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An Asymptotic Analysis of the Delayed Logistic Equation
when the Delay is Large
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We show how to construct an asymptotic solution to the delayed logistic equation
y = ay(l — yt), corresponding to the asymptotic limit oc-»oo. The results of the
analysis are compared with a numerical computation, and found to be comparatively
accurate for a > 2. Since the approach adopted is novel, we comment on some
features which may be relevant in other problems.

1. Introduction

DIFFERENTIAL DELAY EQUATIONS arise in a .variety of practical applications: among
these we may mention population growth in ecological systems (Cushing, 1978), the
physiology of breathing (Grodins, Buell & Bart, 1967), variation of supply and
demand in the economy (Francis et al., 1977), biological immune response (Dibrov,
Livshits & Volkenstein, 1977a) and various other biochemical cell population
models, e.g. of granulocytic leukemia (Mackey & Glass, 1977); delays also appear in
realistic models of once-through heat exchangers (Fowler, 1978; Friedly & Krishnan,
1974).

The presence of delay in a system can lead to a notable increase in the complexity of
the observed behaviour. Otherwise stable steady states may be destabilized, and as a
result, large amplitude oscillations can occur. Even a first order non-linear differential
equation can exhibit erratic solutions when a delay is introduced (Mackey & Glass,
1977), and such chaotic behaviour is also observed in nature, as well as in discrete
difference equations (Li & Yorke, 1975; May, 1976) and non-linear ordinary
differential systems (Lorenz, 1963; Rossler, 1977).

Regarding the analysis of solutions of delay-differential equations, bifurcation
techniques are applicable (e.g. Chow & Mallet-Paret, 1977) and can be used to
construct approximations to small amplitude periodic solutions near the critical value
of a relevant bifurcation parameter. Concerning large amplitude oscillations, the
position is less good.

If the delay is "small", Taylor series could be used, though there are associated
mathematical difficulties, and the delay in any case is not very interesting. For larger
delays, Banks (1977) suggests converting a single delay-differential equation to a
system of ordinary differential equations, by splitting the delay interval into a large
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number of small intervals, and defining new variables at each point of the interval.
Thus if x(t) is the unknown function, put xH{t) = x(t—nh), and derive additional
equations for the xm by using the Euler approximations x'H(t)« (x» - x. _, )/h.

MacDonald (1978) employs a similar method (the linear chain trick) which is
applicable to distributed delays of a particular form. For such delays, one obtains
(exactly) a finite number of additional linear equations; however, both Banks' and
MacDonald's methods are of limited computational use.

When an oscillatory solution is large, expansions in powers of the amplitude are
inappropriate, and some other approximation is necessary. In ordinary differential
systems, the construction of relaxation oscillations uses the ratio of two (or more)
different time scales as a small parameter, and finds the periodic nature of the solution
by matching different segments of the solution (Cole, 1968; Stanshine & Howard,
1976). Our aim in this paper is to carry out the equivalent analysis in the case when a
delay is present. Since relaxation oscillations usually occur when a small parameter
multiplies the highest derivative, it seems that the equivalent case for a delay equation
is when the delay is "large". We shall see, however, that the analyses follow quite
different tracks.

2. The Delayed Logistic Equation

The logistic equation dN/dt* = bN(l —N/K) models the growth with time t* of a
population N, which is limited by resources to the attainment of a saturation value K:
b is the birthrate in the absence of competition. To represent the more realistic case
that this competition has a delayed effect on the specific growth rate, Hutchinson
(1948) introduced a delay, to obtain the delayed logistic equation

dN/dt* = bN[l-NJK],
where Nt = N{t* — r) is the delayed term; the delay x may represent the maturation
time of the individuals in the population. By writing N = Ky, a — bx, t* = xt, we may
put this in the dimensionless form

^=^[1-^], yi=y(t-l); (2.1)

a. is the ratio of delay to growth time, and the delay is "large" when a P 1. It will be
seen that then I/a <3 1 multiplies the highest derivative, and this, therefore, appears to
be the delay equation analogue to a relaxation model.

