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CONVECTIVE DIFFUSION OF AN ENZYME REACTION*

A. C. FOWLERt

Abstrael. The evolution of a simple enzyme reaction being convected by Poiseuille flow in a
semi-infinite tube is considered. When the effects of diffusion are ignored, the solutions for the
concentrations of enzyme and substrate are analogues of the spatially independent case. When small
but nonzero diffusion coefficients are admitted the solutions are modified by the smoothing out of any
discontinuities present in the conditions at the inlet to the tube. Explicit solutions in each case are given
when the nondimensional concentration of the substrate at the inlet, f(t), is the Heaviside step function

1,, t>0,
f(t)

0 < O.

1. Introduction. In experiments currently being carried out by Kuchel [4],
the evolution of reactions between enzymes and substrates in a convecting fluid is
being studied. A fluid flows slowly through a thin tube of radius 1 millimetre and
length 1 metre. The entrance to the tube is connected to two inlets which supply
the fluid with enzyme and substrate respectively. The experiment is started with
the enzyme inlet open, so that there is a uniform enzyme concentration along the
length of the tube, and then at some initial instant the substrate inlet is opened, so
that the substrate concentration there is a specified function of time. Reaction
between the substrate and enzyme occurs as the reactants are convected with the
fluid. In general diffusion also takes place, but the effect of this is usually small for
the time scales involved in the experiment [2].

In the system described above, where we have one substrate and one enzyme,
the reaction is given by

kl k2(1) S +E C->E +P.
k-

Here S, E, C, P, stand for substrate, enzyme, complex and product respectively,
and ka, k-a, k2 are rate constants. The observed result is of the concentration of
the product formed as a function of time at a specified distance along the tube.
Experimentally, this is found by using a reaction which gives a photosensitive
product, so that the concentration is easily found spectrophotometrically. Note
that what is actually observed is an integral over volume and time of the
concentration, since the photometer is of a finite length and takes a finite time to
record an observation; however these may be made so short in practice that the
observed result is proportional to the integral of the concentration over the
cross-section of the tube.

In this paper we propose and analyze a model system for this experiment and
give analytic results which may be used practically.

2. Mathematical model. We consider the fluid to be in fully-formed
Poiseuille flow through a semi-infinite cylindrical tube 0 < x < c, 0 < r < a, so that
the velocity in (x, r) coordinates is v (k (a 2 r2), 0) where k 2M/(Trpa 4), P is
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the density and M is the mass flow. At each point of the fluid we denote for
convenience the concentration of each reactant by its letter in square brackets.
Then the law of mass action applied to (1) gives the following rate equations:

(2)
Ot
-I- (v.V)[S] DV2[S] + k_a[C]- k,[S][E],

(3)
O[E]
Ot
+(v.’)[E] DeV2[E] + (k-1 + k2)[C]- k[S][E],

(4)
Ot
+(v.V)[P] DpV2[p] + k2[C],

Ot
4-(v.V)[C] DV2[C] + ka[SJ[E]- (k_a + k2)[C].

The second and third term in each equation represent the effects of convection
and diffusion, and Ds, De, Dp, Dc are the respective diffusion coefficients of S, E, P
and C. Physically De De, Dp Ds, so we take De Dc D2, Dp D D1. The
initial and boundary conditions for (2)-(5) are

[S]= [C]= [P]= 0, [E]=Eo ont=0, x>0;
(6a)

[S] Sofa(t), [E] Eo, [P] [C] 0 on t > 0, X--0.

In (6a) E0 is a given constant, and So is such that fl is O(1). (For example fl 1 as
t- o.) The condition of no flux through the cylindrical boundary r- a requires

(6b) O[S____] O[C____]: O[P___] O[E___] 0 on r a.
Or Or Or Or

If we add (3) and (5) we get

0
(7) {[E]+ [C]} + (v.V){[E] + [C]} DzVZ{[E] + [C]}

which on using (6) gives the usual enzyme conservation law, namely

(8) [E] + [C] Eo.

Eliminating [E] in (5), we obtain

(9)
Ot--(v.V)[C] D2V2[C] + k I[S]{Eo- [C]}- (k_, + k2)[C].

