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We summarize some recently obtained results on real and complex Lorenz equations and discuss their possible significance 
in relation to real fluid dynamical processes. 

!. Why Lorenz? 

Two seminal papers (Lorenz [41], Ruelle and 
Takens [65]) in the recent development of the study 
of aperiodic motions in dynamical systems both 
proceeded from a motivation suggested by the 
phenomenon of turbulence in fluid mechanics. 
Indeed, 'turbulence' is often referred to in recent 
dynamical studies, and presumably, much of the 
continuing interest in such chaotic and aperiodic 
trajectories in dynamical systems stems from the 
hope that new and exciting results will provide an 
impetus and a methodology for understanding old 
and long-standing problems in the theory of tur- 
bulence. 

To some extent, it is clear that this has already 
happened: the phenomena of period doubling 
(May [47], Feigenbaum [14] and Collet and Eck- 
mann [7]), intermittency (in the sense of Man- 
neville and Pomeau [43]), and hysteresis involving 
multiple stable states, have been widely observed in 
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difference equations (above references; also Tresser 
et al. [69]), differential equations (Robbins [61], 
Fraser and Kapral [22], Franceschini and Tebaldi 
[21]), differential-delay equations (May [48], Hopf 
et al. [34]); they are also constituent parts of 
various experimentally observed routes to tur- 
bulence in convective and Taylor-Couette flows, as 
reviewed by Ott [51], Eckmann [13], and Swinney 
(this volume) and reported by many authors, for 
example Libchaber and Maurer [38, 39], Libchaber 
et al. [40], Maurer and Libchaber [45, 46], Fen- 
stermacher et al. [15], Di Prima and Swinney [10], 
Gollub and Benson [28]. Other 'real-life' systems 
exhibiting the same sort of chaotic behaviour are 
Nicholson's blowfly populations (Gurney et al. 
[29]), white blood-cell populations and the respira- 
tory system (Mackey and Glass [42]), chemical 
oscillations in the Belousov reaction (R6ssler and 
Wegmann [64]) and the irregular reversals of the 
earth's magnetic field (Robbins [59, 60]), and at 
least some of these can (at least in principle) be 
realistically modelled by a set of ordinary 
differential equations. 

However, the wealth of phenomena and of sys- 
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tems to which they apply (both model and experi- 
mental) obscures the fact that certain dominant 
and enduring concerns of fluid dynamicists, that is, 
the study of transition and turbulence in shear 
flows (fiat plate, pipe flow, Couette flow, Poiseuille 
flow) and in convection in an unbounded layer, have 
yielded relatively little to these new techniques; 
consequently, turbulence of these types has re- 
ceived scant attention in the dynamical systems 
literature. Other experiments (Taylor-Couette 
flow, rotating annulus) yield results which can be 
interpreted by dynamical systems results, but not 
predicted. Our purpose in this paper, therefore, is 
to outline some possible ways in which the study 
of simple dynamical systems, and in particular the 
Lorenz equations (and a complex generalisation 
thereof) may have some bearing on certain situ- 
ations in fluid experiments where some kind of 
'turbulence' is observed. 

Although the equations which bear his name 
were 'derived' (via truncation) from a model of 
two-dimensional convection, Lorenz was not inter- 
ested in convection per se, but in the possible 
deterministic aperiodicity of atmospheric motions. 
It is thus remarkable that in the study of idealised 
models of baroclinic instability which are designed 
to simulate certain features of the atmospheric 
circulation, the Lorenz equations have reappeared, 
but now being derived in a formal manner by the 
method of multiple scales in situations where the 
basic flow is marginally unstable. 

Baroclinic instability in the atmosphere occurs 
when an equilibrium state can be maintained in 
which surfaces of constant density are not parallel 
to surfaces of constant gravitational potential. 
Some potential energy is available to be converted 
into kinetic energy of fluid motions. If small dis- 
turbances can grow at the expense of available 
potential energy, the fluid is said to be baro- 
clinically unstable. The simplest theoretical and 
experimental model which displays baroclinic in- 
stability is the so-called two-layer model which 
consists of two immiscible fluids, the lighter over- 
lying the heavier and in relative motion, which are 
rapidly rotated about their vertical axis. Instability 

occurs at some critical shear in both the inviscid 
and the viscous cases although the neutral curves 
differ in each case. For the inviscid case, Pedlosky 
[53, 55] calculated the amplitude equations in the 
neighbourhood of the critical point and found that 
the amplitude of a disturbance A(X, T) modu- 
lating a carrier wave was governed by the equa- 
tions 

