral operator is defined by

Gu= [ G Or(e)u(e) &
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where G is real, symmetric and continuous, r is positive and continuous, and u
is continuous.

Show that

b 1/2
lul] = {/a mﬁdg}

defines a norm for u, and that

o 1901
I

defines a norm for G. Hence show that

ol < { [ rermeicnacan)

If G is the Green’s function calculated for Bessel’s equation of order zero on the
interval [0, 1], is ||G|| bounded? (See also question 5.2.)

1G]] =

By consideration of the kernel
n—1 1. T ¢ 5
Gula€) = Gla,€) - 3 D)
or otherwise, derive the Bessel inequality

A2_// G2 (, &)r(@)r(€) du d,

and deduce that A\, — oo as n — oco.
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Chapter 7

Waves and shocks

Any introductory course on partial differential equations will provide the classifica-
tion of second order partial differential equations into the three categories: elliptic,
parabolic, hyperbolic; and one also finds the three simple representatives of these:
Laplace’s equation V?u = 0, governing steady state temperature distribution (for
example); the heat equation u; = V2u, which describes diffusion of heat (or solute);
and the wave equation uy = V2u, which describes the oscillations of a string or of a
drum. These equations are of fundamental importance, as they describe diffusion or
wave propagation in many other physical processes, but they are also linear equations;
however the way in which they behave carries across to nonlinear equations, but of
course nonlinear equations have other behaviours as well.

In the linear wave equation (in one dimension, describing waves on strings) u;; =
c*u,,, the general solution is u = f(z+ct)+g(z—ct), and represents the superposition
of two travelling waves of speed c. In more than one space dimension, the equivalent
model is uy; = ¢*V?u, and the solutions are functions of (k.x + wt), where w is
frequency and k is wave vector; the wave speed is then ¢ = w/|k|.

Even simpler to discuss is the first order wave equation

U + cuy = 0, (7.1)
which is trivially solved by characteristics to give
u=f(z —ct), (7.2)

representing a wave of speed c. The idea of finding characteristics generalises to
systems of the form
Au; + Bu, =0, (7.3)

where u € R" and A and B are constant n x n matrices. We can solve this system
as follows. The eigenvalue problem

Aw = Bw (7.4)

will in general have n solution pairs (w, A), where each value of )\ is one of the roots
of the n-th order polynomial
det(AA — B) = 0. (7.5)
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Suppose the n values of A, );, are distinct (which is the general case); then the
corresponding w; are independent, and the matrix P formed by the eigenvectors as
columns (i.e., P = (wy, ..., w,,)) satisfies BP = APD, where D is the diagonal matrix
diag()y, ..., A\p). P is invertible, and if we write v.= P~!u, then APv; + BPv, = 0,
whence v; + Dv, = 0, and the general solution is

u=P lz fi(z — )\it)] : (7.6)

representing the superposition of n travelling waves with speeds ;. This procedure
works providing A is invertible, and also if all the \; are real, in which case we say
the system is hyperbolic.

More precisely, we can use the above prescription to solve the nonlinear equation

Au; + Bu, = ¢(z,t,u), (7.7)

where we allow A and B to depend on z and ¢ also. The diagonalisation procedure
works exactly as before, leading to

0 0
Aa(Pv) + Ba—x(PV) = c[z,t, Pv]; (7.8)

now, however, A, w and therefore also P will depend on z and ¢. Thus we find
vi+Dv,=P 'A'¢— [P"'P,+ DP'R,]v, (7.9)

and the components of v can be solved as a set of coupled ordinary differential
equations along the characteristics dz/dt = \;.

If A and B depend also on u, the procedure is less clear for systems. However,
the method of characteristics always works in one dimension, so we now return our
attention to this case. Consider as an example the nonlinear evolution equation

up + uu, =0, (7.10)

to be solved on the whole real axis. The method of characteristics leads to the
implicitly defined general solution

u= f(x — ut), (7.11)

which is analogous to (7.2), and represents a wave whose speed depends on its am-
plitude. Thus higher orders of u propagate more rapidly, and this leads to the wave
steepening depicted in figure 7.1.

In fact, it can be seen that eventually u becomes multi-valued, and this signifies a
break down of the solution. The usual way in which this multi-valuedness is avoided
is to allow the formation of a shock, which is a point of discontinuity of u. the
characteristic solution applies in front of and behind the shock, and the characteristics
intersect at the shock, whose propagation forwards is described by an appropriate
Jump condition: see figure 7.2.
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Figure 7.1: Nonlinearity causes wave steepening.

>
X

Figure 7.2: Intersection of characteristics leads to shock formation.
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This seemingly arbitrary escape route is motivated by the fact that evolution
equations such as (7.10) are generally derived from a conservation law of the form

d B
E/A pdx = —[q]1, (7.12)

where the square-bracketed term represents the jump in g between A and B; (7.10)
might be derived from this equation with p = u and ¢ = %uQ, for example. The
deduction of the point form

dp Oq
R 1
5 + . 0 (7.13)

from (7.12) requires the additional assumption that p and ¢ are continuously differen-
tiable; however, it is possible to satisfy (7.12) at a point of discontinuity of p. Suppose
p is discontinuous at z = zg(t), and denote the jump in any quantity r across the
shock as [r]t = r(zs+,t) — r(zs—,t). Then let A = zg(t)— and B = z5(t + 6t)+.

B
From first principles we have the change of / pdz in the time interval 6t as
A

B
6 [ pda m [p]7 das ~ [q]7 ot (7.14)
and from this it follows that ot
. q]_
For the particular case of (7.10), we then find
L21+
T = [Tu]l‘ = 2(uy +u_). (7.16)

An example

We illustrate how to solve a problem of this type by considering the initial value

1
u=up(z) = T2 at t=0. (7.17)
The implicitly defined solution is then
1
- 7.18
YTt @ —w)? (7.18)
or, in characteristic form,
1

This defines a single-valued function so long as u, is finite. Differentiating (7.19)
leads to .
up(§)

Uy = TSt @)’ (7.20)
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X

Figure 7.3: Characteristic diagram indicating shock formation.

1
and this shows that u, — —0c0 as t — t. = min [————]. Since —uj = 2£/(1 + £?)?,
gup<0 up(§)

we find the relevant value of ¢ is 1//3, and thus ¢, = 8/31/3 and the corresponding
value of z is z. = /3. Thus (7.18) applies while ¢ < t. = 8/31/3, and thereafter the
solution also applies in x < zg(t) and z > zg(t), where

Tg = %[u(x5+) + u(xg—)], (7.21)

with
zs = V3 at t= 5 (7.22)

As indicated in figure 7.3, the characteristics intersect at the shock, and it is geomet-
rically clear from figure 7.1, for example, that v, and u_ are the largest and smallest
roots of the cubic (7.18). An explicit solution for zg is not readily available, but it is
of interest to establish the long term behaviour, and for this we need approximations
to the roots of (7.17) when ¢ > 1.

We write the cubic in the form

N 1/2
u:%i%(lqﬁ . (7.23)
u

We know that © < 1, and we expect the largest root, at least, to tend to infinity as
t — oo. In that case u ~ z/t if u = O(1), and the next corrective term gives

N 1/2
um%i%C x). (7.24)
Xz
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4/27 \

Figure 7.4: Determination of W (X).

This evidently gives the upper two roots for x < t (since they coalesce at uw = 1 when
x =t). For large z, the other root must have u < 1, and in fact

u=

— (7.25)
in order that (7.23) not imply (7.24). Alternatively, (7.25) follows from consideration
of (7.18) in the form

t?u® — 2ztu® + (2> + D)u — 1 = 0, (7.26)

providing z > t!/3.

(7.25) gives the right hand nose of the (rightmost) curve in figure 7.1. The left
nose can be determined from the observation that the approximation that u ~ x/t
breaks down (from (7.24)) when z ~ /3, which is also where (7.25) becomes invalid.
This suggests writing

x x
and then W (X) is given approximately, for large ¢, by
1
W(W —1)? = <3 (7.28)

and for X = O(1) there are three roots providing X > 3/2%3; at X = 3/2%3, the two
lower roots coalesce at W = %: this is the left nose of the curve.

As X becomes large, the upper two roots approach W = 1, i.e. u & z/t, while
the lower approaches zero, specifically W ~ 1/X3, ie. u ~ 1/z% see figure 7.4.
Thus these roots match to the approximations when x ~ t. As X becomes small, the
remaining root is given by W ~ 1/X, i.e. u ~ 1/t*3, and (7.26) shows that this is
the correct approximation as long as |z| < t'/3. The situation is shown in figure 7.5).
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U=~ 1(,[2/3

Figure 7.5: Large time solution of the characteristic solution.

