
Int. J. Multiphase Flow Vol. 18, No. 2, pp. 195-204, 1992 0301-9322192 $5.00+0.00 
Printed in Great Britain. All rights reserved Copyright © 1992 Pergamon Press pie 

B U B B L Y  F L O W m I  

A SIMPLIFIED MODEL 

P. E. LISSETERI~ " and A. C. FOWLER 2 
~National Power Technology & Environmental Centre, Kelvin Avenue, Leatherhead, 

Surrey KT22 7SE, England 
2Mathematical Institute, Dartington House, Little Clarendon Street, Oxford OX1 2HS, England 

(Received 8 May 1989; in revised form 23 September 1991) 

Abstract--A simple set of equations for bubbly flow through a vertical tube is rigorously derived by means 
of a scale analysis from the realistic equations posed by Pauchon. It is shown that under steady flow 
conditions the void fraction will relax from its value at the inlet towards an asymptotic value within only 
a short distance of the inlet. The relationship between the inlet void fraction and the imposed pressure 
drop is discussed, and a simple expression is derived for the equilibrium void fraction. 
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1. I N T R O D U C T I O N  

In the field of two-phase flow, there is a need for models that are not only realistic, but are also 
simple in form. Simplicity is an asset in large computer codes such as are used to analyse cooling 
systems for nuclear reactors. Simple models are also useful when sophisticated computing facilities 
are not readily available. In this paper we shall simplify a recent model for bubbly flow through 
a vertical tube. The simplification will be done in a rigorous manner. Asymptotic methods will be 
used to determine which terms in the equations are small and may therefore be neglected. This 
validity of the resulting set of equations will then be tested by using them to obtain a simple 
expression for the void fraction in steady bubbly flow, and comparing the predictions of this 
expression with experimental data. 

The model that we shall be simplifying is the one recently presented by Pauchon & Banerjee 
(1988). It is a one-dimensional model for adiabatic bubbly flow through a vertical tube, 
the equations having been derived from the full three-dimensional equations by performing 
instantaneous space-averaging. The continuity and momentum equations for the gas and liquid 
phases are as follows: 

(£GP~), + (£cPGUc)~ = 0, [la] 

((LPL)t + (ELPLUL)~ = 0, [lb] 

(Ec PG UG )t + (D~ ec p6 u ~ )~ + E~ptz + £G PL CvM [(UGt + UG UG~ ) -- (ULt + UL Ut~)] 

2 
= --E~p~g ---DfiEOpL(U~ -- UL)IU~-- ULI [lc] 

and 

(EL PL UL )t "Jr" ( D  L E L PL U 2 )z + ELPGz - -  £G PL CVM [(g/Gt + UG UGz) - -  (ULt "~ UL ULz)] 

2 2 2 
+ (HELPL(UG --  UL)2)z ~--- - - ~ f w P L U L  --  £ L P L g  + ~ f i E G P L ( U G  - -  UL)[UG - -  /'/El- [ld] 

The subscripts " t "  and "z" indicate differentiation with respect to time and distance along the tube, 
while the subscript K indicates that the quantity pertains to the Kth phase (K = L for liquid or 
G for gas). The symbols er, Pr and ur represent, respectively, the proportion of the cross-section 

tNte Seward. 

195 



196 P.E. LISSETER and A. C. FOWLER 

occupied by the phase K, the density of phase K and the velocity of the Kth phase. The volume 
fractions, Ex, satisfy 

EL = 1 - Eo, [2] 

and the two phases are assumed incompressible, so that the densities, PK, are constant. 
Other symbols in the equations are: DL and DG, the profile coefficients for liquid and gas; PG, 

the mean pressure associated with the gas inside the bubbles within some cross-section of the tube; 
D, the diameter of the tube; CVM, the coefficients of added mass; H, which represents the combined 
effects of Reynolds stresses and the distortion of liquid streamlines by the bubbles; fw, the friction 
factor for the shear stress exerted at the tube wall; and f ,  the friction factor for the interfacial shear 
stress. Pauchon & Banerjee (1988) used the following values for CVM and H, which are appropriate 
for single, isolated, spherical bubbles: 

Cvu = ½ [3] 

and 

H = ¼ + { EG. [41 

(They also derived expressions for CVM and H which sought to account for interactions between 
bubbles; however, when used to derive speeds for voidage waves, these other expressions did not 
appear to give better results than those obtained in [3] and [4], and so we shall use the latter here.) 