+c,-ff~ + c 2 ~  A = c t A - f l A B ,  (la) 

These equations were subsequently shown to be a 
completely integrable system by Gibbon et al. [23] 
by use of the inverse scattering method. It is easily 
shown that the sine-Gordon equation is embedded 
in eqs. (la) and (lb) when the amplitude function 
A has no phase variation. Define 

A =(2]3) -1/2 + ~ff~ ~, B = c t ( 1 - c o s ~ ) / ~  

(lc) 
and (la, b) reduces to 

+ c~ ~-~ ~ + c2 ~-~ • = ct sin ~. (ld) 

Consequently, a form of pendulum behaviour is 
contained in this model. Similar results have been 
found by Moroz and Brindley [49] using a con- 
tinuously stratified model (see Drazin [11, 12]). 
Gibbon and McGuinness [25] have shown that (la) 
and (lb) are typical for a certain class of dispersive 
unstable systems in general, one further example 
being the self-induced transparency equations of 
optical pulse propagation. 

The connection with the Lorenz model comes 
when one wants to consider a weakly viscous 
model instead of the purely inviscid case. This limit 
has been studied by various authors, the first being 
Pedlosky [54, 56] followed by Hart [32], although 
at the time it was not recognised that Lorenz type 
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equations had been produced. This was later real- 
ised by Pedlosky and Frenzen [57] and Gibbon and 
McGuinness [24]. Again there is a connection with 
optics, since it was Haken [31] who showed that the 
laser equations (which can be expressed in the form 
of eqs. (la) and (lb) when damping is excluded) 
can be transformed into the Lorenz equations 
when spatial scales are excluded. How the Lorenz 
equations occur in all these examples as a class (see 
Gibbon and McGuinness [24, 26] can most easily 
be described intuitively by considering eqs. (la) 
and (lb), in the spatially independent case when 
weak viscosity (i.e. damping) is added. This is done 
by the phenomenological introduction of weak 
viscosity (specifically viscous term ~ amplitude 

perturbation). This is a distinguished limit which 
links a purely dispersive to a purely dissipative 
instability. It can be seen intuitively that the class 
of examples governed by (la, b) in the purely 
dispersive limit, become 

d2A dA 
dT-- 5 + A~ ~-T = ~A - ~ A B ,  

(2) 

~ T  + A2B d = d-T (i A 12) + A31A [2, 

when weakly viscous terms are added. A~ and ~ are 
complex numbers if weak dispersive effects are also 
added (e.g. weak beta plane in the two layer 
model). A similar form of eqs. (2) has been found 
by Moroz and Brindley [49] for the continuously 
stratified model of baroclinic instability. 

Under the transformations 

t = f I T ,  (2 = Re(A0 - ½A3, 

x = (2/~)'/2f~ - ' ,4,  (3) 

Z=2/~I2-1A3 -l ,  

eqs. (2) can be rewritten as (Fowler et al. [20], 
Gibbon and McGuinness [26], Gibbon [27]) 

= - a X + a Y ,  

= (r -- Z ) X  - a F, (4) 

2 = ½(xY* + x *  Y) - bz ,  

where r = r I + ir2, a = 1 - ie, X = d X  /dt,  * denotes 
complex conjugate, and 

a = A3/2(2, b = A2/Q,  r I = 1 + 2 Re(cQ/A3f2, 

r 2 = [2 Im(c 0 + A3 Im(AO]/I2As, e = - Im(A0/f2. 
(5) 

For example, a weak /3-effect in the two-layer 
model produces complex A~ and ~, and so complex 
r and a, real b. In such circumstances, we call (4) 
the complex Lorenz equations. If no weak dis- 
persive effects are present, r = r~ is real, a = 1, and 
we regain the (real) Lorenz equations. For higher 
dimensional models (e.g. the baroclinic models 
with more than one cross-stream mode), one can 
obtain an infinite set of Lorenz-type equations 
(Brindley and Moroz [5], Hart  [32], Booty et al. 
[4]). 