In order to determine the shock location xg, we make the ansatz that 3 < g <
t, i.e., that the shock is far from both noses. In that case

1 s
N — A 7.29
Ut :L‘%«, u t ) ( )
and at leading order we have
. s
~ 5 7.30
Ts 2 3 ( )
whence
rs ~ at'/?, (7.31)

confirming our assumption that t1/% < zg < t.

To determine the coefficient a, we may use the equal area rule, which follows from
conservation of mass, and implies that the two shaded areas in figure 7.5 are equal.
We use (7.27) for the left hand area, and (7.24) for the right hand area. then

/:tl/z w (X) — w_(X))dz ~ /t : (t — x>l/2 dz, (7.32)

11/3/22/3 at!/2 1 z

where W, and W_ are the middle and lowest roots of (7.28), as shown in figure 7.4.
We write z = t'/2¢ in the left integral and z = t7 in the right, and hence we deduce

that 12
1 /] —
o~ / 2 <—”> dn = . (7.33)
0 n
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7.1 Traffic flow

Although the presence of a shock for (7.10) is entirely consistent with the derivation
of the equation from an integral conservation law, nature appears generally to avoid
discontinuities and singularities, and it is usually the case that in writing (7.10), we
have neglected some term which acts to smooth the shock, so that the change of u is
rapid but not abrupt.

A simple example of this arises in the theory of traffic flow on a road. On a
one-lane carriageway, the density of cars is p(z,t) (number per unit length, idealised
as a continuum, which should be a reasonable assumption for road lengths of many
cars); z is distance along the carriageway, and t is time. If v(z,t) is the local traffic
vehicular speed, then a conservation law for cars is
% + %(pv) =0, (7.34)
assuming no cars leave or join the carriageway. The car speed must be prescribed, and
a simple and sensible prescription is to take v = v(p): a driver drives at a speed which
depends on density. More specifically, we might suppose that there is a maximum
speed of vg when there is no traffic (p = 0), but the speed decreases as p increases,
reaching zero when the distance between cars is zero, corresponding to a maximum
density p,, say. A simple recipe which satisfies these constraints is

v:vo(p). (7.35)

Prm
By scaling the variables suitably, we may take vy = 1, p,, = 1, and then we have

pt+ c(p)pz = 0, (7.36)

where
c(p)=1-—2p. (7.37)

This is equivalent to (7.10), with u = 1 — 2p, and therefore we can in general expect
shocks to form. Since 0 < p < 1, a difference here is that we can have ¢ < 0 for p > %

Suppose first that p < % A local reduction in p is like a bump for u = 1 — 2p,
and will form a forward propagating shock where p, > p_; cars driving through the
low density precursor will suddenly hit a traffic jam at high density. Equivalently, a
local rise in density leads to a forward-propagating shock with p, > p_.

On the other hand, suppose that p > 3. With w = 2p — 1, then w; — ww, = 0,
and a similar discussion arises, with the direction of x reversed. Thus a local rise in
p causes a shock to form in which, again, p. > p_, and the shock now propagates
backwards. In all cases, the individual driver experiences the shock as a sudden
reduction of speed (the car speed is 1 — p and is larger than the wave speed 1 — 2p:
thus cars approach and travel through the shock).

The occurrence of shocks is a common experience to anyone who has driven on a
motorway, and can be caused by lane closures, motorway junctions, or speed restric-
tions. Figure 7.6 shows a beautiful series of shock waves propagating backwards in
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morning rush hour traffic on the M25. Beautiful, unless you happen to be in one of
the vehicles. The diagram actually suggests that the waves arise through an instabil-
ity, much like roll waves on rivers, but these cannot be described within the confines
of the simple kinematic wave model (7.36).

In general (but not quite always), collisions do not occur, and one may ascribe
this to a smoothing mechanism; the question arises, what could this be?

Drivers arguably adjust their speed not only according to the inter-car distance
(the direct density effect), but also depending on how much traffic they see ahead. A
common exhibition of this is the tailgater: driving at the speed limit on a motorway
in the outside lane will attract tailgaters if there is little traffic ahead, but not (as
much) if the road is full. That is, at a constant v, p may increase above its ideal value
if p in front is less, i.e. if dp/0z < 0. A simple modification for v which describes
this is (in scaled units)

v=1—p— Kpgs, (7.38)
where x is constant. From this we can deduce the advection-diffusion equation
dp 0p 0 dp
(=20 =k | p= :
ot T )5 = P (”ax / (7.39)

and the non-local dependence of v on p, is represented as a (nonlinear) diffusion term.

What is the effect of this on the structure of the solutions? If  is small, we should
suppose that it is not much, so that shocks would start to form. However, the neglect
of the diffusion term becomes invalid when the derivatives of p become large. In fact,
the diffusion term is trying to do the opposite of the advective term. The latter is
trying to fold the initial profile together like an accordion, while the former is trying
to spread everything apart. We might guess that a balanced position is possible, in
which the nonlinear advective term keeps the profile steep, but the diffusion prevents
it actually folding over (and hence causing a discontinuity), and this will turn out to
be the case.

If we suppose instead of (7.38) that

v=1—p-— E,090, (7.40)
p

which might represent the fact that the strength of tailgating becomes more severe,
the emptier the road ahead, then the diffusion term becomes linear, and we have
Burgers’ equation for u =1 — 2p:

Uy + Uy = Klyy. (7.41)

7.2 Burgers’ equation

Shock structure

We suppose k£ < 1, and that u; + uu, ~ 0, and a shock forms at z = zg(t). Our aim
is to show that (7.41) supports a shock structure, i.e. a region of radical change near
xg for u_ to u,.
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Figure 7.6: Rush hour traffic waves propagating backward on the M25. Horizontal
axis is minutes from midnight, vertical axis is “outstation number”. Separation of
outstations is 500 m, so the diagram shows 17.5 km of motorway between about 6.40
a.m. and a little after 11 a. m.: this is a typical weekday picture. The picture is built
from 1 minute averages of the traffic speed (in lane 2) on the clockwise carriageway
of the M25 in the neighbourhood of the M3 and M4 interchanges. (The seed point of
the stop and go waves near the top of the picture is the M4 interchange.) Colour is
speed in km h™!, according to colour bar next to picture. Black lines are “simulated
vehicle trajectories”, meaning their gradient at any point is the 1 minute average
vehicle speed. The picture was made by Eddie Wilson in Matlab from data belonging
to the Highways Agency. The data is captured by their “MIDAS system” which is
part of the “Controlled Motorways” project.
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To focus on the shock, we need to rescale x near zg, and we do this by writing
z =1zg(t) + kX. (7.42)

We use the chain rule to rewrite the equations in terms of ¢ and X derivatives. To
be precise, we consider the change of variables t,z — 7, X, where (7.42) defines X
in terms of ¢t and z, and 7 = ¢. Elementary application of the chain rule for partial
derivatives then shows that

0 0 g 0 0 10

9 or kX' s ROX (743)

Burgers’ equation becomes
Kuy — Tgux + ullx = Uxx, (7.44)

where we replace 7 by t since these are in fact the same. We expect the characteristic
solution (with k = 0) to be approximately valid far from z;, and so appropriate
conditions (technically, these are matching conditions) are

u—us as X — Foo, (7.45)

and we take these values as prescribed from the outer solution (i.e., the solution of
up + uu, = 0).

Since k < 1, (7.44) suggests that u relaxes rapidly (on a time scale t ~ kK < 1)
to a quasi-steady state (quasi-steady, because u, and u_ will vary with ¢) in which

—x'qu-i—qu ~UXX, (746)

whence
K — &u+ 3u? = uy, (7.47)

and prescription of the boundary conditions implies

K =du; — 3u? = du_ — u?, (7.48)

whence
_ 3

S—Ta

5 (7.49)

which is precisely the jump condition we obtained in (7.16). The solution for u is
then
u=c— (u_ —c)tanh [%(u, — c)X} , (7.50)

where ¢ = 2g.
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7.3 The Fisher equation

In Burgers’ equation, a wave arises as a balance between nonlinear advection and
diffusion. In Fisher’s equation,

up = u(l —u) + Uy, (7.51)

a wave arises as a mechanism of transferring a variable from an unstable steady state
(u = 0) to a stable one (u = 1). Whereas Burgers’ equation balances two transport
terms, Fisher’s equation balances diffusive transport with an algebraic source term.
It originally arose as a model for the dispersal of an advantageous gene within a
population, and has taken a plenary réle as a pedagogical example in mathematical
biology of how reaction (source terms) and diffusion can combine to produce travelling
waves.
We pose (7.51) with boundary conditions

u—1, x— —o0,

u—0, z— +oo. (7.52)

