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THE USE OF A RATIONAL MODEL IN THE 

MATHEMATICAL ANALYSIS OF A POLYTHERMAL GLACIER 

By A. C. FOWLER 
(School of Mathematics, 39 Trinity College, Dublin 2, Republic of Ireland) 

ABSTRACT. We here describe the process by which a complex model set of equations and boundary 
conditions may be rationally reduced to a simpler and more manageable set by the. processes of non
dimensionalization and asymptotic approximation. Such a reduced model (derived elsewhere) is then 
presented for an incompressible, two-dimensional ice Aow. It consists of two coupled equations for the 
stream function and enthalpy variable, together with a complex set of boundary conditions. 

The important dimensionless parameters which arise are given, and various limiting values of these are 
commented on. Nye's (1960) equation for kinematic waves may be reproduced, and a non-linear analysis 
of this reveals that disturbances reach the glacier snout in finite time, and are uniformly bounded there: in 
the particular case considered here, one can also show that the temperature field is stable. 

It is shown that the effect of introducing a (realistic) sliding law which is continuously dependent on the 
temperature has a major effect on the bedrock temperature profile. 

Lastly we consider seasonal waves using a kinematic wave equation based on a plausible form of the 
sliding law when cavitation is present. The main observed features are qualitatively reproduced. 

REsuME. Utilisation d'un modete rationnel pour l'analyse matlufmatique d'un glacier polythermique. Nous decrivons 
ici les procedes par lesquels un modele complexe base sur des equations et des conditions aux limites pe ut 
etre rationnellement reduit a un modeJe plus simple et plus facile a traiter construit par l'introduction de 
variables adimensionnelles et par des approximations asymptotiques. Un tel modele reduit (etabli par 
ailleurs) est presente ici pour representer un ecoulement de glace incompressible, bidimensionnel. Il consiste 
en deux equations associees pour la fonction de courant et la variation d'enthalpie, assorties d'un jeu com
plexe de conditions aux limites. 

Les para metres adimensionnels importants qui se degagent sont donnes et on commente leurs differentes 
valeurs limites. L'equation de Nye (1960) pour les ondes cinematiques peut etre reproduite et l'analyse 
non lineaire qui en est faite montre que les perturbations atteignent le front du glacier en un temps fini et 
sont uniformement bloquees: dans le cas particulier que l'on considere ici on peut aussi montrer que le 
champ de temperature est stable. 

On montre que l'effet de l'introduction d'une loi (realiste) de glissement dependant de fa<,:on continue 
de la temperature a un effet maximum sur le profil de temperature au lit rocheux. 

Finalement nous considerons les ondulations saisonnieres en utilisant une equation d'onde cinematique 
basee sur une forme plausible de la loi de glissement avec cavitation. Les principaux faits d'observations sont 
qualitativement reproduits. 

ZUSAMMENFASSUNG. Die Verwendung eines rationalen Modells bei der mathematischen Analyse eines polythermalen 
Gletschers. Es wird der Prozess beschrieben, bei dem ein kompliziertes Modellsystem von Gleichungen und 
Randbedingungen rationell durch Entdimensionalisierung und asymptotische Annaherung in ein einfacheres 
und handlicheres System reduziert werden kann. Solch ein einfaches, irgendwoher abgeleitetes Modell wird 
dann fur den nicht verformten zweidimensionalen EisAuss vorgelegt. Es besteht aus zwei gekoppeIten 
Gleichungen fur die Stromungsfunktion und die Enthalpievariable in Verbindung mit einem komplexen 
System von Randbedingungen. 

Die wesentlichen, dabei auftretenden dimensionslosen Parameter werden angegeben und ihre verschie
denen Grenzwerte eriautert. Nye's (1960) Gleichung fur kinematische Wellen kann reproduziert werden; 
ihre nichtlineare Analyse zeigt, dass Storungen das Gletscherende in begrenzter Zeit erreichen und dort 
einheitlich begrenzt sind. In dem hi er betrachteten besonderen Fall liisst sich ausserdem zeigen, dass das 
Temperaturfeld stabil ist. 

Es wird nachgewiesen, dass die Einfuhrung eines (realistischen) Gleitgesetzes, das kontinuieriich von der 
Temperatur abhangt, einen bedeutenden EinAuss auf das Temperaturprofil am Felsbett hat. 

Zuletzt werden mit Hilfe einer Gleichung fur kinematische Wellen, die auf einer plausiblen Form des 
Gleitgesetzes bei Hohlraumbildung beruht, jahreszeitliche Well en betrachtet. Die wichtigsten beobachteten 
Erscheinungen lassen sich dabei qualitativ reproduzieren. 