For the interfacial friction factor Pauchon & Banerjee (1988) used 

3 D  
f = 8 K ¢° '  [53 

where Db is a representative bubble diameter and cD is the drag coefficient, which they defined to 
be 

24(1 + 0.1 Re2p) [6] 
CD = Re2p ' 

where Re2p is the two-phase Reynolds number: 

Re2p = Db PL (UG -- UL )eL., [7] 
r/L 

r/L being the liquid viscosity. For the data that we shall be analysing in this paper it is appropriate 
to use a different expression for the drag coefficient. We shall use 

tCDb [1 + 17.67(E[/2)6/7] 2 
Co= 2 (18.67E[/2)2 , [8] 

where 

4 /g(pL 2 PG) [9] 
o" ' 

g is the acceleration due to gravity and a is the surface tension. This expression for CD was derived 
by Ishii & Zuber (1979) for flows in Newton's regime, i.e. when 

Re2p ~> 40. [10] 

Ishii & Zuber (1979) argued that [8] for CD could also be applied to bubbles which are distorted, 
which occurs when the flow satisfies 

where 

and 

/ \ l+~U 
0.1 l [ ~ } k ,  , /<  r/L[g(PL- PG)]I/4(pLff3/2) I/2, 

= 0 .o55{[1  + 0 .01(z )* )3 ]  " - 1} 3/' 

D* = Db[PL(PL -- PG)g]t/3r/~-2/3. 
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For the wall friction factor we use the Blasius relation (Mercadier 1981, p. 81): 

0.314 Re/. -'/4 
fw= 4 ' 

where 

[11] 

ReL = PL UL EL/) [12] 
~/L 

This completes the specification of the model we shall be considering in this paper. For such a 
model describing cocurrent flow through a vertical tube, we would expect to prescribe boundary 
conditions at the base of the tube. For the model to be deemed realistic it should therefore be 
hyperbolic. Pauchon & Banerjee (1988) have demonstrated that if the differential terms in the 
equations are formulated as outlined above, the model is indeed hyperbolic under flow conditions 
corresponding to bubbly flow. This model is therefore a reasonable starting point for our analysis. 

The boundary conditions we expect to prescribe with this model are Ec at the inlet, together with 
the two mass fluxes 

GG ~-- PG EG UG 

and 

GL -- PL EL UL" 

These give initial conditions for co, uo and UL. The system of equations can then in principle be 
solved by eliminating the pressure gradient between the two momentum equations. Once the state 
of the system (eG, uo, UL) has been obtained, then the pressure drop along the tube could be derived 
by integrating an expression for the pressure gradient from [lc] or [ld] along the tube. A prescribed 
pressure drop could be satisfied by suitable adjustment of the value of ec at the inlet. The 
prescription of boundary conditions in this manner appears straightforward; however, it contains 
many subtleties. In section 2 we shall demonstrate that the boundary condition on eG can be 
dropped when considering an asymptotic approximation for the flow away from the inlet. Possible 
repercussions of such neglect are discussed in section 3. 

2. DERIVATION OF THE SCALED EQUATIONS 

In this section we shall perform a scale analysis to determine the relative sizes of the various terms 
in [ lad] .  This will guide us in the next section, when we decide which terms may be neglected. 