It is found (and can be proved) that any initial condition leads to a solution which
evolves into a travelling wave of the form

u=f(§), {=z—d, (7.53)
where
ff+ef +f1-f) =0, (7.54)
and
f(oo) =0, f(—o0)=1. (7.55)
In the (f, g) phase plane, where g = — f’, we have
f, = -G,
g = fA-1f)—cy, (7.56)

and a travelling wave corresponds to a trajectory which moves from (1,0) to (0,0).
Linearisation of (7.56) near the fixed point (f*,0) via f = f* 4+ F leads to

(I.‘j)l:(l—ow* i)(g) (7.57)

with solutions e*¢, where A2 + ¢\ + (1 — 2f*) = 0. We anticipate ¢ > 0; then (1,0)
is a saddle point, while (0,0) is a stable node if ¢ > 2 (and a spiral if ¢ < 2). For
¢ > 2, a connecting trajectory exists as shown in figure 7.7: in practice the minimum
wave speed ¢ = 2 is selected. (Connecting trajectories also exist if ¢ < 2, but because
(0,0) is a spiral, these have oscillating tails as u — 0, which are unstable and also (for
example, if u is a population) unphysical.)
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Figure 7.7: Phase portrait of Fisher equation, (7.56), for ¢ = 2. Note how close
the connecting trajectory (thick line) is to the g nullcline. This is why the large ¢
approximation is accurate for this trajectory.

Explicit solutions for (7.54) are not available, but an excellent approximation is

easily available. We put
§ = cE, (7.58)

SO
vf"+ '+ f1=f) =0, (7.59)
with v = 1/c?> = 1/4 for ¢ = 2. Taking v < 1 and writing f = fo+vf; + ..., we have

fo+ fo(l—fo) = 0,

i+ @ =2f)fi = -7, (7.60)
and thus =
¢—E
fo=7 -t (7.61)
Also, noting that 1 — 2fy = —f{'/ fi (differentiate (7.60),),
fr =1 = fo) n[fo(1 = fo)l, (7.62)

and so on. Even the first term gives a good approximation, and even for ¢ = 2.

7.3.1 Stability
7.4 Solitons

The Fisher wave is an example of a solitary travelling wave. Another type of solitary
wave is the soliton, as exemplified by solutions of the Korteweg-de Vries equation

Uy + Uy + Ugyy = 0. (7.63)
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This has travelling wave solutions u = f(§), £ = = — ct, where

"+ ff —cf =0, (7.64)
and solitary waves with f — 0 at +oo satisfy the first integral
f"+ 3P —cf =0, (7.65)
and thus
PP —tefr=0, (7.66)

with solution

f = 3csech® (%) : (7.67)

Thus there is a one parameter family of these solitary waves, and they are called
solitons, because they have the remarkable particle-like ability to ‘pass through’ each
other without damage, except for a change of relative phase. Despite the nonlinear-
ity, they obey a kind of superposition principle. Soliton equations (of which there
are many) have many other remarkable properties, beyond the scope of the present
discussion.

Some understanding of the solitary wave arises through an understanding of the
balance between nonlinearity (uu,) and dispersion (ug.;). The dispersive part of
the equation, u; + Uy, = 0, is so called because waves explik(z — ct)] have wave
speed ¢ = —k? which depends on wavenumber k; waves of different wavelengths
(2 /k) move at different speeds and thus disperse. On the other hand, the nonlinear
advection equation u;+uu, has a focussing effect, which (from a spectral point of view)
concentrates high wave numbers near shocks (rapid change means large derivatives
means high wavenumber). So the nonlinearity tries to move high wavenumber modes
in from the left, while the dispersion tries to move them to the left: again a balance
is struck, and a travelling wave is the result.

7.5 Snow melting

An example of some of the ideas presented so far occurs in the study of melting
snow. In particular, it is found that pollutants which may be uniformly distributed
in snow (e.g. SO, from sulphur emissions via acid rain) can be concentrated in melt
water run-off, with a consequent enhanced detrimental effect on stream pollution.
The question then arises, why this should be so.

The model we use is based on the principles of groundwater flow. Suppose we have
a snow pack of depth h in 0 < z < h, where z is a coordinate pointing downwards
from the snow surface. Snow is a porous aggregate of ice crystals, and meltwater
formed at the surface can percolate through the snow pack to the base, where run-oft
occurs. (We ignore effects of re-freezing of meltwater). The flux of water u downwards
is given by Darcy’s law

2Py pg] , (7.68)



where u is measured as a velocity, and represents volume per unit area per unit time;
p is the (pore) water pressure, p is density, g is gravity, u is viscosity, k is permeability.
The permeability k is related to the saturation S, and we will assume

k= koS®, (7.69)

where the saturation S is the volume fraction of the pore space which is occupied by
water. For S = 1, the snow is fully saturated (no air), for S = 0 it is fully dry (no
water).

Conservation of the liquid water implies

oS n ou
ot 0z
where ¢ is the porosity (volume of pore space per unit volume of snow). Finally, the

water pressure is related to the air pressure (p,, taken as constant) by the capillary
pressure

0, (7.70)

DPec = Pa — P, (771)

and this is a function of S: we take

m@ﬁwd%—@, (7.72)

based on typical experimental results.
Suitable boundary conditions in a melting event might be to prescribe the melt
flux at the surface:
u=ug at z=0. (7.73)

If the base is impermeable, then
u=0 at z=h. (7.74)

This is certainly not realistic if S reaches 1 at the base, since then ponding must
occur and presumably melt drainage via a channelised flow, but we examine the
initial stages of the flow using (7.74). Finally, we suppose S = 0 at t = 0. Again, this
is not realistic in the model (it implies p, = oo) but it is a feasible approximation to
make.

Simplification of this model now leads to the Darcy-Richards equation in the form

05 | 3kopg £205 _ Fopo O 205
T §Po- = Mazsu+5) : (7.75)

0z

which, as we see, is a convective-diffusion equation of Burgers type. The quantity
K = kopg/p is known as the saturated hydraulic conductivity; it is a velocity, and
represents the highest rate at which water can flow through the snow steadily under
gravity.

To scale the equation, we note that S is dimensionless and of O(1) by definition.
We choose scales for z and t: oh

~h, t~ 2 .
z~h, ia (7.76)
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the model then becomes

05 405 _ 0 ,.0S
where Do
K= 7.78
oah (7.78)

if we choose py = 1 kPa, p = 103 kgm™3, g = 10 m s72, h = 1 m, then x = 0.1.
it follows that (7.77) has a propensity to form shocks, these being diffused by the
term in k over a distance O(k) (by analogy with the shock structure for the Burgers
equation).

We want to solve (7.77) with the initial condition

S=0 at t=0, (7.79)
and the boundary conditions
oS u
_ 2 -0 =
S® —kS(1+ 8 )82 o onz= 0, (7.80)
and Py
S? — kS(1+ 8% g, —0at 2=1 (7.81)

Roughly, for k < 1, these are

S:S() at Z:O,
S=0 at z=1, (7.82)

where Sy = (ug/K)?, which we initially take to be O(1) (and < 1, so that surface
ponding does not occur).
Neglecting «, the solution is the step function

S =50, z<z,

S=0, z>zy, (7.83)
and the shock front at z; advances at a rate Zf, given from the jump condition
N L

In dimensional terms, the shock front moves at speed ug/®Sy, which is in fact obvious
(given that it has constant S behind it).
The shock structure is similar to that of Burgers’ equation. We put

2 =2;+KZ, (7.85)
and S rapidly approaches the quasi-steady solution S(Z) of

-VS' 43528 = [S(1+ SH)ST, (7.86)
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Figure 7.8: S(Z) given by (7.90); the shock front terminates at the origin.

where V' = Z7; hence

S(1+8%)8" = —S5(S¢ — 8%, (7.87)
in order that S — Sy as Z — —oo, and where we have chosen
V=253 (7.88)

(as Sy = 0), thus reproducing (7.84). The solution is a quadrature,

S (14 5%)dS
R

with an arbitrary added constant (amounting to an origin shift for Z). Hence

1+57%) n [SO+S
25 So— S

The shock structure is shown in figure 7.8, and one particular feature is notewor-
thy; the profile terminates where S = 0 at Z = 0. In fact, (7.87) implies that S =0
or (7.90) applies. Thus when S given by (7.90) reaches zero, the solution switches to
S = 0. The fact that 05/0Z is discontinuous is not a problem because the diffusivity
S(1 + S?) goes to zero when S = 0. In fact, this degeneracy of the equation is a
signpost for fronts with discontinuous derivatives, and we shall encounter this situa-
tion again when we study non-linear diffusion. Essentially, the profile can maintain
discontinuous gradients at S = 0 because the diffusivity is zero there, and there is no
mechanism to smooth the jump away.