The literature on (2.1) is substantial. For 0 < a < n/2, y = 1 is a stable steady state,
but for a > n/2, it is oscillatorily unstable, and there exists a periodic solution (Jones,
1962a,b; Hale, 1971) for which y > 0. For small OL-TC/2, bifurcation techniques
(Morris, 1976) show that the period p is approximately given by

and the amplitude A of the corresponding sinusoidal oscillation by
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Since A < 1 for y > 0, this cannot be even approximately valid for a larger than

j+(3w-2) /40~l -76;

an improved analysis has recently been given by Lin & Kahn (1980), using the
transformation y = exp u, also incorporated in the analytic papers by Nussbaum (e.g.
1977, and references therein).

The application of (2.1) to real systems is probably less realistic than it might seem.
May (1973) attempted to fit the solution of (2.1) to the Nicholson blowfly experiment
(Nicholson, 1954), with limited success. May (1979) and Gurney, Blythe & Nisbet
(1980) point out that a delayed recruitment model may be more realistic in
considering real populations: nevertheless, the solution of (2.1) is still of interest.

In this paper we consider the asymptotic limit of (2.1) in which a -+oo and show
how to derive explicit analytic expressions for the periodic solution which is known
to exist, and which is observed to be numerically stable.

3. Analysis

It has long been known that the stable periodic solution of (2.1) rapidly acquires a
spiky form as a increases. To illustrate this, we show in Fig. 1 a numerical solution at
a = 3-5. The solution consists of a series of well-separated pulses. In the flat phase,
yi <£\ and the solution must be nearly exponential. Starting with this assumption
(y ~ exp at) and solving by the method of steps (Driver, 1975), quickly leads to the
heuristic estimate that the period p ~ [exp a]/a. (Such estimates can, in fact, be
proved, but that is immaterial to our present purpose.) This estimate, and the
exponential nature of the solution in between pulses, provides the starting point for
the analysis which follows.

We suppose that exp at is a first approximation (in some sense) to the solution in
the flat phase. We focus attention on one pulse, and choose the time origin so that

10 12

FIG. 1. Numerical solution of (2.1) for a •• 3-5.
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y(0) = 1. Thus y ~ exp at for t < 0. This motivates the introduction of an exponential
time scale; we define

T = e", y(t)=f[T), <5 = e - ' < g l ; (3.1)
(2.1) is then

Tf(T)=f[T)\il-f(5T)l (3.2)

and we expect/= T for T < 1 (t < 0). This suggests the substitution

f(T)=Tu(Tl (3.3)
and u satisfies

= -5u(T)u(5T). (3.4)

We now commence an asymptotic solution. To do this we make the following
observation. We expect the exponential flat phase/= T to be accurate for all t > — p,
where p is the period of the solution. Assuming the heuristic estimate p ~ (exp <x)/a
then suggests t h a t / ~ T for T < 1 and also

T = exp at > exp — ap ~ exp [—exp a],

i.e. T > exp (— 1/(5): in other words, the previous pulse occurs at a transcendentally
small T-scale, which implies that an asymptotic expansion for u in powers of 5 will
never encounter this pulse. The meaning of this is that we may seek an asymptotic
expression for u{T) which is analytic at T = 0, since the non-analyticity of u (due to the
previous pulse) is not relevant to the asymptotic expansion. Having found the
solution, we then check a posteriori that the period is indeed exponentially large.
Thus we seek an asymptotic form of u(T),

u(T) ~ U(T), (3.5)
where

= -5U(T)U(5T), \ ( 3 6 )

U(5T)=U(O) + 5TU'(O)+ . . . J

and U(T) is assumed analytic at T = 0. There is no loss of generality in choosing
17(0) = 1 (since

for small T, i.e. t -* — oo, and we can always adjust U{0) = 1 by choosing the t-origin
appropriately). Then (3.6) implies