We define dimensionless variables (as indicated by the superscript " +  ") in the following manner: 

z = Lz  +, t = Tt +, E L = e L e ~ ,  eG = ec E ~, 

UL = ULU~, UO= Uau~,  p =Psys+Pp +, [13] 

where P~ys is a representative pressure of the system such as the pressure at the flow outlet. The 
scales L, T, eL, eG, UL, U G and P should be chosen so that the dimensionless variables are each 
of order one. 

It is possible to specify scales in an ad hoc manner based on experimental observations of the 
values of various equations under given flow conditions. However, here we shall derive suitable 
expressions for the scales from the equations themselves. This requires only that we make some 
preliminary assumptions as to which are the dominant effects in the process described by [ lad] .  

We start by considering the momentum equation for the liquid. In the liquid, the pressure drop 
along the tube will be due mainly to the hydrostatic head. If we define the scale L to be the length 
of the pipe, then balancing the pressure gradient and gravitational terms in [ld] gives a suitable 
scale for P: 

P = pLgL. [14] 

Next, we consider [lc] in order to derive an appropriate value for eo. The reason for doing this 
will become clear in the next section. There we will discover that, although we might prescribe the 
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void fraction at the inlet (gGin) as  a boundary condition equivalent to imposing a pressure drop 
along the tube, in fact the value of the void fraction may change significantly from its boundary 
value within only a short distance from the inlet. Thus, %~n may not be a suitable value for the 
scale eG. In order to derive an appropriate value for eo, we will balance two terms in [lc]; the force 
on the bubbles due to the pressure gradient and the opposing interfacial friction force, as given 
by [5] and [8]. Because the void fraction is small in bubbly flow, it is possible to expand [8] as a 
power series in (eGE6). The algebra is recorded in detail in the thesis by Seward (1988); here we 
merely note that by doing this, and by using [14] for P, we can derive an approximate expression 
for %: 

--Xf PL GGinPGGLin + 2.66 gx LGoi._] [- Po -]2~-,j - pGGLin 1.132+ 2.69 + 2.264 [15] 
e~ ----- ~PL Gem - - -  ' 

where x is defined by [9], and G~n are the values of the mass fluxes at the flow inlet. 
If  a simpler expression had been chosen for the interfacial friction, such as [6], then it would 

not have been necessary to assume that the void fraction was small in order to derive an expression 
for e~. The assumption of small void fraction would also not have been necessary, had a value 
for e~ merely been derived numerically from a balance between a frictional term using [8] and the 
pressure relation. Thus, it is possible to derive values for eo directly from [lc] without making 
assumptions as to the magnitude of eG or the relative sizes of other parameters such as UL and 
UG. Given [15], values can be defined for Uc and UL which are consistent with the equations for 
the conservation of mass, assuming that the mass fluxes at the inlet, Grin, are prescribed: 

aGin 
uo= 

PoeG ' 

and 

e L = l - - e  G 

[16] 

[17] 

and 

e L  "~" I .  

We deduce that alternative scales for eL and ec are, respectively, 

PL GGi~ 
e G = c 1 poGLin 

and 

e L =  1. 

[20] 

[21] 

UL -- GLin [18] 
pEeL " 

For values GGin and GLin appropriate to bubbly flow, it is found that, in general, 

Uo > UL. 

An appropriate time scale for an analysis of the system is then the slowest response time of the 
system. Thus, we define 

L 
T = - - .  [19] 

rYE 

The scales [14]-[19] form a consistent set for [ l ad ] .  They are valid in general for bubbly flow and 
Seward (1988) used these scales to non-dimensionalize her equations. However, the purpose of this 
paper is to derive s i m p l e  forms for the equations. It is therefore reasonable to use [14]-[19] together 
with a particular range of flow conditions to determine the relative sizes of these scales, and hence 
arrive in a reasoned manner at a second set of scales. Using data from Mercadier's (1981) thesis 
(which we shall quote below), it can be shown that 

UL 1 
uo 
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Using these new definitions for eo and e L, and leaving the other scales defined as before, a 
particularly simple form of  [ l a d ]  results. 