Thus we see that, at least in some systems, 
particularly the baroclinic models, one can really 
expect the behaviour of the Lorenz equations to 
have some bearing on the system. In the following 
two sections, we will discuss some recent results on 
the behaviour of real and complex Lorenz equa- 
tions, and their possible implication both for bar- 
oclinic and other models. 

2. 'Real' behaviour 

The behaviour of the real Lorenz equations is 
well known. As the bifurcation parameter r is 
increased (dissipation is decreased), the origin bi- 
furcates to two non-trivial steady states, which 
undergo subcritical Hopf  bifurcation at a critical 
value r c. Above re, one can see a bewildering variety 
of motions, including alternating r6gimes of cha- 
otic and periodic orbits separated by intermittent 
and period-doubling transitions. In addition 
(Fowler and McGuinness [18]), hysteresis occurs 
between periodic and chaotic/periodic solutions. 
All these phenomena, and a rationale which helps 
an understanding of them, are detailed in the 
recent book by Colin Sparrow [67]. Geomet- 
rically, one can understand the existence of a 
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strange invariant set by the occurrence at some 
value r = r h of  a homoclinic orbit (that is, an orbit 
which begins and ends at an equilibrium point of  
the equations). As r passes through rh, a homo- 
clinic 'explosion' takes place which 'produces' an 
infinite number of  periodic and aperiodic orbits. 
These orbits can only disappear in further homo- 
clinic orbits, period-doubling cascades (reversed) 
or Hopf  bifurcations. Topological considerations 
imply that there will be many period-doubling 
windows whose 'function' is to remove orbits: this 
suggests that it might be useful in any system to 
concentrate more on the homoclinic events, rather 
than on the myriad period-doubling events which 
these sprawn, except insofar as the observation of  
a period-doubling cascade may indicate the exis- 
tence somewhere in parameter space of homo- 
clinicity: of  course, these remarks may need adjust- 
ment in higher dimensions. 

Obviously, the weakly nonlinear baroclinic mod- 
els contain homoclinicity. This also occurs (hetero- 
clinicity, in fact) at a codimension two bifurcation 
point in double diffusion (Knobloch and Proctor 
[36], Da Costa et al. [8]) where one might be able 
to prove the existence of  'chaos' using essentially a 
theorem of Shilnikov (Arneodo et al. [1]). It is an 
interesting point that the Lorenz attractor which 
obtains as a result of the homoclinicity is para- 
metrically unrelated to the sub-critical Hopf  bifur- 
cation at r,, which need not even exist at all. Thus, 
one should view homoclinic bifurcation as a new 
and separate entity, which must be analysed in its 
own right. This observation might be interesting in 
view of  the long-standing effort to connect the 
onset of  turbulence in plane Poiseuille flow at 
Re ~ 1000 with the sub-critical Hopf  bifurcation at 
Re = 5772 (e.g. Stewartson and Stuart [68]) by 
means of a threshold amplitude, although it must 
be admitted that it is becoming clear that such a 
threshold does play a part, by virtue of its long 
(viscous) relaxation time (Orszag and Patera [50]). 
Similar, less justifiable, efforts for pipe flow (Davey 
and Nguyen [9]) might be restored using the con- 
cept of bifurcation from infinity (Rosenblat and 
Davis [63]): however, see Patera and Orszag [52]. 

It is more obviously likely (or plausible) that 
convection may contain homoclinicity of some 
kind, particularly in view of the experimental 
observations of  period-doubling already cited. In 
fact, it is the homoclinicity in the Lorenz equations 
(a primitive 'model' of  convection) which is re- 
sponsible for the non-monotone difference map 
relating successive maxima of Z. One might ask 
whether there is any way to analytically tackle the 
homoclinicity in these equations, and thereby 'pre- 
dict' the chaotic behaviour by producing a Lorenz 
map analytically. To do this, one needs some help, 
and it turns out this is available in the form of a 
region in parameter space where r and tr are both 
large (and comparable). In this case the solutions 
behave relaxationally, as shown in fig. 1, consisting 
(for X and Y) of a series of spikes interspersed with 
flat 'quiet' periods. In the limit r/a ~C(1),  
b/tr ,~ 1, one can use asymptotic techniques to 

'solve' the equations, and produce a difference 

1 J~ Jl 
T 

J l • L J 
T 

T 

Fig. 1. Relaxational behaviour of X, Y and Z versus time in 
the real Lorenz equations at parameter values r =240, 
a = 300, b = l .  