Suppose now that ko = 107 m? (a plausible value) and u/p = 107® m? s7!, then
the saturated hydraulic conductivity K = kgpg/p = 1072 m s™1. On the other hand,
if a metre thick snow pack melts in ten days, this implies ug ~ 107 m s=!. Thus
S2 = uy/K ~ 107*, and the approximation S ~ Sy looks less realistic. With

S® — kS(1+ S"')Z—f =S5, (7.91)

(7.89)

o

] _7z (7.90)
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and Sy ~ 1072 and k ~ 107!, it seems that one should assume S < 1. We define

3\ 1/2
S = (i) S, (7.92)
K
note that (S3/k)/2 ~ 0.03, so that (7.91) becomes
3
Bs® —s ll + iSQ] Os _ 1 on z=0, (7.93)
K 0z
and we have S3/k ~ 1073, B8 = (So/k)*/? ~ 0.3.
We neglect the term in S3/k, so that
Bs® — s% ~1 on z=0, (7.94)
and substituting (7.92) into (7.77) leads to
0s ,0s 0 | Os

A simpler analytic solution is no longer possible, but the development of the solution
will be similar. The flux condition (7.94) at z = 0 allows the surface saturation to
build up gradually, and a shock will only form if 5 > 1 (when the preceding solution
becomes valid).

7.6 Notes and references

A fundamental reference on the subject of waves in all kinds of media is the book by
Whitham (1974). An older book which details waves in fluid is the book by Stoker
(1957).

Exercises

7.1 A simple model for the flow of a mixture of two fluids along a tube (e.g., air
and water) is
a;+ (aw), =0

—a+[(1—-a)u],=0
pol(av) + (av?).] = —ap.,
pl{(1 = a)u} + {Di(1 = a)u’}.] = (1 = @)ps,
where p is pressure, © and v are the two fluid velocities, a is the volume fraction

of the fluid with speed v, p, is its density, and p; is the density of the other
fluid. Show that there are two characteristic speeds dz/dt = A, satisfying

(A—u)? = (D; — 1)[u? + 2u(X — u)] — s*(A — v)?,
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7.2

7.3

7.4

where L
. lpgu—a)] "
j41e
Deduce that the characteristic speeds are real if, when D; — 1 < 1, s < 1,

D,ZH{S(UU_”)}Q.

In particular, show that the roots are complex if D; = 1 and u # v. What does
this suggest concerning the well-posedness of the model?

The function u(z,t) satisfies
uy + uy = a(l — u?)

for —oo < z < oo, where alpha > 0, and with u = wug(z) at t = 0, and
0 < ug < 1 everywhere. Show that the characteristic solution can be written
parametrically in the form

_ up(s) +tanhat
1+ ug(s) tanh at’

expla(z — s)] = cosh at + ug(s) sinh at.
Sketch the form of the characteristics for an initial function such as wy(s) =
a/(1+ s?). Show that, in terms of s and ¢, u, is given by

[asech 2at]uf(s)
[1+ uo(s) tanh at][a + {ug(s) + aug(s)} tanh at]’

Uy =

and deduce that a shock will form if uj + a(1 4 uy) becomes negative for some
s. Show that if ug = a/(1 + s?) and a is small, this occurs if

3av/3

a< .
~ 8

Discuss the formation of shocks and the resulting shock structure for the equa-
tion

uy + u®ug = e[uPugl,,
where a, 8 > 0, and ¢ < 1. (Assume u > 0, and u — 0 at £o00.)

Show that the equation
U + YUy = EUUL,

admits a shock structure joining u_ to a lower value u, but not one in which
+
the wave speed ¢ = [%uﬂ _ /[u]*. Why should this be so?

Use phase plane methods to study the existence of travelling wave solutions to
the equation
up = uP (1 —u?) + [uugly,

when (i) p=1,¢=2,r=0;(ii))p=1,g=1,r=1.
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7.5

7.6

Two examples of integrable partial differential equations which admit soliton
solutions are the nonlinear Schrodinger (NLS) equation

: 2

iUy = |ul U + Ugg,
and the sine-Gordon equation

Uy — Ugy = SINU.

Show that these equations admit solitary wave solutions (which are in fact
solitons).

In a model of snow melting, it is assumed that the permeability is k = £yS¢,
and the capillary suction is p.(S) = po(S™® — S), where o, 8 > 0, and S is
the saturation. How does the choice of different values of a and 3 affect the
formation and propagation of shock waves, and their internal structure?
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Chapter 8

Similarity solutions

Another class of particular solutions of partial differential equations is that of sim-
ilarity solutions. Like travelling wave solutions, similarity solutions are important
indicators of solution behaviour. They are appropriate when the statement of the
differential equation and its associated boundary and initial conditions make no ref-
erence to any intrinsic scale. One way to recognise when this is the case is to see
whether the equation and its associated initial /boundary conditions are invariant un-
der a rescaling of the variables. If this is the case, a similarity solution is appropriate,
and its form can be inferred from the combinations of variables which are invariant
under the transformation.

8.1 The heat equation

The classical situation where a similarity solution is appropriate is the heat equation
in one space dimension,
U = Ugg, (8.1)

which we choose to solve on (—o0,00) subject to the boundary conditions
u—0 as z— *oo, (8.2)

and an initial condition to be described below.

The heat or diffusion equation represents the diffusion of a quantity whose density
is u. For example, it may represent heat transfer, where u is temperature, or salt
diffusion, where u is salt concentration. A standard kind of problem to consider is
then the release of a concentrated amount at z = 0 at t = 0. We can idealise this by
supposing that at ¢ = 0 (with u suitably normalised),

[e o]

u=0, z#0, / u(z)dz = 1. (8.3)

—00

This apparently contradictory prescription idealises the concept of a very concentrated
local injection of u. For example, (8.1) with (8.3) could represent the diffusion of sugar
in hot (one-dimensional) tea from an initially emplaced sugar grain. (8.3) defines the
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delta function §(z), an example of a generalised function. One can think of generalised
functions as being (defined by) the equivalence classes of well-behaved functions u,
with appropriate limiting behaviour. For example, the delta function is defined by
the class of well-behaved functions u,, for which

/ ~ n(@) f(z) dz — £(0) (8.4)

—00

as n — oo for all well-behaved f(x). As a shorthand, then,

| b@f@)de = £(0) (8.5)
for any f, but the ulterior definition is really in (8.4). In practice, however, we think
of a delta function as a ‘function’ of x, zero everywhere except for a (very) sharp spike
at z = 0.

A similarity solution is appropriate for this problem because it has no intrinsic
space or time scales. The time scale is semi-infinite and the space scale is infinite.
The equation fixes a diffusive time scale if there is a length scale, but there is none. It
is in this context that one can expect the solution to look the same at different times
on different scales, and it is this self-similarity that lends the solution type its name.
In general, as t varies, then the length scale might vary as £(¢) and the amplitude of
the solution u might vary as U(t). That is, if we look at u/U as a function of z /¢, it
will look the same for all £. This in turn suggests that the solution takes the form

x
u=U(t)f l—] , 8.6
01 | ¢ (56)
and this is one of the forms of a similarity solution.

It is most often the case that U and £ are powers of £, and the exponents are then
to be chosen so that the problem has such a solution. This is best seen by example.
If we denote n = x/£(t), and substitute the form (8.6) into (8.1), (8.2) and (8.3), then
we find

Ulf_UTg,nfl — g% 1
f(£o0) = 0,
£0) = 0,
Uf/o:ofdn -1 (8.7)

Since f is supposed to be a function of 7 only, all ¢ dependence must vanish from
this set of equations. The integral constraint requires

Ut =1 (8.8)

(the constant can be arbitrarily chosen), whence the differential equation for f be-
comes

"+ & Mmf) =0, (8.9)
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and we choose &£ = 2; together with £(0) = 0 (which follows from the requirement
that for x # 0, u = 0 at ¢ = 0), this implies

E=2vi, U= 2% (8.10)

and the solution for f satisfying the integral constraint is

f= \}Ee"’z. (8.11)

Finally, we have the fundamental solution of the heat equation,

! z (8.12)
U= —F——€X - ]. .
2/ 1t P 4t

A feature of similarity solutions is the reduction in order, and an associated re-
duction in the number of boundary conditions and in the number of independent
variables. Thus, apart from the requirement that the equation admit a similarity
solution, we need at least two of the initial /boundary conditions to collapse into one.
In diffusional problems, this is most commonly the initial condition and the condition
at infinity. This is the case above, where we required u — 0 both as x — +00 and as
t — 0. The partial differential equation is third order in the sense that there is one
time derivative and two space derivatives (thus requiring three conditions), but the
similarity equation for f is a second order ordinary differential equation.