If [1 a--d] is rewritten in terms of  the dimensionless variables and their associated scales we obtain: 

+ + + [22a] e~, + + (Eo uo)++ = O, 

cl eo )UL )z+ = 0, [22b] + +((1 + + - -C l£Gt  + 

UG )z+] +½ C v ~ o  [(UG,+ + + (Doe+ +2 + + + + + + + + + uo  uo~ +) - (uL, + uL u~+)]}  '~1 {~2[(eo uo ),+ + 
.~- + + + + + EGP6~+ = --62Eo --  EG (U~ --  U~)Yi + [22C] 

and 
+ + 

C l E G ) ( U  G U~- )2]Z+ --ClEo)UL )z+]+4[H (1--  ($1{[((I_clEG)UL)t++(DL( 1 + +2 I- + + + 

(½)c~ + + + - Cv~Eo [(u& + + u+ uo, +) - (ut, + + u + u~, +)]} 
+ 

~3UL +£1Co(UG--U~)2fi +. + (1 -- Cle+)pGz+ --(1 -- c l e+) - -  +2 + + 

In these equations, the dimensionless parameters are defined as follows: 

H + = 4H, C~,M = 2CvM, 

GGin PL G2in 
Cl ~ , ~1 - -  

GLin PG -- gP  [ L ' 

62 = P ~ ,  o C[infw 
PL 03 = gp2L------- ~ , 

2G2infi [1 + 2.266(cle+) + 3.785(CleG) 2 + O(CleG) 3] 

and 

[22d] 

[23] 

8g y/2 PL 
s = \ ~ ]  O~n' 

4 [-g(PL --  PG)"] I/2 

J " 

[24] 

(ii) G u n = 9 1 2 . 5 k g m - 2 s  -I, GGin=0.2957kgm-2s -I (Db=0.0060m).  

We deduce that for Mercadier's (1981) data: 

cl = O(10-1), 61 = O(10-2),  62 = O(10-3) ,  63 = O(10-3).  [26] 

This information tells us the sizes of  the various terms in [22], when these equations are applied 
to flow conditions similar to that of  Mercadier. However, we note that under other flow conditions 
the magnitudes of these scales may be slightly different. If the pipe is sufficiently long, then 6t may 

and 

a = 0.073 N m -2. 

His data for the mass fluxes, G~n, and bubble diameters, Db, lay mainly between the two 
extremes: 

(i) Gun = 91.25 kg m -2 s -l,  GGin = 0.0148 kg m -2 s -l  (Db = 0.0030 m) 

and 

The magnitude of  the dimensionless parameters can be determined using data obtained by 
Mercadier (1981). He performed experiments on bubbly flow in a cylindrical annulus, which was 
formed from two concentric tubes of  outer and inner radii 0.016 and 0.035 m, respectively. He used 
air and water in the test section at 20°C and atmospheric pressure. Typical values of  the densities, 
viscosities and surface tension would have been 

PL---- 1000kg m-3, r/L= 1.1 x 1 0 - 3 k g m - l s  -I, 

pG= 1.62kgm -3, r/G= 1.76 X 10-Skgm - I s  -I [25] 
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be of order 10 -3, or even less. Also, while the value of eG given by [15] would most likely be 
of order 10 -I under flow conditions near the transition to slug flow, the revised scale, cj, may 
be close to 1. 