130 A.C. Fowler et al. The real and complex Lorenz equations 

Phi 

. . j  ..J 

i f ~ /  

../ 

7k~ta  

Fig. 2. Difference map for high r and a (r = 160, a = 100, 
b = 1) relating successive maxima of Z in the real Lorenz 
equations• Here the nth maximum is Z , ~ r [ l  +0];  the 
(n + l)th is Z ~ r [ l  +~b] and the curve is plotted from the 
analytic results of Fowler and McGuinness [17]: the first ten 
cusps are indicated. 

map, such as shown in fig. 2 (Fowler and 
McGuinness [17]). Using this analytic map, we 
have been able to predict quantitatively the onset 
of period doubling, and hysteresis (or intermit- 
tency) with a fair measure of sucess. 

What we wish to draw attention to here, how- 
ever, is the special pulse-like nature of the solu- 
tions. Such pulses occur in many other kinds of 
system (logistic delay equation, geodynamo, spruce 
budworm population, j6kulhlaups): see Fowler 
[16] and discussion therein. More germanely, tur- 
bulence in shear flows is well known to be intermit- 
tent or 'bursty' in character (Maslowe [44]), and an 
attempt has been made to formalise these obser- 
vations in an analysis which incorporates two 
different time scales (Landahl [37]): we recall also 
the slow viscous time scale of two-dimensional 
relaxation and the fast advective time scale of 
three-dimensional instability (Orszag and Pa, tera 
[50]). 

Virtually the only quasi-analytic theory of con- 
vective turbulence at high Rayleigh number is the 
'bubble' model of Howard [35], incidentally re- 

cently much espoused by geophysicists, which has 
certain experimental support (e.g. Tritton et al. 
[72]), and seems never to have been experimentally 
contradicted. In this model, long quiescent conduc- 
tive phases in which thermal boundary layers grow 
into an isothermal fluid are interspersed by short- 
lived, violent convective overturns in which the 
unstable boundary layers are eradicated. This 
model requires Ra (Rayleigh number) and a 
(Prandtl number) to be large for its validity. The 
interesting thing is that if we interpret X, Y and Z 
in the Lorenz equations in terms of their original 
physical variables (Lorenz [41]), we find that Z is 
the vertical departure from the conductive tem- 
perature profile, Y is the horizontal departure (so 
producing buoyancy), and X is essentially the 
velocity. At high Ra (r) and a, we find relaxational 
motions in the Lorenz equations, in which there 
are long 'quiet' phases, in which X ~ 0 (almost no 
motion) and Z decays exponentially (thermal 
boundary layers grow), interspersed with rapid 
pulses in which Z jumps up, and X becomes 
significant (convective overturn). In other words, 
we s e e  Howard's postulated P.D.E. solution in the 
Lorenz truncation! This obviously suggests a 
means whereby one might explicitly 'solve' the full 
convection equations: suffice it to say that this 
problem has not been satisfactorily resolved as yet. 
We might also mention that the slow phase is 
essentially a linear problem, recalling the fast linear 
three-dimensional instability of Orszag and Patera 
[50]. 

What we are tentatively suggesting is that it may 
be possible to gain a small analytic foothold on the 
problem of convective turbulence at high Ra by 
using direct asymptotic methods on the full equa- 
tions (and implicitly hoping these equations admit 
homoclinic solutions), rather than trying to get 
there through a series of transitions, which appar- 
ently precludes any moderately simple explicit 
computation. One also retains fully nonlinear dy- 
namics in the solutions, and there is no limitation 
as to being close to any curve in parameter space 
(in fact, as Ra and a ~ o o ,  one is really in a 
neighborhood of infinity, quite a large area). Such 
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an idea is apparently novel in convection (though 
many authors have studied steady solutions when 
Ra--+~, e.g. Roberts [62]), but has been touched 
on in shear flow, where the asymptotic nature of 
flow disturbances as R (Reynolds number)--+ ~ has 
long been a consideration in both linear and 
non-linear studies (Maslowe [44], Benney and Ber- 
geron [3]), as well as in experiments, where the 
threshold nature of transition has been recognised 
since the original work of  Reynolds [58]. 