1/(0) = 1 , U'(0) = -5 (3.7)

etc., so that for small T, the Taylor series for U is just

U= l-5T+O(52). (3.8)

It is easy to see that this is an asymptotic expression for U, provided T ̂  1. The
expansion becomes invalid when T ~ 1/5, where it is appropriate to write

T=f/<5, U(T)=0(T), (3.9)
and 0 satisfies

O'(f) = - 0{T)U(5T), (3.10)
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with a matching condition (Cole, 1968), that

O~l-T+0{T2)

as ?->0 (from (3.8)). Thus asymptotically, for 7 ~ 1, (3.10) may be written

O'(f)~-0(f)[l-8f+0{5z)y, (3.11)
putting

tf~£?0 + <5£?1 + . . . . (3.12)
one easily finds

00 = Ae~ ,

C\ = <Bfc4?Vr l }

and the matching condition that 0 ~ 1-T+O(T2) as T-> 0 then implies

4 = 1 , B = 0; (3.14)
therefore

0 ~ e- r[l+i<5T2 + O(52)] = exp [ - f+i<5f 2+O(<52)]. (3.15)

The asymptotic expression for 0(5T) in (3.11) is no longer valid when 5T ~ 1, and
this suggests the choice of a new time scale

f=T/<5, (3.16)
and from (3.15), we define

£ = exp[-4>(f)/5], (3.17)
whence <p satisfies

^ [ ^ ^ ] (3.18)
and the matching condition as f -> 0 is, from (3.15),

4>~f-±T2 + O{f3) asT-0. (3.19)

From (3.19), it follows that we may replace <f>(5T) by its asymptotic form in (3.18); we
obtain

<̂ ' = e x p [ - f + ^ T 2 + O ( ( 5 2 ) ] ~ c - ^ [ l + ^ T 2 + O(52)], (3.20)

and the asymptotic expansion for <f> is easily found to be

0 ~ a - e " ? ' + ( 5 [ 6 - { l + f + i f 2 } e - f ] + O(52), (3.21)

where matching as T -> 0 dictates
a = b = 1, (3.22)

so that
^ ~ l - c - ' " + 5 [ l - { l + r+ iT 2 }e - ' ' ] + O(52). (3.23)

No further expansions are necessary, since although the asymptotic form of (f>{5T)
used in (3.20) is invalid when dT ~ 1, nevertheless by this stage <\> is transcendentally
small, and so further approximations are asymptotically irrelevant. We can now
match (3.23) into the entry phase of the next pulse.

Suppose y has period pin t, y(t-p) = y{t). It follows from (3.1) and (3.3) that

(3.24)
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We now match <f>{f) into U(T+), where

T+ = r e " ' " = fe~"l52 (3.25)

(so 7"1" « 1 when f « p). We introduce an intermediate variable T, by putting

T + = r,Tn, f = 82r,T,e°>, « 5 V > l/t]» 1. (3.26)

(We assume that <52eO(' = exp [a(p — 2)] £> 1, i.e. p > 2 which is virtually obvious.)
Recall that (

U(T) = 0(t) = cxp [-^>(f-)/5], (3.27)
and from (3.24)

[/(T) = exp(-ap)[/(T+); (3.28)

it follows from (3.23), (3.26) and (3.27) that

U ~ cxpi-[l-^f- +l-d + f+if2)e-T+ 0(5)

= exp{-[(l/5)+l+O(5)+TST]], (3.29)

where TST denotes transcendentally small terms {O[exp [-51t)Tne?ip)~]}. But also
(3.28), (3.26) and (3.8) show that

(3.30)

Supposing that we can choose r\ exponentially small in 8, matching now yields the
period p as

+0(5)]. (3.31)

This confirms a posteriori the assumption on r\.

4. Results

In Section 3 we have given an explicit representation of the periodic solution of
(2.1) as a -K». We now derive some quantities of interest, and compare them with
numerical results.