There are two other comments to make about the example above. One is that
the first integral of the similarity equation is a consequence of the conserved quan-

tity / udzx, whose constancy follows from the equation and boundary conditions.
When there is no such conservation law, then generally the equation cannot be solved
analytically.

The second comment concerns the usefulness of similarity solutions. They require
particular combinations of initial and boundary conditions which, one might suppose,
are not generally applicable. An important observation about more general problems
is that they will often develop self-similar characteristics in localised regions of space
or at large times.

We can illustrate this simply by solving (8.1) and (8.2) with the general initial
condition

u=uy(z) at t=0. (8.13)

Because the problem is linear, we can use the fundamental solution (8.12) to generate
a solution.! The initial condition can equally be written as

u= /_ wo(€) 8(z — €) dt, (8.14)
and this tells us that the solution satisfying (8.13) is

u= %\/ﬁ /o:o uo(€) exp (—%) dé. (8.15)

'We are simply using the Green’s function for the heat equation here.
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Now the idea is this. Suppose ug is localised over some region near the origin;
for example we might have uy = 15 2 then at large time, we expect the initial
x

concentration to have diffused a long way, and to have ‘forgotten’ details of the initial
condition. It is because of this that a similarity solution becomes relevant. This can
be seen by approximating the exact solution (8.15) for ¢ > 1. We rewrite the solution

as
2

2\}71'_15 exp (—%) /o:o uo(§) exp l_(SQ?l—thx)] d&; (8.16)

For large t and localised ug, the exponential in the integrand becomes approximately
one for bounded ¢ (and for large |£| we suppose ug is negligible), and therefore we
regain (8.12) in the form

2

U R 2;% (/_o:o uo(&) d§> exp (—%) , t>1. (8.17)

8.1.1 Error function profile

Let us turn to a problem consisting of the same heat equation, but now to be solved
on 0 <z < o0, with

u=0 at t=0,
u=1 at z =0,
u—0 as z — oo. (8.18)

There is again a similarity solution, but the x = 0 boundary gives a scale for w,
and its size is thus fixed. Invariance of the equation again implies that the similarity
variable can be taken to be z/2+/t, and therefore we seek a similarity solution of the

form
T

u=f), =5~ (8.19)

Substituting this into the heat equation (8.1), together with the initial/boundary
conditions (8.18), we find that f satisfies

f"+omf =0, f(0)=1, f(oo)=0. (8.20)
The solution of this is the complementary error function profile
f(n) = erfen, (8.21)

where the complementary error function is defined by

2 oo 2
erfcn = —/ e ¥ ds; 8.22
V7 (5:22)
it is a monotonically decreasing function as shown in figure 8.1, and is a commonly
occurring function in diffusion problems (the error function is defined by erfn =

1 — erfen).

115



erfcn
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Figure 8.1: The complementary error function.

8.2 The porous medium equation
Gas in a porous medium satisfies the mass conservation law
P + V. q=0, (823)

where p is density and q is the mass flux. In a porous medium, Darcy’s law (which
we have already met in section 7.5) relates ¢ to pressure gradient, specifically

k
q= —%Vp, (8.24)

where k is the permeability, u is the gas viscosity, and p is pressure. The density p
of a gas is related to its pressure by a constitutive law, which is usually taken to be
the perfect gas law

_ pRT

=3
where M is the molecular weight, 7" is temperature, and R is the universal gas con-
stant. In isothermal conditions where the temperature is constant, we thus have
p x p, and in suitable dimensionless units, we have the porous medium equation

(8.25)

pe = V.[pVp]. (8.26)

This is appropriate for slow gas seepage.

If the gas flow is rapid, then the temperature alters as the pressure changes, and
in adiabatic conditions where there is no heat loss, p < p?, where v > 1 is the ratio
of the specific heats; for air, 7 = 1.4. In this case, the appropriate version of (8.26) is

pe=V.[p"Vpl, (8.27)
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where m = v > 1. Thus both cases are described by (8.27), differing only in the
choice of exponent m. In both cases, m > 1.
Let us consider the seepage of gas in a one-dimensional column, and let us write
u for p, so that
up = (U ug)y, (8.28)

and let us consider the spread of an initially concentrated dose at £ = 0, so that

u—0 as x — +oo,
u=0 at t=0, z#0, (8.29)

and =~
/ wdz = 1 (8.30)

for all ¢.
We seek a similarity solution of the form

X

u=U@®)f(n), n= 0k (8.31)
The integral constraint requires U = 1/¢, and then we find
=™ nf) = [ 7, (8.32)

where &' = d€/dt but f' = df /dn. The initial /boundary conditions become

f(£o0) =0, (8.33)
and the normalisation condition (8.30) is

/o:o fdn=1. (8.34)
The solution requires £é™1¢’ to be constant, and it is algebraically convenient to
choose £™F1¢" = 2/m, thus

1

=2z lm] . (8.35)

Because u is conserved with these boundary conditions, a first integral of (8.32) exists,
and is

i+ %nf =0, (8.36)

with the constant of integration being zero (because f — 0 as  — +00). Thus either
f=0,or
f =5 =™, (8.37)
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so that the solution has the form of a cap of finite extent, given by (8.37) (for |n| < no,
and f = 0 for |n| > no. The value of 7y is determined from [°% fdn =1, and is

1
Mo = — - (8.38)

/2 m m+2
l2 / cosTJr2 0 d@]
0

The finite extent of the profile is due to the degeneracy of the equation when m > 0.
(The limit m — 0 regains the Gaussian solution of the heat equation by first putting
n = vmnl, f = F/\/m, and noting that ny ~ (mm) ™% as m — 0 (this last
following by application of Laplace’s method?to (8.38)).) The graph of f(n) is shown
in figure 8.2.

Figure 8.2: f(n) given by (8.37).

8.3 Snow melting revisited

Let us return to the snow melting model of chapter 7. Suppose that in the model
described by (7.94) and (7.95), the parameter § < 1; then the saturation profile
approximately satisfies

o _ 0 [0
or ~ 9z | 9z]
0s 1 on z=0,
Sor T {0 on z=1. (8:39)

At least for small times, the model admits a similarity solution of the form

s=71f(n), n==2/7, (8.40)
where satisfaction of the equations and boundary conditions requires 2o = (8 and
26 =1=a, whence a = 1/3, § = 2/3, and f satisfies

(ff) —5(f —2nf') =0, (8.41)

2Laplace’s method for the asymptotic evaluation of integrals is described in Carrier, Krook and
Pearson (1966), for example.
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and the condition at z = 0 becomes
—ff'=1 at n=0. (8.42)

The condition at z = 1 can be satisfied for small enough 7, as we shall see, because
the equation (8.41) is degenerate, and f reaches zero in a finite distance, 79, say, and
f=0forn>mn. Asn=1/7%3 at z = 1, then this solution will satisfy the no flux

condition at z =1 as long as 7 < 7, 8/ ? when the advancing front will reach z = 1.
To see why f behaves in this way, integrate once to find

FOF+2n) =—1+ /0 "t dn. (8.43)

For small 7, the right hand side is negative, and f is positive (to make physical sense),
so f decreases (and in fact f' < —%n). For sufficiently small f(0) = fy, f will reach
zero at a finite distance n = 7, and the solution must terminate. On the other
hand, for sufficiently large fy, [i/ fdn reaches 1 at n = n; while f is still positive (and
= —%771 there). For n > n, then f remains positive and f' > —%n (f cannot reach
zero for n > ny since [ fdn > 1 for n > n;). Eventually f must have a minimum and
thereafter increase with . This is also unphysical, so we require f to reach zero at
n = 1. This will occur for a range of fy, and we have to select fy in order that

o
fdn=1, (8.44)
0

which in fact represents global conservation of mass. Figure 8.3 shows the schematic
form of solution both for 8 > 1 and 8 < 1. Evidently 8 ~ 1 will have a travelling
front solution between these two end cases.

8.4 Notes and references
An excellent introduction to the subject of partial differential equations from the
viewpoint of the applied mathematician is the book by Carrier and Pearson (1976).
Exercises
8.1 The function u(z,t) satisfies the heat equation
Ut = Ugg
on 0 < x < 00, together with the initial condition
u=0 at t=0,
and the boundary condition

u—0 as z — oo.
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Figure 8.3: Schematic representation of the evolution of s in (7.95) for both large and
small (3.

8.2

8.3

Find similarity solutions for © when the boundary condition at z = 0, ¢ > 0 has
each of the following forms:

(Hu=1

(ii) up = —1;
(iil) wu, = —1;
(iiii) u, = —uP.