I. INTRODUCTION 
In seeking the simplest realistic model of glacier flow, an attractive procedure is to analyse 

a given set of equations and boundary conditions in a mathematically consistent fashion, 
rather than make physically plausible, but nevertheless ad hoc, assumptions and approxi
mations. The standard method of doing this consists of first non-dimensionalizing the variables, 
using the given parametric "inputs" to the problem, and then making formal asymptotic approxi
mations to the resultant model using the appropriate parametric limits that suggest themselves 
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from the numerical order of the various dimension less parameters which naturally arise. It 
can be checked a posteriori whether terms neglected in this fashion are in fact small, and in this 
sense the procedure is a rational one: no a priori assumptions are made. 

A rational derivation of a "reduced" model of a two-dimensional, incompressible glacial 
ice flow has been discussed at length elsewhere (Fowler and Larson, 1978), and so we content 
ourselves here with merely presenting the resulting equations and boundary conditions, and 
commenting on some of the novel features which they introduce: this is done in Section 2. 

In Sections 3-5, we consider how the proposed model may be used to examine various 
phenomena of dynamic interest. Specifically, we treat the kinematic waves studied by Nye 
(1960 ) from a non-linear point of view; we consider the important dynamic effect of using as 
a basal boundary condition a sliding law which is continuously dependent on the temperature 
below the pressure-melting point; and we show how consideration of a kinematic wave 
equation can explain the essential features of the observed seasonal waves (Hodge, 1974), 
on the basis that cavitation has a major effect on the sliding law, as is suggested by previous 
work (Fowler, unpublished). 

2. MATHEMATICAL MODEL 

We consider a two-dimensional incompressible ice flow whose geometry is typically as 
shown in Figure 1. The head and snout of the glacier are identified by the points Xo and Xs; 
xQ, Xz, and XM are identified below. In general, the glacier will consist of distinct cold and 
temperate regions, divided by a melting surface; it should be emphasized that we are not 
necessarily assuming that Figure I gives an accurate representation of every glacier' s tempera
ture profile, but it serves to portray the fact that we must normally expect regions of both cold 
and temperate ice to exist. The shape of the melting surface is to be determined in the solution 
of the problem, and will not necessarily be as in the figure. 

accumulation 

, 1 * 

Fig. I. Glacier geometry. 

If we let the two-dimensional velocity field q have components u and v parallel to the x 
and y axes respectively, then, using suffixes to denote differentiation, the continuity equation 
expressing conservation of mass, 

div q = ux+Vy = 0, ( I) 
is automatically satisfied by defining a stream function rp such that 

u = rpy, v = -rpx. (2 ) 
In the cold zone, one then obtains coupled equations for the stream function <f and the 
temperature T. It is convenient to introduce a change of coordinate 

g = 'rJ(x, t) -y, (3) 
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where y = 'T](x, t) is the equation of the top surface of the glacier, so g measures the distance 
downwards from the top surface, and an associated change of variable 

x 

'Y = 1+:t f H dx, 

Xo 

where H(x, t) is the depth (measured perpendicular to the x-axis). In a shallow, shearing 
flow such as in a glacier, the constitutive relation between the strain-rate tensor eij and the 
stress tensor tij is approximated by the same relation between the shear strain-rate 
Uy = 1yy  = 'Y ss' and the shear stress 72. Since the surface shear stress is approximately zero, 
the balance between 72y and gravity implies that 72 is proportional to the vertical coordinate 
g;  when the variables are non-dimensionalized, scaled, and reduced (by setting certain small 
parameters equal to zero), the usual Glen's law for ice with exponent n may be written in the 
approximate form 

'Yss = gn exp (KT). 
The energy equation is similarly found to be 

Tt+'YxTs-'YsTx = f3Ign+I exp (KT)+f32TH' 

(5) 

(6) 

where the left-hand side is the convective derivative (= Tt+uTx+vTy), and the two terms 
on the right represent the viscous dissipation (strain-rate times stress) and heat conduction 
(the vertical component of which dominates the horizontal component due to the shallowness 
of the flow). 

The conditions that we impose for these equations on the boundary of the cold zone are: 

(i) on the top surface, the surface accumulation/ablation rate and temperature are 
prescribed; 

(ii) on the melting surface, the temperature is equal to the pressure-melting point, and 
the heat flux is continuous; 

(iii) on the (unknown) base, a geothermal heat flux is specified, the normal velocity is 
zero, and the tangential velocity is a prescribed function of the basal stress and the 
temperature. 