The period is already given by (3.31). It is

p~i[exp<z + l+O(e-a)]. (4.1)
a

The maximum value of y, y^^, occurs when t a l , i.e. T ~ 1, and then y = 7u/<5.
y = y>mmx when / = 0, i.e. when TS+u = 0, hence from (3.11),

so
t=l+5+O(S2), (4.2)

and then using (3.15), we find
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i.e.
3W~exp(«- l )+ ie - 1 +0(e- ) . (4-3)

The minimum occurs when f~ 1 (t ^ 2), when y ~ (T/<52)exp [-0(f")/<5]. We
have / = 0 when 5 = f<(>'(f), whence (3.20) gives

]. (4-4)

This shows T ~ In (l/<5), and so neglect of the higher order terms gives a less accurate
res.ult. Let Tm be the greater root of

Tme~T- = 5 . (4.5)

(the smaller is 0(5) and associated with the maximum). At f = Tm, we have from
(3.23)

(4.6)

with an error of 0(5) in the exponent. A rough approximation is, since Tm ~ a,

ymin %aexp(-c" + 2 a - l ) . (4.7)

It is now clear why the flat phase appears so close to zero. Although the period and
the maximum grow exponentially with o, the minimum is doubly exponentially small,
and so the exponential growth phase has to recover from an exceedingly low value.
Even for a ~ 3, ymln ~ 10~6, whereas the period and maximum are both about 7.

In Table 1 we show analytical and numerical results for y ^ , ymin and p; the

TABLE 1

Comparison of numerical solution (upper figures) and analytical solution (lower figures) of the
logistic delay equation for various values of a

a

1-7

2-0

2-5

3-0

3-3

3-5

3-6

1-943
2198

2-902
2-902

4-680
4-666

7-582
7-573

10-16
10158

12-37
12-366

13-65
13-648

ymin

0-334
0-296
0-685X10"1

0-794x10-'
0-160X10"2

0-181 xlO"2

0-173 xlO"5

0-188 xlO"3

0-290x10-"
0-312 x l O ' 8

0-111 xlO"1 0

0-177 xlO"1 0

0422 xlO"1 2

0-444X10-'2

P

410
3-808
4-40
4195
5-36
5-273
7-07
7-029
8-55
8-519
9-77
9-747

10-46
10444
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analytic results are taken from (4.1), (4.3), (4.5) and (4.6), the numerical results from a
solution'of the equation using a fourth-order Adams-Bashforth method, with step
size either 001 or O005 at higher values of a for numerical stability. The agreement is
excellent, even for moderate a.

5. Discussion

Exponentiation of the time ensures that the small parameter is really exp —a, not
I/a, and so the largeness of the delay is enhanced. This is why even moderate delAys
give very small minima. In the context of population biology, this is very important,
since probabilistic effects become relevant when the deterministic population level
becomes of the order of one individual. In this way, complete extinction may be
effected. Thus a delay in the system is one way of eradicating a population. This idea
was used by Dibrov et al. (1977b) in studying the response of the humoral immune
system to an infecting antigen. They also obtained oscillating solutions with flat
phases similar to that evident in Fig. 1. In fact, one can extend the analysis of the
present paper to their model (Fowler, 1981).

As well as delay equations, other systems display the same slow exponential growth
from the zero state, followed by a rapid pulse-like excursion; for example the Lorenz
system (Lorenz, 1963) has this behaviour, as well as a postulated physical model for
thermal turbulence (Howard, 1966); in the physical sciences, jdkulhlaups (Nye, 1976)
and spruce budworm populations (Ludwig, Jones & Holling, 1978) also exhibit the
same behaviour, and thus the ideas used here may be applicable in a number of other
contexts.

I would like to thank Rody Ryan, who performed the numerical computations in
this paper as part of the M.Sc. program in applied mathematics at Trinity College,
Dublin.
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