3. S I M P L I F I C A T I O N  OF THE EQUATIONS FOR BUBBLY FLOW 

In this section we shall obtain a simple set of equations for bubbly flow by determining which 
terms in [22a-d] may be neglected. Our criteria for neglecting a term are that the term should be 
at most of order 10 -2 and, moreover, should correspond to a regular perturbation. A regular 
perturbation of a system of equations is a term which does not affect the order of the equations, 
i.e. which is not a highest derivative. Thus (dropping the superscript " + "  for dimensionless 
variables in this section and in section 5), algebraic terms such as 62E~ in [22c] and 63u 2 in [22d] 
are regular terms. The derivatives 

62[(EGUc), + (DcEGU2)~] [27] 

in [22c] are also regular since they are not required in order to satisfy boundary conditions at the 
inlet. This is because in [22c] the term 

½ CVM (Uc, + Uo Uc~) 

contains derivatives of u~ which are far more significant than those in [27]. Likewise, 
other terms in [22c] are more significant than [27] for the application of a boundary condition 

on £G" 
A singular perturbation is one which does alter the order of the equations. Removal of singularly 

perturbed terms generally means that not all boundary conditions can be satisfied. For example, 
if the derivative terms in the continuity equations were neglected, it would not be possible to satisfy 
boundary conditions on the mass fluxes at the inlet. These terms should therefore not be neglected 
in any simplification of [22a-d]. 

In the rest of this section we shall be concerned with the remaining terms of O(10 -2) in [22a-d]. 
That is, 

(~1 {1 CVM £G[(UGt "t- UGUGz ) - -  (UL, "4- ULULz)] } [281 

in [22c] and 

6, {[((1 - ClE.G)UL) t "JV (DL(1 -- CtEG)U[)z] n t- ¼[H(1 -- C,E~)(UG --  UL)2lz 

- -  1 C v  MEG [(UG t ..~ UG UG z)  _ (ULt -t- U L ULz)]} [291 

in [22d]. We wish to establish if they constitute a regular or a singular perturbation and whether 
or not they may be neglected. 

For clarity we shall restrict ourselves to considering the behaviour of the system in the steady- 
state. Under such conditions, the fluxes of liquid and gas entering the base of the vertical tube are 
prescribed as constant; [22a] and [22b] therefore give 

1 
uG = --  [30] 

EG 

and 

1 [31] 
UL = (1 - -  CIEG) " 

After omitting the small regular terms from [22c] and [22d], the pressure gradient may be eliminated 
between these two equations to produce an equation containing the variables e6, uG and UL. 
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Figure 1. The rate of change of the dimensionless void 
fraction with distance along the tube (~G~),+ " EG + will relax to 

its approximate asymptotic value E~0. 

Figure 2. Predictions of the voidage fraction using [36], 
compared with the data of MieaeUi (1982): 
GL(kg m -2 s -t) = 3000 (©), 5000 (O), 6500 (+), 8000 ( x ). 

Equat ions  [30] and [31] may  then be used to eliminate uc and UL from this equation,  and so we 
obtain the following equat ion for Ec: 

5, {DL C, (1 -- C l EC)E ~ + ¼[--2(1 -- el E~)3 + (2 + c l )Ec(1 -- c l ~ )3  + c l (1 -- c l EG)E ~] 

+ ½ [ ( l -  c,E~)3 + cl,3]}Ecz = - ( 1 -  c , , ~ ) , 3  + [ ( 1 -  c, ,G) - ,~1~,~(1 - c,,G)(sl-i) 

x [1 + 2.266(Cl £c) + 3.785(Cl Ec) 2 + O(cl Ec)3]. [32] 

Equat ion  [32] is a first-order differential equat ion describing how the value o f  e~ varies with distance 
along the tube. Since 61 is small, we might expect to be able to ignore the derivative term. However ,  
this is a singular perturbat ion,  and we may expect this term to be significant near the inlet. In order  
to investigate the behaviour  near the inlet we shall neglect all regular terms o f  order  cl. (Later  we 
will see f rom figure 2 that  such an assumption leads to reasonable estimates o f  the void fraction, 
implying that  the assumption is in practice valid.) Neglecting terms of  O(c~), we obtain 

(1 - E c ) '  E~. [33] 61EG~ -- S2 

If  we assume that  the gas is rising faster than the liquid at the inlet, then 

£Gin ~ 1, 

and [33] can be represented by figure 1. Clearly, the dimensionless void fraction will relax to the 
approximate  asymptot ic  value 