If we define the surface-flux function s(x, t) by 
x 

s(x, t) = f a(x, t) dx, 

Xo 

where a is the accumulation/ablation rate (a > 0 in the accumulation area, a < 0 in the 
ablation zone), then the kinematic boundary condition at the top surface requires 

v = 'T]t+u1)x-sx ony = 1). (8) 

When this is transformed using Equations ('2), (3), and (4) we find 

'Y = s(x, t) on g = 0, (9) 

where we may define 'Y to be zero at Xo. We also require that 

on g = o. ( 10) 
On the melting surface, scaling shows that the melting temperature is effectively constant 
(equal to zero when normalized) and if we assume there is no heat flux into the temperate ice 
by moisture transport away from the melting surface, suitable conditions there are 

T = Ts = 0 on g = gM(X, t) (the melting surface). ( I I ) 
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On the bedrock g = H(x, t ) ,  the no-flow-through condition implies that g = H is a stream
line, if; = 0 there, that is, using Equation (4) ,  

x 

'¥= :t f H(cr, t ) dcr 

xo{t) 
on g = H(x, t ) .  

A sliding law for the horizontal velocity u = .py = - 'Y!: which is dependent on temperature 
T and basal stress � H (the depth) is 

'¥!; = -F [H, T] on g = H(x, t ) .  (13) 

Lastly, with zero geothermal heat flux (from scaling considerations) , the heat flux into the 
cold ice above is equal to the viscous heating generated by basal sliding: this implies 

f3zTf,+f3IH'¥f, = 0 for x < Xz, g = H(x, t), (14a) 

which is valid until Xz where the basal temperature reaches melting point, beyond which the 
appropriate condition is 

T = 0 for Xz < x < XM, g = H(x, t). (14b) 

The approximations (and their physical interpretation) on which these equations are based 
are discussed below. 

The above equations and boundary conditions are not relevant in zones of temperate ice: 
in these the temperature is effectively constant (T � o°C) and the role of enthalpy variable 
is taken on by the moisture content (Lliboutry, 1976). It appears that the flow law of temperate 
ice also depends on the moisture content, and so the equations for '¥ and the moisture content 
ware once again coupled. In this case it becomes necessary to specify a term in the energy 
equation which describes the hydrological flow of moisture through the ice (this plays a similar 
role to that of heat conduction in cold ice) . It is clear that a proper description of such a term 
is necessary before the dynamics of temperate ice can be usefully studied. In the earlier paper 
(Fowler and Larson, 1978), it was assumed, for want of any better information, that the 
transport by this means was negligible; in this case the cold zone effectively uncouples from the 
solution in the temperate zone, and the latter is of little further interest: subsequent analysis 
is then largely concerned with the cold zone-or with completely polar glaciers. 

It will be noticed in Equation (13) that the sliding law is taken to be a function not only of 
the basal stress (�H) but also of the temperature T: this is to accommodate the realistic 
physics (Fowler, 1979) which demands that the basal velocity should increase from zero to its 
full temperate value over a small (typically IO-I deg) but crucially finite temperature range 
just below the pressure-melting point: the important consequence of this novel assumption is 
discussed below in Section 4. The points XQ, Xz, XM in Figure 1 and in Equation (14) may now 
be interpreted as follows: XQ is the point where the basal ice first begins to slide ; the ice is 
wholly frozen to the bedrock in (xo, xQ). The point Xz is where the temperature reaches 
melting point and the sliding law is the fully temperate one; thus (xQ' xz) is the region of 
"sub-temperate" sliding. Lastly, XM is the point where the melting surface on which T = 0 
"breaks away" from the bedrock; in (xz, XM) the basal temperature is at the melting point, 
but the viscous source heating at the boundary is used up in warming the cold ice above until 
Tf, = 0 (i.e. the heat flux into the ice decreases to zero) which is precisely when x = XM. The 
melting surface gM dividing cold and temperate ice is a necessary constituent of the model, 
since in general cold ice will be heated by the frictional dissipation source term in the energy 
equation. It is however quite realistic to consider particular limits represented by the so-called 
"polar" and "temperate" glaciers. In view of the comments above on moisture transport, 
realistic models for the latter cannot be said to exist. 

The assumptions made in deriving the reduced model presented above are the following: 
the Reynolds number (Re) = 0; 0 (typical depth/length) = 0; JL = 8/(mean bedrock 
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slope) = 0; A (dimensionless geothermal heat flux) = 0; and that Z, which measures the 
error in assuming an exponential form exp [K T] for the temperature dependence of the flow 
law rather than the more usual Arrhenius term, is zero. These approximations are based on 
the numerical estimates 

(Re) ;:::: 10-'3, } 
8 ;:::: 10-2, 

1-', A, Z;:::: 10-'. 