We now nondimensionalize by writing

ka 2

(10) k,Eot=L r=aL X=klEo$, [S]=Sos, [C]=Eoc, [P]=Sop.
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Then (9), (2) and (4) become (on dropping the bars on L Y, f for convenience)

(11) e--+e(1-r2) + +s(1-c)-Kc,
Ot Ox Pe2[ Or/ ox2J

(12) 05 O=Pe Or/+ oxZj +Lc-s(1-c),

where

(14)

klEoa2 klSoa2 Eo 2 kEPel
Di

Pe2
D2

e =so, o" kEa2’

k-l+k2 k-1 k2
k k S---:o’ k S----:o"

Typical values of these constants are given in Table 1 [3].

TABLE

Constant Order of Magnitude

k (Molar is 1)
k2(s -1)
k-1 (s -1)
Eo (Molar)
So (Molar)
D (cm2s -1)
D2 (cm2s -1)
a (cm)
MIp (cm3s -1)

10
10
10
10-8

10-2

10-5

10-7

10-1

5x10-1

With these values

(15) e--- 10-6, Pel’ 103, Pe2 1011

The boundary conditions for (11), (12), (13) are, from (6),

s=p=c=0 ont=0, x>0;

(16) p c 0, s f(t) =fl aE on > 0, x 0;

Os Op Oc
0 on r= 1.

Or Or Or

/Z 10-4.
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3. Solution with no diffusion. Since 1/(Pel), 1/(Pe2)<< 1, we may as a first
approximation neglect diffusion terms in (11), (12), (13): the equations reduce to

(17)
OC 2", OC

e--+e(1-0t r )-x =s(1-c)-Ksc,

(18)
Os 2) os
+(1-r -x =Lsc-S(1-c),

(19) Opt_ (1_ r2) Op0-7-
together with the boundary conditions (16). Since the effect of diffusion is to
"smooth" discontinuities in the solutions, we expect on neglecting it that any
discontinuities in the iffitial conditions (i.e. in f(t)) will remain in the solution for
> 0 and be convected with the fluid.

In (17)-(19), r appears only as a parameter, so we may write y x/(1- r2),
and the equations are

(20) e + =s(1-c)-Kc,

--+---Lsc-s(1-c),(21)
Ot Oy

(22)
Op+ Op

m=ixC.Ot Oy

Since Ix Ks- Ls, we may add these and integrate using (16) to obtain

l[(t- y), y < t,
(23) P+S+eC=to, y>t.

In fact, since the fluid particles in y > were in x >0 at 0, we must have
s c =p 0 in y > 0. Neglecting O(e) in (20), we obtain

(24) c Ks+s"

This says that the reaction (17), or (5), is in equilibrium and (24) is the usual
Michaelis Menten quasi-steady state.

On using (24), (21) becomes

Os Os -Ixs(25) --+--
Ot Oy Ks + s

in 0 < y < with boundary condition s =f(t) on y 0, the solution of which is
given implicitly by

(26) [ s ]log
f(t-y)

+{s-f(t-y)}=-Ixy.
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In the special case where f is the Heaviside step function, s may be written
explicitly as s A (/xy) where A (r) is a modified exponential defined by

dA -A
(27) A (0) 1, d-- +----:-;Ks
again s 0 in y > t.

Now the solution (24) does not satisfy the boundary condition on y 0 (since
s 0 there), so there must exist a singular region there where the neglected y
derivative in (20) becomes important. This is physically of little interest, since the
observation is carried out away from x 0, but we include an analysis of it for
completeness.

If y O(e) and O(1) then we put y eY, and obtain

Oc Oc
(28) e--+ s(1-c)-Ksc,

ot -Os
--+ e[Lsc- s(1 c)],(29) e
Ot -where we require c 0 on Y 0 and a matching condition as Y oe. Equation

(29) gives s f(t) to first order, as we expect since there is no boundary layer for s,
and f(t) is the one term inner expansion of (26) for small y. Substituting for s in
(28) and neglecting O(e), we obtain

Oc
(30)

O I2 f(t)(1 c) Ksc, c 0 on Y 0,

which has solution

f(t) e_0>+/q>v],(31) c =[1- t>0.
Ks

This automatically matches with the outer solution. The outer solutions to first
order are thus given by (24) and (26), and from (23),

(32) p =f(t-y)-s, y <t.

The concentration per unit length at x is proportional to

Iol ( x t) dr C(x, t)(33) rp i r2’
=--

Now p=0 in y >t, i.e. x/(1-r2)>t or r>(1-x/t) /2, so

(34)

(1 -x/t) 1/2

C(x, t)= Jo

O,

rp dr, > x,

t<x.
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O0 (sec) 200

FIG. 1. Response of C(x, t) in arbitrary units to a step ]’unction input of substrate at x O, when
a .05, M/p .12, x 350cm.