3. 'Complex' behaviour 

w h e r e f i s  rotationally invariant, that is, there is a 
rotation matrix R(~) representing a rotation of  the 
x-axes through an angle ~, such that 

R f ( x )  = f ( R x ) ,  (9) 

and in terms of  R, the exact limit cycle has the form 

x = R(~ot)Xo, (10) 

where xo is constant. Such a solution is possible, 
using R(~)R( f l )  = R ( .  + ~), ifxo and ~o satisfy the 
nonlinear algebraic eigenvalue problem 

When r and a are complex, the set of  equations (4) 
exhibits a notably distinct sequence of bifurcations 
to those of the real Lorenz equations. Recalling 
r = r I + ir2, a = 1 - ie, we find that for 
rl > rlc = 1 + (e + r2)(e - o'r2)/(O" + i )  2, the origin is 
oscillatorily unstable, and a Hopf  bifurcation to a 
limit cycle occurs. M oreover, this limit cycle takes the 
exact form 

[ X = A e i~', Y = 1 + - -  A e iwt, Z = [a  [2/b, (6) 

where 

a(e  + r2) ¢o -- [A [2 = b ( r ,  - r , ¢ ) .  (7) 
a + l  ' 

To find an exact limit cycle in a nonlinear system 
is remarkable, and worthy of  some comment. First, 
we might hope that a corresponding exact limit 
cycle might exist in the full equations: for example, 
in the underlying vorticity equations of  the two- 
layer and continuously stratified models, although 
this might be modulationally unstable in much the 
same way as the Benjamin-Feir instability [2] 
occurs. However, such exact solutions have yet to 
be found. More realistically, the exact limit cycle in 
(4) is really due to the fact that when written as a 
fifth order differential system, the system can be 
put in the form 

.~ =f (x) ,  (8) 

f ( x o )  = oJR'(O)xo. (11) 

The rotational symmetry of (9) suggests an analogy 
with the rotational invariance of the baroclinic 
models: thus one might hope that (for example) the 
steady wave r+gime in rotating annulus experi- 
ments (Hide and Mason [33]) might be susceptible 
to a representation of the form (10), and indeed 
one might hope for similar results for other rota- 
tionally invariant systems, e.g. Taylor vortex flow. 

For the complex Lorenz equations, one can do 
explicit stability analysis of  the limit cycle, and we 
find that a Hopf-like bifurcation to an invariant 
2-torus occurs at a value r~ = r'~c > r~, and the form 
of  the corresponding doubly periodic motion is (in 
terms of (8)) 

x = R ( ~ t ) u ( ~ t ) ,  (12) 

where u is periodic, and when I r , -  r~c I ",~ ~2, 

a3 = ~o + 69(E2), 

= f2 + (_9(E2), (13) 

It ----- X 0 q- E {U a e iff' -k- (*)} q- O(E2); 

here ~ is the marginally stable frequency of the 
perturbation to the limit cycle. Eq. (13) is obtained 
by using the method of  multiple scales, but one 
may ask whether the special form of  (12) extends 
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beyond the limited range of (13). It turns out 
(Fowler and McGuinness [19]) that one can do 
explicit analysis at rl ~> 1 (following Robbins [61], 
Shimizu [66], Sparrow [67]) which confirms (12) in 
this limit. Also, spectral analyses at intermediate 
values all support this form of the torus. Thus, the 
rotational invariance again gives a special form to 
the doubly periodic motion, and one might ask if 
such a form is of relevance to certain rotationally 
invariant experimental systems. 
The bifurcation to a 2-torus in the complex Lorenz 
equations is numerically found to be subcritical, as 
its real counterpart is also. (See fig. 3 for a stability 
map in rl - r2 space). As rz is reduced, one observes 
(numerically) a period-doubling cascade analogous 
to that in the real Lorenz equations (Robbins [61]): 
this is easily seen in phase plots of Ixl 2 versus I YI 2 
for example (which removes the precessing fre- 
quency O); we do not know if this cascade is 
preceded by frequency locking (e.g. Maurer and 
Libchaber [45], but conjecture that it is the pre- 
cessing limit cycle u which period-doubles, and we 
also conjecture that the presence of a period- 
doubling torus is due to the occurrence of a 
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Fig. 3. Parameter space diagram in the r 2 versus r t plane 
depicting regions of stability. Between the curves A and C the 
limit cycle is linearly stable (r I < r~). The finite amplitude 
2-torus is numerically observed below the approximate dashed 
curve B and loses stability by period doubling below C as r 2 
is reduced. The 'Hopf'  bifurcation of the limit cycle to a 
2-torus on C is sub-critical, the (unstable) torus existing for 
r 2 above C. Here a = 2 ,  0 = 0 . 8  and e = 3 r  2. 

homoclinic torus at some point in parameter space: 
this may be suspected on analytic grounds at high 
r~ (Fowler and McGuinness [19]), and probably 
also at high rt and a, although we have not done 
the corresponding analysis in this case. See also fig. 
8 of Fowler et al. [20], where the chaotic torus gets 
very close to the origin. 