The Reynolds number (Re) measures the slowness of the flow, and its neglect entails ignoring 
inertial terms in the momentum equations; 8 is a measure of the shallowness of the flow; 
neglecting I-' means that variations of the surface slope from the mean bedrock slope are 
ignored. (Note that this neglect of I-' is inapplicable to a flow with a horizontal base, e.g. an 
ice sheet, to which the definition of I-' is not appropriate. ) The above approximations are 
expected to be good ones, in the sense that they are mostly of non-singular type; this is not 
strictly true of the neglect of 8 and 1-', but neglect of 8 only appears to be associated with a 
degeneracy of the equations near the head Xo and snout xs, and does not affect the bulk of the 
flow. The parameter p. represents a diffusional term for kinematic waves, and thus may 
become prominent if its neglect leads to the prediction of surface shock waves: for further 
discussion of this point, see Fowler and Larson (in press). 

The important parameters arising in the model are K, f31> and (32' These measure res
pectively the strength of the dependence of viscosity on temperature, the magnitude of the 
viscous source heating, and the magnitude of heat conduction. With typical values of the 
physical input parameters, it is found that these parameters are of numerical order one, 
although with a realistic variation of such quantities as mean accumulation-rate, mean 
bedrock slope, etc. , larger or smaller values may easily be obtained: in particular, (3, and f32 
may be small. Furthermore, when the analogue of Equation (6) is studied for larger ice 
masses such as ice sheets, it is expected that realistically small values of f32 may be obtained. 
For these (and purely mathematical) reasons, it is of interest to study the proposed model 
under various asymptotic limits of the given parameters. In general, this is not an easy task. 

3. KINEMATIC WAVES IN THE LIMIT K --+ 0 

If we suppose that the surface-flux function s(x, t) is independent of t, that is s(x, t) =s(x) , 
then on integrating Equation (5) twice and using the boundary conditions for '1", Equations 
(9), (12), and (1 3), we find that in x < XM conservation of mass takes the form 

Ht+Qx = s' (x) , 

where the flux Q is given by 
H 

Q = HUb+ f gn+' exp (KT) dg, ( 17) 

o 

and Ub = F(H, T) is the basal sliding velocity. Equations of the form of Equation (16) were 
studied by Lighthill and Whitham (1955) and applied to glacier flow by Weertman (1958) 
and Nye (1960,196 3), There is a slight subtlety in the present case, since the basic ("datum") 
steady state is of finite extent, and so linear analyses of the type proposed by ye lead to non
uniformly bounded solutions at the snout, where H --+ o. One can easily avoid this pitfall 
by applying the method of characteristics to the essentially non-linear system of Equation (16). 
As an illustration, we suppose x < xQ, that is Ub = 0, and take the formal asymptotic limit 
K --+ o. In this case we obtain 
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of which the characteristic equations are 

dx 
- = Hn+, 
dt ' 

dH 
dt = s'(x) . 

( 19) 

Equation (19) immediately gives the wave speed, which is approximately four times the 
surface speed (this being Hn+'jn+I). The solution of Equations (19) and (20) may be 
written down in terms of a characteristic parameter cr E [xo, xs(o)]. It is 

Hn+z 
-

+ 
= s(x)-s,(cr) , (21 ) 

n 2 

f dx 
t = Hn+,' 

and is valid for all times in which cr as defined by Equation (22) is a single-valued function of 
x and t: if cr becomes multi-valued, then one can make the solution single-valued but dis
continuous by the insertion of appropriate shocks (which would physically be smoothed out by 
considering a non-zero fl-). It is possible to show that such shocks will form if the initial data 
s,(cr) is such that s,' (cr) > 0 for some value of crE [xo, xs(o)]: if the initial data represents a 
sudden change in climate, this condition may be interpreted as representing an initial increase 
in the accumulation-rate (or decrease in the ablation-rate). 

Whether shocks form or not, Equations (21) and (22) imply that any initial disturbance 
reaches the snout in a finite time, and for small disturbances, all shocks which do form must 
do so near the snout (where in any case the equations are not strictly valid) : over the remainder 
of the glacier one can obtain an explicit form for the travelling wave nature of the solutions 
by linearizing the characteristics rather than H. If we denote the steady state by H = Ho(x), 
these solutions may be written (Fowler and Larson, in press) as 

x 

H = Ho(x) +c/> [f H�:+I -t] +0 (c/», 
'0 

where c/> <{ I is the initial perturbation from the datum profile. 
The form of these travelling waves incidentally shows that the glacier profile is stable to 

small perturbations. In the same limit K -+ 0 with Ub = 0, one can also show that the steady
state temperature profile, although not explicitly known, must also be linearly stable : this is 
done by Fowler and Larson (1978), who show that (at least for completely polar glaciers) 
consideration of non-zero K, i.e. temperature-dependent viscosity, is a necessary constituent of 
any realistic discussion of thermal instability, proposed by Robin (1955) as an initiating 
mechanism of glacial surges. In other cases where the temperature and flow fields do happen 
to be stable, we expect that the mechanism of kinematic waves proposed above will remain 
qualitatively valid even when Ub and K are non-zero. 