Show in case (iiii) that no similarity solution exists if § = 1. What is it about
this case that prevents a similarity solution existing?

Which of the following equations have similarity solutions? In all cases suppose
that the domain of solution is 0 < z < oo, and that u =0att =0and u =1 at
x = 0. If there is a similarity solution, solve the similarity equation if you can.

(i) w, = u2.
Write down the equation satisfied by a similarity solution of the form u = ¢4 f (n),
n = z/t*, for the equation

u = (uMuy), in 0 <z < o0,

where m > 0, with v™u, = —latz=0,u -+ 0asx — oo, u=0at ¢t =0.
Show that [;° fdn = 1, and show that in fact f reaches zero at a finite value
Mo Is the requirement that m > 0 necessary?
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8.4 u satisfies the equation
u = [D(uw)ug], in 0 <z < oo,

with u = 0 at £ — oo and t = 0. For a general function D (not a power of u),
for what kind of boundary condition at z = 0 does a similarity solution exist?
What if, instead, D = D(u,)? Write down suitable equations and boundary
conditions for the similarity function in each case.
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Chapter 9

Nonlinear diffusion

9.1 The viscous droplet

An example of where the nonlinear diffusion equation can arise is in the dynamics of
a drop of viscous fluid on a level surface. If the fluid occupies 0 < z < h(z,y,t) and
is shallow, then lubrication theory gives the approximation

0%u
Vp = p——r
p M6227
p: = —pg, (9.1)

in which u = (u, v, 0) is the horizontal component of velocity, and V is the horizontal
gradient (0/0z,0/0y,0). With p = 0 at z = h, we have the hydrostatic pressure
p = pg(h — z), so that Vp = pgVh, and three vertical integrations of (9.1); (with
zero shear stress Ou/0z = 0 at z = h and no slip u = 0 at z = 0) yield the horizontal
fluid flux

h
PY ;2
= dz = ——=h"Vh. 9.2
a= [ wdz=—2 (92
Conservation of fluid volume for an incompressible fluid is h; + V.q = 0, and thus
PY 3
hy = =—=V.|[h°Vh 9.3
= 0V WV (93)

corresponding to (8.27) (in two space dimensions) with m = 3. A drop of fluid placed
on a table will spread out at a finite rate.

That this does not continue indefinitely is due to surface tension. Rather than
having p = 0 at z = h (where the atmospheric pressure above is taken as zero), the
effect of surface tension is to prescribe

p =27k, (9.4)

where 7 is the surface tension, and & is the mean curvature relative to the fluid droplet
(i.e. k> 0 if the interface is concave, as illustrated in figure 9.1). The curvature is
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T 2K >0
P

Figure 9.1: The surface shown has positive curvature when the radius of curvature is
measured from below the surface; in this case equilibrium requires p > p,.

defined as 2k = V.n, where n is the unit normal pointing away from the fluid (i.e.,
upwards). At least this shorthand definition works if we define

(_hwa _hy7 1)

thus vh
% = V. l{l - th|2}1/2] (9.6)

It is less obvious that it will work more generally, since there are many ways of defining
the interface as ¢(z,y, 2) = 0 and thus n = V¢/|V¢| (that is (9.5) uses ¢ = z — h);
but in fact it does not matter, since we may generally take ¢ = (z — h)P, so that
V¢ = (—hy,—hy,1) on z = h, and V¢/|V¢| is the same expression as in (9.6).

For shallow flows, we replace p =0 on z = h by p = —yV?h there, and thus

p = pg(h—z) —yV°h, (9.7)

and (via (9.2)), (9.3) is modified to

The fourth order term is also ‘diffusive’, insofar as it is a smoothing term: this
is most easily seen by considering the fate of modes e?***¢ for the linear equation
hi = —hazae : 0 = —k*: high wave number (high gradient) modes are rapidly damped.
Surface tension can thus also act to smooth out shocks. The effect of surface tension
relative to the diffusional gravity term is given by the Bond number

Bo="" (9.9)



where [ is the lateral length scale of the drop. This is the (only) dimensionless
parameter which occurs when (9.8) is written dimensionlessly.

For a drop released on a table, (9.8) still predicts unending dispersal, but if the
full nonlinear curvature term (9.6) is kept, then a steady state will exist, and surface
tension keeps the drop of finite extent.

9.2 Advance and retreat: waiting times

The similarity solution (8.37) predicts an infinite slope at the margin (where f = 0)
if m > 1 (and a zero slope if m < 1). If one releases a finite quantity at t = 0, then
one expects the long time solution to be this similarity solution. The question then
arises as to how this similarity solution is approached, in particular if the initial drop
has finite slope at the margin.

This question can be addressed in a more general way by studying the behaviour
near the margin = z4(t) of a solution h(z,t) of the same equation as in (8.28),

hi = (h™hy) . (9.10)
Suppose that h ~ c¢(zg — z)¥ for  near zg. Then satisfaction of (9.10) requires
g~ c™v(m+1) —1)(zg — )™ (9.11)

Note that the similarity solution (8.37) has &g finite when v = 1/m, consistent with
(9.11), and more generally we see that the margin will advance at a rate g ~ c™/m
if h ~ c(zg — )™

Suppose now that m > 1, and we emplace a drop with finite slope, v = 1. Then
the right hand side of (9.11) is zero at = =g, and thus g = 0: the front does not
move. What happens in this case is that the drop flattens out: there is transport
of h towards the margin, which steepens the slope at zg until it becomes infinite, at
which point it will move. This pause while the solution fattens itself prior to margin
movement is called a waiting time.

Conversely, if m < 1, then the front moves (forward) if the slope is zero, v = 1/m.
If the slope is finite, v = 1, then (9.10) would imply infinite speed. An initial drop of
finite margin slope will instantly develop zero front slope as the margin advances.

(9.11) does not allow the possibility of retreat, because it describes a purely dif-
fusive process. The possibility of both advance and retreat is afforded by a model of
a viscous drop with accretion, one example of which is the mathematical model of an
ice sheet. Essentially, an ice sheet, such as that covering Antarctica or Greenland,
can be thought of as a (large) viscous drop which is nourished by an accumulation
rate (of ice formed from snow). A general model for such a nourished drop is

hy = (F™he)s + a, (9.12)

where a represents the accumulation rate. Unlike the pure diffusion process, (9.12)
has a steady state

h = l@] = (zg — 2?)mi1, (9.13)



where x, must be prescribed. (In the case of an ice sheet, we might take zy to be at
the continental margin.) (9.13) is slightly artificial, as it requires a = 0 for > z,
and allows a finite flux —h™h, = axg where h = 0. More generally, we might allow
accumulation and ablation (snowfall and melting), and thus a = a(z), with a < 0 for
large |z|. In that case the steady state is

1

h= [(m+1)/:osdx s (9.14)
where the balance is -
s :/0 adz, (9.15)
and z is defined to be where accumulation balances ablation,
/Omo adz = 0. (9.16)

This steady state is actually stable, and both advance and retreat can occur.
Suppose the margin is at zg, where a = ag = —|ag| (ag < 0, representing ablation).
If we put h = c(xs — x)¥, then (9.12) implies

veks(zg — )"t~ vd™ 1 v(m + 1) — 1](zs — )P~ _ qg], (9.17)
and there are three possible balances of leading order terms.
The first is as before,

)um—l

s~ c"v(m+1) —1)(zs — x : (9.18)

and applies generally if v < 1. Supposing m > 1, then we have advance, 5 ~ c¢™/m
if v = 1/m, but if v > 1/m, this cannot occur, and the margin is stationary if
I/m<v<1l Ifv=1thenv(m+1)—2=m—1>0, so that

Zi’g% —|a5|/c, (919)

and the margin retreats; if ¥ > 1, then instantaneous adjustment to finite slope and
retreat occurs.

The ice sheet exhibits the same sort of waiting time behaviour as the viscous drop
without accretion. For 1/m < v < 1, the margin is stationary, and if zg < zo then
the margin slope will steepen until v = 1/m, and advance occurs. On the other hand,
if zg > z, then the slope will decrease until v = 1, and retreat occurs. In the steady
state, a balance is achieved (from (9.14)) when v = 2/(m + 1).

9.3 Blow-up

Further intriguing possibilities arise when the source term is nonlinear. An example
is afforded by the nonlinear (diffusion) equation

Up = Ugg + ¥, (9.20)
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Figure 9.2: Maximum values of u, u(0), as a function of the parameter A. Blow-up
occurs if A > 0.878.

which arises in the theory of combustion. Indeed, as we saw earlier, combustion occurs
through the fact that multiple steady states can exist for a model such as (7.74), and
the same is true for (9.20), which can have two steady solutions. In fact, if we solve
u” 4+ Ae* = 0 with boundary conditions v = 0 on x = +1, then the solutions are

u = 2In | Asech {\/gAac} : (9.21)
where A = exp[u(0)/2], and A satisfies
A
A = cosh \/;A , (9.22)

which has two solutions if A < 0.878, and none if A > 0.878: the situation is depicted
in figure 9.2. If we replace e* by explu/(1 + eu)], € > 0, we regain the top (hot)
branch also.