As an example suppose f(t) is the Heaviside step function. Then s A (/xy) in y < t
and p 1 A (txY) whence

(35) C(x, t)= r 1-A i 2
dr

in x < t. From (35),

(36)

OC 1/2 (/xt)]-(1 ) -1/2

X

7[1 -A (/xt)], x <t,

and C is easily computed for any fixed x. A typical profile is shown in Fig. 1.
It is clear that in this case the line x (1- r2)t is a shock, and in order to

determine how dissipation affects the structure of this shock, we must reconsider
the diffusion terms in (11), (12) and (13).

4. Solution with diffusion. From Table 1, 1/(Pe2)<< 1/(Pel)<< 1, o-2<< 1, so
that in the first approximation the dominant diffusion terms in (11), (12), (13) are
those corresponding to radial diffusion of S and P. If we neglect other diffusion
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terms, we have

(37)
OC

-1
t- e 1 r2) Oce 0--- -x s(1 -c)-Ksc,

IOS 2) 0S 1 1 0( )(38) --+(1-r r
Os

Ot Ox Pea r Or\ -r/+Lsc-s(1-c)’

(39)
Op+ l r2) Op 1 1 0 ( r OP] + txc,
Ot -x Pe r Or Or/

where e << 1, 1/(Pel)<< 1, << 1. Solutions of (37)-(39) are required which satisfy
the boundary conditions (16) where f(t) is the Heaviside step function.

We wish to examine the behavior near the shock x (1 r2)t, so we introduce
new variables

(40) sc (1 r2)t x, r r, 7. t.

Then (37) and (38) become

OC
(41) e--=s(1-c)-Ksc,

07"

Os 1 [’4,r/27.202s 02s Os 10s
(42)

7 Or/
-t-

0r/2j +Lsc-s(1- c),

with a similar equation for p.
Now we write : (1/(Pe l/2))Z and take the outer solutions as those of the

preceding section, so that

c =s =0, <0,

, s A txy A la,7.
1- rl

c
K,+s >0.

(43)

With 7.-- 1, rt 1 we obtain c =s/(Ks +s)+O(e) from (41), and

(1)(44)
Os 47/27.2 02S [dS

" 0 F_,,
O OZ2 Ks +s Pel/2

The matching conditions are

(45)

s -> 0 as Z -oo,

s A (/xT.) as Z

s H(Z) as 7. 0,

since the inlet substrate concentration is the Heaviside step function H(t). Finally
since/x << 1 we can use the method of multiple scales [1] on (44). Formally we
introduce a slow time ? =/xT. and a fast time 7.* 7. and expand s as

(46) s(Z, 7.) s()(Z, 7.*, ;r) + tzs()(Z, 7.*, ;r) + "’.
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Then s (o) satisfies

(47)

The solution of (47) is

OS (0) 02S (0)

4/2r*2

Or* OZ2

s (m -->0 as Z --oo,

s (o) _+ A (’7) as Z- +oo,

s (o .+ H(Z) as r* -7 -+ 0

(48) s( e dO.

Rewriting this in the original variables and putting ? =/xy (since y---r in the
shock) we obtain a uniformly valid first order solution of (37) and (38) as

s= A(/.Ly..__.) f Pell/2x/’[(1-rg-)t-x]/(nrt3/2)_c e-2 dO + O(e, 1)2, tx)Pel
(49)

S

K +s

This analysis is invalid when r << 1, i.e. at the nose of the shock where the diffusion
is not dominated by its radial component, but in practice this restriction is not
important.

Finally, adding (37), (38), (39) and writing q =p + s, we obtain

(50)
Oq + e r
Or Or Pe r Or\ Or/’

in the shock we use (40) and sc (1/Pe l/2))Z to get

Oq=4rl2r2O2q ( 1 )Or -+0 e, pe l/2

(51)
q - 1 as Z- +oo,

q-O as Z- -oo,

q->H(Z) as r-O.

The solution of (51) is

1 "qlZ/(4n’r3/2)
(52) q 7-- e

which combined with (48) gives

(53) p=
[ 1 A {txx/(1 r2)}] f vt-3Pe/2[(1-r2)t-x]/(4rt3/2)

dO +O(e, pe l/2’
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and in this case

(54)
C(x, t) rp dr, x<t.
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