4. DYNAMIC EFFECT OF A TEM PERATURE-DE PENDENT SLIDING LAW 

The apparently minor refinement of prescribing a sliding law which is continuously 
dependent on the temperature near the melting point, rather than discontinuous there, 
leads to a major change in the nature of the temperature field and dynamic behaviour of a 
glacier. It should be emphasized that a continuous sliding law was included in the model, 
not because any such effect was envisaged, but simply because the physics seemed to demand 
it. This illustrates the need for formulating an appropriate model before taking any limits that 
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suggest themselves, since in this case it is found that the limiting behaviour of a glacier as the sliding 
law becomes discontinuous is not the same as that of a glacier with a discontinuous sliding law. Such 
non-uniform limits are commonly encountered in other areas of applied mathematics; in the 
present case the above discrepancy occurs because the discontinuous sliding law has a finite 
jump at T = 0 and no intermediate basal velocity between 0 and F [H, 0] is possible, whereas 
in the limiting form of the continuous law, any such intermediate velocity is admissible at 
T = 0, and thus the discontinuous law does not really represent the correct limit of the 
continuous law. More specifically, if we admit a discontinuous sliding law of the form 

Ub = F(H), T=o, 

w=o, } 
w > o, 

Ub = 0, T<o, 

then, since the basal velocity is discontinuous, there must be some kind of discontinuity in the 
surface behaviour, and if f.L = 0, this takes the form of a finite jump in the depth at the point 
XQ (= Xz in this case). Now if we examine the particular asymptotic limit of the steady-state 
versions of the model given by Equations (5) and (6) in which f32 -+ 00 with f3d f32 finite 
(admittedly this is unlikely to be a realistic case), it is found that just as for K = 0, the equations 
uncouple (the convective terms vanish) and the solution for the entire problem in the cold 
zone may be constructed from a knowledge of the temperature, which may be found explicitly 
as the solution of a second-order differential equation in g which is parametrically dependent 
on x through the boundary data on g = 0 and g = H. It is then found from this explicit 
solution that if ( -v, 0)  is the dimensionless temperature range over which the sliding velocity 
increases from zero to its full temperate value, i.e. T = -vat XQ and T = 0 at Xz, then in the 
limit as v -+ 0, xQ -H Xz, and so the glacier behaviour with v = 0 is not the same as that when 
v -+ o. A reasonable estimate for v is 10-2, so we see that v is indeed small. From the above 
result, it is clear that rather than apply the boundary condition Ub = F[H, T] in (xQ' xz) , we 
should in the limit v -+ 0 specify that T = 0 there. Thus the effective boundary conditions to 
replace Equations (13) and (14) are 

'Y, = 0, 
f31H'¥S+f32TS = 0, 

T=o, 
'Ys = -F[H, 0], 

x < xQ, 
x < Xz, 

xQ < x < XM , 
Xz < X < XM, } 

and we see that there are three separate sets of boundary conditions to be applied on g = H. 
Equation (25) is the correct limiting version of Equation (13) ; it obviates the need to specify 
F [H, T] for T < 0 ,  which is just as well, and it is fairly clear that a numerical solution of the 
equations will be much simpler with these effective boundary conditions. Questions of 
stability are slightly more subtle. These are to be discussed in a paper in preparation by A. C. 
Fowler and D. A. Larson. 

What happens in (xQ, xz) is clear: the basal velocity is essentially governed by the bulk 
ice flow rather than the basal "inner flow" (which really specifies the precise basal tempera
ture in ( -v, 0)), and Ub gradually increases in (xQ, xz) until it becomes equal to the full 
sliding velocity F(H, 0). Thus we must expect that, in general, glaciers may have substantial 
parts of their bases at temperatures within this "sub-temperate" range, and accordingly basal 
velocities within these regions will not appear to be  functionally related to the basal stress 
(and hence the depth). Although this result is explicitly derived in the particular limit 
f32 -+ 00, it depends only on the continuity of the sliding law, and hence will be valid for any 
value of f32 whatsoever, as long as v � I. This result in itself justifies the study of the limit 
f32 -+ 00, and answers negatively the question posed by Robin's (1976) paper-at least in 
certain regions. 
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5. SEASONAL WAVES 

Seasonal waves are waves of velocity disturbances which propagate at very high speeds down 
glaciers (typically 20 to 150 times the surface speed). They have been reported by, amongst 
others, Deeley and Parr (1914) on Hintereisferner and Hodge (1974), who observed such 
waves on Nisqually Glacier with an approximate speed of 20 km a-I. 