Lastly, some comments on scales. In our dis- 
cussion of the complex Lorenz equations, we have 
deliberately omitted inclusion of long space deriv- 
atives ~/~X, as in (1). Apart from simplicity, there 
is one good reason for this. In many of the real 
laboratory systems to which we have referred, the 
geometry is essentially finite in the direction of 
wave propagation. Thus in the rotating annulus 
experiments, there is really no X scale near crit- 
icality, and purely time-dependent motions should 
ensue (e.g. amplitude vacillation). It is possible that 
as the supercriticality (3, say) and the wave- 
number increase, there comes a point where (nu- 
merically) the circumference is of a length 
X ~ C(I). Then the appropriate spatial derivatives 
might enter, with a requirement of periodicity. It is 
also plausible (but a guess) that when A thus 
increases, the first appearance of X dependence is 
as a bifurcating travelling wave (wave-number 
vacillation?), as is well known to occur in 
reaction-diffusion systems as the domain size in- 
creases. 

Part of the achievement of Pedlosky was to show 
that the dissipation parameter r (=  E1/2/E in the 
baroclinic problems, where E is the Ekman number 
and ~ is the Rossby number) defines a distinguished 
limit when r ~ [A [1/2. Thus when r >> [A [1/2, viscosity 
dominates, and amplitude equilibration occurs; 
when r ,~ ]A ]1/2, one obtains conservative (e.g. sine- 
Gordon) equations whose amplitude depends en- 
tirely on initial conditions, and thus experimentally 
will be very susceptible to noise. If r ~ IA [1/2, one 
regains the rich structure of the Lorenz equations. 
When r ,~ [A I 1/2, however, conservative waves (e.g. 
solitons) will evolve over a long viscous time scale, 
no matter how small r is: in a sense, the viscous 
time scale is the true scale over which transients die 
out, and the 'state' of the system should be under- 
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s tood  in these terms.  Even  if  one  waits  a viscous 

t ime, however ,  it seems likely tha t  subs t an t i a l  noise  

cou ld  d r o w n  the signal.  In  this sense, conse rva t ive  

e q u a t i o n s  such as s i n e - G o r d o n  are n o t  the whole  

story,  pa r t i cu la r ly  for c losed sys tems (e.g. r o t a t i ng  

annul i ) :  it is well u n d e r s t o o d ,  for  example ,  in 

convec t i on  exper iments ,  tha t  one  m u s t  wai t  >~ a 

conduc t i ve  t ime scale for pa t t e rns  to evolve to a 

s teady state (e.g. Busse [6]). 

4. Concluding remarks 

Flu id  dynamic i s t s  t end  to be o f  the o p i n i o n  tha t  

s tudies  o f  chaos  in s imple  d y n a m i c a l  systems are 

n o t  o f  pa r t i cu l a r  use in the ' rea l '  p r o b l e m s  o f  shear  

flow and  convec t i on  (and  pe rhaps  o the r  ' n a s t y '  

examples) ,  a l t h o u g h  they have u n d o u b t e d l y  given 

u n d e r s t a n d i n g  to a wide var ie ty  o f  o the r  'weak ly '  

t u r b u l e n t  p h e n o m e n a  in fluids, chemical  reac t ions ,  

p o p u l a t i o n  dynamics ,  etc. O u r  a im here has been  

to give some  poss ib le  reasons  why  the s tudy  o f  

even one  s imple  set o f  e q u a t i o n s  m a y  help u n d e r -  

s t a n d i n g  o f  physical  systems,  b o t h  by  direct  appl i -  

ca t ion ,  a n d  by  indi rec t  ana logy .  I f  a n y  o f  these 

ideas even tua l ly  bea r  fruit ,  t hen  the effort will have  

been  wor thwhi le .  
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