One wonders what the absence of a steady state for (9.20) if A > A, implies.
The time-dependent problem certainly has a solution, and an idea of its behaviour
can be deduced from the spatially independent problem, u; = Ae*, with solution
u = In[1/{A(to — t)}]: u reaches infinity in a finite time. This phenomenon is known
as thermal runaway, and more generally the creation of a singularity of the solution
in finite time is called blow-up. Numerical solutions of the equation (9.20) including
the diffusion term show that blow-up still occurs, but at an isolated point; figure 9.3
shows the approach to blow-up as t approaches a critical blow-up time ¢..

In fact, one can prove generally that no steady solutions exist for \ greater than
some critical value, and also that in that case, blow-up will occur in finite time. To
do this, we use some pretty ideas of higher grade mathematics.
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Figure 9.3: Solution of u; = u, + €* on [—1,1], with u =0 at x = —1,1 and ¢ = 0.
The solution is shown for four times close to the blow-up time t. = 3.56384027594971.
The many decimal places should not be treated too seriously, but they do indicate
the logarithmic suddenness of the runaway.

Suppose we want to solve the more general problem

u; = V2u + Ae* in Q, (9.23)

with 4 = 0 in the boundary 02, and v = 0 at ¢ = 0 (these conditions are for
convenience rather than necessity). We will be able to prove results for (9.23) which
are comparable to those for the ordinary differential equation version (cf. (7.81))

W= —pw + Ae¥, (9.24)

because, in some loose sense, the Laplacian operator V2 resembles a loss term.
More specifically, we recall some pertinent facts about the (Helmholtz) eigenvalue
problem

V2 +pup =0 in Q, (9.25)
with ¢ = 0 on 0€). There exists a denumerable sequence of real eigenvalues 0 < p; <
Mo ..., with u, — oo as n — 00, and corresponding eigenfunctions ¢, ¢s, ... which

form an orthonormal set (using the L? norm), thus

(#0,65) = [ digaV = by, (9.26)

where d;; is the Kronecker delta (=1 if ¢ = j, 0 if ¢ # j). These eigenvalues satisfy a
variational principle of the form

Ui = min/Q |V¢[2dV, (9.27)
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where ¢ ranges over functions of unit norm, ||¢|ls = {f #?dV}'/? = 1, which are
orthogonal to ¢; for j < i; (more generally y; = min{[|V¢|?/ [ ¢*} if ¢ is not
normalised on to the unit sphere ||¢||2 = 1). In particular

— min_[ [Vo]aV, 9.28
. ||§>r|151—11/9| i (6-28)

and the corresponding ¢; is of one sign, let us say positive.
We take the inner product of the equation (9.23) with ¢; and divide by [ ¢ dV;
defining

augndv
o(t) = = /Q wdw, (9.29)

where dw = ¢1dV/ [ $1dV is a measure on Q (with [, dw = 1), and using Green’s
theorem, we find

0= )\/Q e dw — v, (9.30)

and the equation for v is close to the ordinary differential equation (9.24).
Now we use Jensen’s inequality. This says that if we have an integrable function
g on 2 and a convex function f(z) (i.e. one that bends upwards, f” > 0), then

/gdw
Q

for any measure w on {2 such that [, dw = 1. We have chosen w to be so normalised,
and e* is convex: thus

f

< /Q flgl dw (9.31)

/Qexp(u) dw > exp [/Qudw] =€, (9.32)

so that
0> Ae¥ — pyv. (9.33)

It is now easy to prove non-existence and blow-up for A greater than some critical
value A.. Firstly, u must be positive, and hence also v. (For suppose u < 0: since
u =0 at t = 0 and on 02, then u attains its minimum in (2 at some ¢ > 0, at which
point u; < 0, ug, > 0, which is impossible, since then u; — uz, = Ae* < 0.) For any
v, €’ > ev, thus © > (Ae — py)v. In a steady state, © = 0, and v > 0 (clearly u = 0 is
not a solution), so this is impossible if

A > /e (9.34)

This implies non-existence of a solution for A > A, where A\, < p;/e.
In a similar vein, if A > p; /e, then

v > e’ — ), (9.35)

and v > w, where
W= (et —w), w(0)=0. (9.36)
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(This is a standard comparison argument: v = w at t = 0, and © > w there, so v —w
is initially positive. It remains so unless at some future time v — w reaches zero again,
when necessarily v — w < 0 — which is impossible, since © > 1w whenever v = w.)
But w — oo in finite time (& > 0 so that w — oo as ¢ increases, and as w — oo,
e i &~ pe~ !, so e”¥ reaches zero in finite time); therefore also v reaches infinity in

finite time. Finally
v= / udw < supu, (9.37)
Q Q

since [ dw = 1: hence u — oo in finite time.

In fact u — oo at isolated points, and usually at one isolated point. As blow-up
is approached, one might suppose that the nature of the solution in the vicinity of
the blow-up point would become independent of the initial (or boundary) conditions,
and thus that some form of similarity solution might be appropriate.

This is indeed the case, although the precise structure is rather complicated.
We examine blow-up in one spatial dimension, z. As a first guess, the logarithmic
nature of blow-up in the spatially independent case, together with the usual square-
root behaviour of the space variable in similarity solutions for the diffusion equation,
suggests that we define

r — Ig

T:—ln(to—t), n:m’

u=—In[A(ty —t)] + g(n,7), (9.38)

where blow-up occurs at x = xg at t = t; hence g satisfies

9r = oy — imgy + €9 — 1. (9.39)

The natural candidate for a similarity solution is then a steady solution g(n) of (9.39),
satisfying
9" —3ng + (e = 1) =0, (9.40)

and matching to a far field solution u(z, ty) would suggest
g~ —2ln|n| as n — +oo, (9.41)

and solutions of (9.40) with this asymptotic structure do exist — but not at each end.
(9.40) admits even solutions, and if we restrict ourselves to these, then we may take

g'(0) =0, g(0) #0. (9.42)

(If g(0) = 0, then g = 0 is the solution.) However, it is found that such solutions
have a different asymptotic behaviour as n — oo, namely

A
g~ ——exp[in?, (9.43)

Inl
and A = A[g(0)] > 0 for ¢g(0) # 0 (and A(0) = 0), and these cannot match to the
outer solution. If one alternately prescribes (9.41) as n — +o00, for example, then the
solution is asymmetric, and has the exponential behaviour (9.43) as n — —oo. thus
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the appealingly simple similarity structure implied by steady solutions of (9.39) is
wrong (and actually, the solution of the initial value problem (9.39) satisfying (9.41)
tends to zero as T — 00).

However, (9.39) itself develops a local similarity structure as 7 — oo, using a
further similarity variable

n T — o

TR = V(o — O] (49

Rewriting (9.39) in terms of z and 7 yields
gr +329: + 1= €% = 1[g.. + 320.]- (9.45)

At leading order in 77! this has a solution
g=—In[1+ iczz], (9.46)

where c is indeterminate, and this forms the basis for a formal expansion. It is
algebraically convenient to use (9.46) to define ¢ as a new variable, and also to write

s=InT; (9.47)
Then (9.45) becomes

e+ 32c]

2
c, = — |2¢+ 4zc, + Z%c,, + 22 T
3 1 + ZCZ2

TZ

+c+ 32¢, — csH . (9.48)

We seek a solution for (9.48) in the form

1 1
c~co(z,s)+ ;cl(z, s)+ ﬁCQ(z, ) (9.49)
and then, since 7d/dT = d/ds, we have
‘ +1(' )+i(' 2c) + (9.50)
Cg Co u C1 C1 7_2 Co Co ceey .

where ¢, = 0c;/0s. Substituting this into (9.48) and equating powers of 7, we find

Cyp = Co(S), (951)
where Cj is arbitrary, and
_2 2 g :
Ci, = ; l200 + z {—m + Co - CO . (952)

The arbitrary function C, arises because the order of the approximate equation is
reduced. In order to specify it, and other arbitrary functions of s which arise at each
order, we require that the solutions c¢; be smooth, and this requires that there be no
term on the right hand side of (9.52) proportional to 1/z as z — 0, in order that
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logarithmic singularities not be introduced. Specifically, we require at each stage of
the approximation that
aci 2

5~ [am‘ + a2 + azz® + .. } : (9.53)

so that z2c; is smooth. Applying this to (9.52) requires that
Co = Co(1 = Cy), (9.54)

so that Cy — 1 as s — o0, and then

2C,
o=~ 250 1 0y(0) + Gl + 1o (959
At O(1/7%), we then have
2 .
Cy, = 3 [201 +4zc1, + 22, + 22 {—(cl —c1)+ (a1 + %chz)

2¢o(cr + Lzey,) 1
—_ 1T }lczz2 + 1 Oclz (1 + C()Z ) X (956)

and applying the regularity condition (9.53), we find, after some algebra,
C1 =2(1 - Co)Cy + 2C3, (9.57)

so that C; — Cyo+ gs as § — o0o. Thus finally we obtain the local similarity solution

u~ —In l)\ {tO_HAL[—(ilz—:O—)i)]H (9.58)

where ¢ & Cy(s), s =In7 = In[— In(¢y — ?)].