To date, no satisfactory theoretical explanation of their behaviour has been forthcoming. 
Weertman (1962) considered the effect of kinematic waves in the subglacial water film, while 
Hodge (1974) considered that the waves might be due to a correlation between the sliding 
velocity and the liquid water stored in the glacier, since the latter varies on a seasonal basis. 
While this may be an important part of the phenomenon, it does not in itself answer the 
fundamental question: why are the wave propagation speeds so large? And why do the waves 
consist of velocity perturbations with no apparently related wave motions in the depth? 

One possible answer to these questions is provided below. We will essentially concentrate 
on Hodge's paper, and in particular seek to understand his figure 6, which is a contour map 
in (x, t) space of the surface velocity. The lines of constant velocity mostly oscillate in space, 
but some form closed loops: the contours are skewed slightly, which represents a seasonal wave 
with a transit time of about a month from the equilibrium line to the snout. 

Our analysis is based on the supposition that the basal sliding velocity becomes a rapidly 
varying function of the basal stress, and hence the depth, when subglacial cavitation occurs. 
This was suggested as a theoretical possibility by Lliboutry (1968), and it was shown by 
Fowler (unpublished, 1979) that in the particular case of Newtonian flow over a sinusoidal 
bedrock of small roughness, the leading-order solution for the basal flow leads to a sliding law 
in which the sliding velocity increases without limit at a constant stress when cavitation is 
present. It should be emphasized that this result may well be importantly affected by the 
consideration of a more realistic bedrock in which more than one obstacle size is present. 
Nevertheless, the important point is that (for this particular case) the velocity increases rapidly 
with stress when cavitation is present, and it seems reasonable to suppose that this qualitative 
feature of the sliding law may well be representative of the flow over more realistic bedrocks 
also. Based on this, we here suppose that the sliding law is of the form shown in Figure 2, 
that is the velocity increases rapidly with basal stress but not at an infinite rate. We suppose 
that J.L = 0 as before so that the basal stress Tb is approximately equal to H, and w e  assume 

He TJi'H 

Fig. 2. Possible form of the sliding law when cavitation is present. 
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cavitation sets in when H � Hc. We will formally assume that shearing within the ice mass is 
negligible, so that the flux 

Q � UbH, (26) 

and Q increases rapidly near Hc. (This assumption is not necessary for the subsequent 
analysis.) The kinematic wave equation describing conservation of mass is then 

Ht+Qx = s'(x) , (27) 

if we suppose that the flux function s is independent of time. The steady-state solution of  
Equation (27) is 

Q = s(x) . 

If we denote the critical value of Q at Hc by Qc, then in regions where Qc < s(x) , the glacier 
will be of effectively constant depth Hc. In such regions, a small perturbation in the depth 
will generally have a large effect on Q (and hence the surface velocity) . 

Now the characteristic equations (see, e.g. Whitham, 1974) of Equation (27) may be 
written as 

dx 

dt 
= Q'(H) , 

dH 
- = s'(x) . 
dt 

The first of these immediately states that finite disturbances in the velocity of the type described 
above propagate at a speed Q'(H) . From what has been said, Q'(H) � I in regions where 
Q > Qc, and so these velocity waves will travel down glacier at very high rates without any 
apparently related waves in the depth profile (since perturbations in H are of small magni
tude) : this seems to explain immediately the basic phenomena observed. Of course, no 
analytic estimate of Q' (H) is available when cavitation is present, and to this extent the above 
theory remains hypothetical (as compared, for example, to Nye's (1960) specific prediction 
of a wave speed of three to five times the surface speed) : to the wave speed of 20 km a-I 
described by Hodge (1974) corresponds a value of Q' (H) � 200. However, it is worth 
pointing out that there does not appear to be any other obvious dynamic mechanism which 
can supply the high rates of propagation observed (mere seasonal variation of the inputs 
cannot do this) . The only other possibility seems to be that the motion becomes highly 
enhanced due to the presence of appreciable quantities of melt water (as suggested by Hodge) : 
a quantitative description of such a proposed process must await the appropriate modelling of 
hydrological moisture transport. 

Qc Q 
Fig. 3. Schematic form of Q'(H) as a function of Q. 
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If we write Q'(H) as a function of Q, say 

Q' = c(Q), (30) 

then we see from Figure 2 that c( Q) will have the form shown in Figure 3, with critical 
behaviour at Q = Qc. Multiplying Equation (27) by Q'(H) == c(Q), we obtain the wave 
equation for the flux in the form 

Qt+c( Q) Qx = s' (x) c( Q). 
For regions in which Q > Qc, we have by assumption 

c(Q) � I. 