9.4 Notes and references
There is a large literature on the subject of nonlinear diffusion, blow up, and related
issues. A thorough examination of some of these problems is contained in the book
by Samarskii et al. (1995).
Exercises

9.1 A small droplet satisfies the surface-tension controlled equation

hy = — - V.[R*VV2h].
3

A small quantity [hAdV = @ is released at time zero at the origin. Find a
suitable similarity solution in one and two spatial dimensions.
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9.2

9.3

9.4

9.5

A gravity-driven drop of fluid spreads out on a flat surface. Its viscosity u is a
function of shear rate, so that in (9.1),

or
Vh=2_
pg 62 Y
g_lzl = Alr|" .
(A constant viscosity fluid has n = 1.) Show that the horizontal fluid flux is
Alpg)" —1
= — =L |Vh|" Th" VA
a=-—-"5 VA Vh,
and deduce that
oh _ Alpg)"

V.[A"2| VA"tV h).

ot n+2
Find similarity solutions in one and two dimensions for the initial emplacement
of a finite volume at the origin. What happens as n — oo or n — 07

Suppose a two-dimensional drop as in question 9.2 is subjected to a spatially
varying accumulation a(x), with za’ < 0 for z # 0. Find appropriate local
behaviour near the right hand margin z = z, > 0, where h = 0, if z, > 0,
25 < 0,2, =0.

Let u satisfy
Up = AUP + Ugg,

with v =1 on x = +1 and ¢ = 0. Prove that if X is large enough, © must blow
up in finite time if p > 1. Supposing this happens at time ¢y, at x = 0, show
that a possible local similarity structure is of the form

1 T
mf(f)a §= W;

u =
and prove that 5 = (1/(p — 1). Show that in this case, f would satisfy

1
J" = S8 A= B =0,
and explain why appropriate boundary conditions would be
frlg® as €= oo,

and show that such solutions might be possible. Are any other limiting be-
haviours possible?

By direct integration, show that the solution of

u" + X =0
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9.6

satisfying v = 0 on x = +1 is

u=2ln ,

Asech {\/éAw}

and find a transcendental equation for A. Hence show that no solution exists
for A > \., and derive and solve (numerically) an algebraic equation for ..

If the equation is to be solved in [0, 1], with ' =0 on z =0 and ' = —1 on
z = 1, find the solution, and plot u(0) as a function of \. Is there a critical
value \.? If so, find it; if not, why not?

(i) Find an exact solution of the Gel'fand equation
VH+X?=0 in 0<r<l,

where 7 is the cylindrical polar radius, and § = 0 on r = 1. [Assume cylindrical
symmetry, and a suitable condition of reqularity at r = 0.] Show that there is
a critical parameter A\, such that no solution exists for A > A, and find its value.

(ii) Write down the ordinary differential equation satisfied by a spherically sym-
metric solution of the Gel’fand equation in part (i). Suppose that # = 0onr =1
and 6, = 0 on r = 0 (why?). By putting

p=X2% q=2+716,, r=e’t,
show that p(t) and ¢(t) satisfy the ordinary differential equations

—pqg,
g = ptq—2.

By consideration of trajectories for p and ¢ in the phase plane, show that mul-
tiple solutions exist for A ~ 2, and infinitely many at A = 2. Sketch the
corresponding response diagram of (0) versus A.

133



References

Arn’old, V.I. 1973 Ordinary differential equations. M.I. T. Press, Cambridge, MA.

Bender, C.M. and S. A. Orszag 1978 Advanced mathematical methods for scientists
and engineers. McGraw-Hill, New York.

Burkill, J. C. 1956 The theory of ordinary differential equations. Oliver and Boyd,
Edinburgh.

Carrier, G.F., M. Krook and C.E. Pearson 1966 Functions of a complex variable.
McGraw-Hill, New York.

Carrier, G. F. and C. E. Pearson 1976 Partial differential equations. Academic Press,
New York.

Coddington, E. A. and N. Levinson 1972 Theory of ordinary differential equations.
Tata McGraw-Hill, New Delhi.

Courant, R. and D. Hilbert 1937 Methods of mathematical physics, vol. I. Inter-
science, New York.

Fowkes, N.D. and J.J. Mahony 1994 An introduction to mathematical modelling.
John Wiley, Chichester.

Fowler, A.C. 1997 Mathematical models in the applied sciences. C.U.P., Cam-
bridge.

Haberman, R. 1998 Mathematical models. Society for Industrial and Applied Math-
ematics, Philadelphia.

Hassell, D.C., D.J. Allwright and A.C. Fowler 1999 A mathematical analysis of
Jones’s site model for spruce budworm infestations. J/ Math. Biol. 38, 377—
421.

Hinch, E. J. 1991 Perturbation methods. C.U.P., Cambridge.

Hoppensteadt, F. 1975 Mathematical theories of populations: demographics, genet-
ics and epidemics. STAM, Philadelphia.

Howison, S.D. 2005 Practical applied mathematics: modelling, analysis, approxi-
mation. C.U.P., Cambridge.

Jeffreys, H. and B.S. Jeffreys 1946 Methods of mathematical physics. C.U.P.,
Cambridge.

Jones, D.D. 1979 The budworm site model. In: Pest management: Proceedings of
an International Conference, eds. G.A. Norton and C.S. Holling, pp. 91-156.
Pergamon Press, Tarrytown, NY.

134



Jordan, D. W. and P. Smith 1999 Nonlinear ordinary differential equations, 3rd ed.
0O.U.P., Oxford.

Keener, J.P. 2000 Principles of applied mathematics: transformation and approxi-
mation, revised ed. Perseus Books, Cambridge, MA.

Kermack, W.O. and A.G. McKendrick 1927 Contributions to the mathematical
theory of epidemics. Proc. R. Soc. A.115, 700-721.

Kevorkian, J. and J.D. Cole 1981 Perturbation methods in applied mathematics.
Springer-Verlag, Berlin.

Lighthill, M. J. 1958 An introduction to Fourier analysis and generalised functions.
C.U.P., Cambridge.

Lin, C.C. and L. A. Segel 1974 Mathematics applied to deterministic problems in
the natural sciences. MacMillan, New York.

Ludwig, D, D.D. Jones and C. S. Holling 1979 Qualitative analysis of insect outbreak
systems: the spruce budworm and forest. J. Anim. Ecol. 47, 315-332.

Mackie, A. G. 1965 Boundary value problems. Oliver and Boyd, Edinburgh.

Murray, J.D. 2002 Mathematical biology. I: an introduction. 3rd ed. Springer-
Verlag, Berlin.

Ockendon, J.R., S. D. Howison, A. A. Lacey and A. B. Movchan 2003 Applied partial
differential equations, revised ed. O.U. P., Oxford.

Royama, T. 1992 Analytical population dynamics. Chapman and Hall, London.

Samarskii, A.A., V.A. Galaktionov, S.P. Kurdyumov and A.P. Mikhailov 1995
Blow-up in quasilinear parabolic equations. de Gruyter Expositions in Mathe-
matics, vol. 19. de Gruyter, Berlin.

Simmons, G.F. 1972 Differential equations with applications and historical notes.
McGraw-Hill, New York.

Stakgold, I. 2000 Boundary value problems of mathematical physics, vol. I. STAM,
Philadelphia.

Stoker, J.J. 1957 Water waves. Interscience, New York.

Tayler, A.B. 1986 Mathematical models in applied mechanics. Clarendon Press,
Oxford.

Thompson, J. M. T. and H.B. Stewart 1986 Nonlinear dynamics and chaos. John
Wiley, Chichester.

Whitham, G. B. 1974 Linear and nonlinear waves. John Wiley, New York.

135



Zammett, R. 2004 The formation and evolution of spiral troughs in the Martian
North Polar Ice Cap. M. Sc. dissertation, University of Oxford.

136