If we define a small parameter E by considering c(Q) � I/E, and let 

t = E'T, } 
c(Q) = � C(Q), 

then the correctly scaled version of Equation (31) is 

Q�+c(Q) Qx = s'(x) C(Q), (34) 

valid for the description of se�sonal waves over the fast time scale 'T. Equation (34) is 
applicable in regions where s(x) > Qc. Denote such a region by (XI' x2), and suppose 
s(x) < Qc outside this region. In the limit as E --+ 0, we require that flux changes outside 
(XI' x2) should occur over the longer convective time scale t, and so appropriate conditions 
on Q are that Q = Qc at XI and X2• We can satisfy the up-stream boundary condition at XI> 
but not in general the second: this may require the reintroduction of the diffusion-like 
coefficient IL, which would correspondingly introduce a small term proportional to Qxx in 
Equation (34), and an associated local analysis in the vicinity of x2; we shall not consider this 
subtlety further in the present instance. 

For want of any better information, we  now choose 

C(Q) = I, 
to illustrate the sort of behaviour we expect. For Nisqually Glacier, a typical value of E is 
5 X 10-3: the bulk-flow time scale may be estimated at 20 years, so that this lE corresponds to a 
transit time down-glacier of c. 1 month (as observed). With Equation (35), Equation (34) 
is 

with solution 

Q = s(x) +c/>(x-'T), (37) 
where c/> represents a travelling wave generated by an initial disturbance c/>(x), c/>(xI) = o. 
Let us now seek the solution corresponding to a regular variation in the flux function. Like 
Fowler and Larson (in press), we model such a seasonal variation by adding a sinusoidal term 
to s(x), and thus seek solutions of 

Q�+Qx = s'(x) +s/(x) exp (i.Q'T), (38) 

where the real part of Q is to be taken. 
With E � 5 X 10-3 and t associated with a time scale of 20 years, 'T is associated with a scale 

of c. I month; the seasonal variation defined by Equation (38) has a dimensionless period (in 
'T) of 27T/.Q � 6/0.: since this corresponds to 1 year = 12 months, we have 6/0. � 12, i.e. 
apparently 0. � t for Nisqually Glacier. Typically we may take 0. � I. (Contrast the 
effect of seasonal variation on Nye's kinematic waves, where the seasonal frequency relative 
to the long time scale is so fast that its effect is "averaged out" and may be neglected (Fowler 
and Larson, in press).) 
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The solution of Equation (38) is (if we impose Q = s(x) at XI)' 
x 

Q = s(x)+exp [i.o(T-x)] f s/(x) exp (i!1x) dx. 

Since .0 � I, Equation ( 39) represents a regular seasonal wave of finite amplitude (if 
s / = 0 ( I)). To be more specific, let us choose 

s/ = a > 0, 

where a is constant. Equation (40) reflects a steady oscillation between extra accumulation 
and ablation: realistically we expect a � I. We then find, on substituting Equation (40) into 
Equation ( 39), evaluating and taking the real part of the resultant expression, that 

Q = s(x) + � sin (�x) cos { .0 (T-;)} 
= s(x)+� [sin !1T+sin {.o(X-T)}], 

where for convenience we choose XI = o. Thus Q may b e  thought of as a modulated wave of  
speed 2,  or as a travelling wave of constant shape and speed 1 together with a superimposed 
oscillatory component. Hodge (1974) gives data on a relationship of this type in the form (his 
fig. 6) of a contour map of the surface velocity in the (t, x) plane. We may obtain the charac
teristic features of such a map in the present case by writing 

.ox X = -, T = .oT, (42) 
2 

and seeking intersections in the (T, X) plane of the two surfaces 

ZI = sin X cos (T -X), 
and 

for various different (constant) values of Q (corresponding to different values of the surface 
velocity). The surface described by Equation (44) is a smooth sheet which, for reasonable 
functions s bends concavely upwards in the X direction (if we suppose XI lies in the ablation 
zone). On the other hand, sin X cos T represents an "egg-box" curve in the (T, X) plane 
consisting of a checkered formation of undulating peaks and troughs. Changing this to 
sin X cos (T -X) simply has the effect of skewing the undulations in the T direction, but does 
not materially alter the properties of the intersection of Equations (43) and (44). The inter
section determines two types of curves depending on the value of Q. As T -X increases 
from zero on curve ( I) in Figure 4a, the locus of the intersection which lies on the point El 
on the peak (solid line) decreases in X; hence Zz decreases until Zz = 0 when the locus leaves 
the peak and enters the trough, the axis of which is the dotted line in the figure at T -X = 'TT. 
X further decreases till the point AI is reached at T -X = 'TT, after which the locus retraces 
its steps to BI at T -X = 2 'TT. Thus the locus is an oscillating curve in (X, T -X) space. 

The same is true of the locus bounded by the points Az  and Bz on curve (2) in Figure 4a. 
However, that bounded by M and N consists of a series of closed loops, because these loci cannot 
leave the peaks on which they lie, since MN does not cross the X axis. The curves bounded b y  
MN, AzBz, and AIBI are shown from top t o  bottom in Figure 4b,  and one can immediately note 
the resemblance to figure 6 of Hodge (1974): however, there are also striking differences, 
and one should not attempt to seek too great a quantitative comparison. 
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a. Sectional view of intersection of the two curves representing Equations (43) and (44). 
b. Possible form of contours Q = constant in the (T, X) plane. 

An alternative way of examining Equation (41) in relation to this figure is to consider the 
"height" Q to be the superimposition of the decreasing function s(x) and the skewed egg-box. 
The overall "topography" is then that of a slope downwards to the snout x = Xs, with various 
hills and basins evident due to the seasonal variation: again this is essentially what is repre
sented in Hodge's figure. Of course the present model is a huge simplification of any realistic 
seasonal waves, and cannot be used for predictive purposes (at least not quantitatively) . 
Even so, there are two particular facets of the above explanation that must be considered in 
terms of the qualitative applicability of the theory. One is that a much larger value ofQ than that 
given here ( � t) must be invoked in order to obtain the secondary "loops" evident in Hodge's 
figure: this is probably not very important in view of the quantitative assumptions of the model. 
Of more importance is any possible discrepancy between the phase of the level curves in 
Equation (41a) and in Hodge's diagram, since as he says, "the acceleration �rthe glacier throughout 
the winter in the ablation zone is crucial to a correct interpretation of the velocity variations". 
It is therefore important to try and relate the phase of Equation (41a) to that of the experi
mental data. We see that sin tQx is a maximum when x = 7TjQ. At this point 

Q = s(x) + � cos { Q (T-2�) } 
= s(x) + � sin QT. 
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Now we see from Equations (38) and (40) that the variation in the seasonal accumulation-rate 
is a cos rh, so that the origin T = 0 corresponds to the time of maximum accumulation-rate, 
i.e. winter. On examining Hodge's figure 6, it seems that in the above context, a suitable 
choice of "x = 7TjQ" is about 300-400 m along the centre line, and here the Q profile in T is 
indeed "sinusoidal" with the origin taken about February. It is hard to be more specific, but 
this seems to agree to a reasonable extent with the theory. (It is difficult for example to say 
where the origin x = 0 at which the waves are initiated should be put.) 

More detailed analysis is necessary to determine whether such apparent phase agreement 
is adequate to explain the observed results: this is rather important in view of Hodge's idea 
that liquid water storage, in particular at the glacier base, may have a major effect on the 
dynamics of temperate glaciers. 

Lastly we consider Hodge's figure 13, in which the surface speed averaged over 19 roughly 
equally spaced x-positions is plotted against time. We compare this with taking the average 
in x of Q as defined by Equation (41 b) , with the assumption that x = Xs is close to a period of 
sin Qx. The result is (denoting averages by overbars) 

_ a . Q = s+
Q

sm QT, 

which is very similar to the second graph in Hodge's figure 13 for 1969, if we choose an origin 
T = 0 at about March. This is again suggestive rather than predictive, but the agreement is 
nevertheless quite satisfactory. 
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DISCUSSION 

G. K. C. CLARKE : I hope you did not mean to imply that a discontinuity in the sliding law 
would demand a discontinuity in thickness at the boundary between frozen and unfrozen bed. 
Real glaciers would not have this problem. 

A. C. FOWLER: Mathematically, a discontinuity would occur if S = fA- = 0, that is the smooth
ing terms represented by surface-slope variations and longitudinal stress were neglected. 
Physically, these terms would indeed be able to smooth the discontinuity, but I do not think 
this alters the conclusion about "sub-temperate" basal regions. 

A. IKEN: Measurements of ice temperature in cold glaciers have shown that the warmest ice 
is found in that part of the accumulation area where melt water percolates into the snow. 
In some zone down-glacier, in the ablation area, the ice temperature is colder. Warming up 
of the ice due to energy dissipation in shearing is concentrated in a region near the bed. I 
would like to suggest that you take into account, in your model, the principal temperature 
distribution as it is indicated by measurements. 

FOWLER: On the second point, the importance of basal shear heating is, of course, intrinsically 
represented in the model by the size of the various dimensionless parameters, in particular 
that representing viscous dissipation (f1,). Variations of temperature in the accumulation area 
of the kind you describe would be due to a particular type of imposed surface temperature, 
which can also be considered as included in the boundary conditions. 

The aim of modelling is to describe the essential physical processes, and comparison with 
observations should not be artificially introduced. 
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