1 
E~ = (1 + s) [34] 

within a short  distance [of O(61), dimensionlessly] o f  the inlet. Thus,  if we are concerned only with 
the flow at a reasonable distance f rom the inlet we may  neglect [28] and [29]. 
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An exceedingly simple set of equations now results if, in addition, we neglect all the regular terms 
of  O(10 -2 ) which have been indicated in this section: 

EG, + (EG UC)z = 0, [35a] 

- c l e c ,  + ((1 - cl %)UL): = 0 [35b] 

and 

where 

(1 -- cl EG) = --Pz =f i (uc  -- UL)fUG --  ULI, [35c] 

fi = ( ~ ) [  1 + 2 . 2 6 6 ( C l E c ) + 3 . 7 8 5 ( C I ~ c ) 2 + O ( c l e ~ ) 3 ]  • 

These equations will be used in Part II of  this paper (Lisseter & Fowler 1992, this issue, pp. 205-215) 
to study the propagation of  void fraction waves through bubbly flow. 

4. P R E D I C T I O N  OF THE VOID F R A C T I O N  IN THE S T E A D Y - S T A T E  

In figure 1 we saw that under steady flow conditions the dimensionless void fraction relaxed to 
the approximate value, 

1 
~:GO = - - 7  ( l + s )  

with increasing distance from the flow inlet. The corresponding dimensional value for the void 
fraction would be 

cl E 20 = cj [36] 
(1 + s ) "  

In figure 2 we compare predictions of the void fraction made using [36] with data from the 
experiments by Micaelli (1982). Micaelli performed his experiments on bubbly flow through a 
vertical tube of  square cross-section (0.02 x 0.02 m). Air and water were used in the test-section 
at room temperature and a pressure of  6 bar. Under some flow conditions Micaelli found that the 
m e a n  velocity of  the gas was less than that of  the liquid. This was due to the way in which the 
void and velocity distributions varied over the cross-section of  the tube. However, since we assumed 
in deriving [34] that the gas was travelling faster than the liquid, we shall omit such data from our 
comparison. 

From figure 2 we see that the accuracy of  the predictions worsens as the gas flux increases relative 
to the liquid flux; i.e. as Cl increases. However, we can obtain a higher order (in Cl ) approximation 
to the asymptotic value of  the void fraction with distance along the tube. We derive this from [32] 
by setting ¢G~ = 0, and equating terms through 0 ( c l ) .  Our revised expression for the dimensional 
void fraction is thus: 

2 + O ( c ~ ) ,  [37] clE~ =C~E&+C~Ec~ + 

where 

and 

1 
E~o = - -  [ 3 8 ]  

( l+s)  

E~, = E~[2.633(1 - E~)  - 1]. [39] 

Predictions made using this expression are shown in figure 3, and we see that the accuracy is 
markedly improved at the higher values of the gas flux, and the correct trends are displayed. 

Mercadier (1981) used a wider range of liquid mass fluxes than Micaelli, and so the prediction 
of  his data (for which the flow conditions were described in section 2) presents a more stringent 
test of  our expression for the void fraction. Results from [37]--[39] are shown in figure 4. They are 
good. 
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Figure 3. Predictions of the voidage fraction using [37], 
compared with the data of Micaelli (1982). Symbols as in 

figure 2. 
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Figure 4. Predictions of the voidage fraction using [37], 
compared with the data of Mereadier (1981): 
Gc(kgm-2s-t)=91.25 (O), 182.5 (O), 273.8 (+), 365.0 

(×), 456.3 (Fq), 912.5 (ll). 

From these results we can conclude that [37]-[39] give good predictions of the asymptotic value 
attained by the void fraction within a short distance of the tube inlet. 

5. T H E  P R E S C R I P T I O N  O F  B O U N D A R Y  C O N D I T I O N S  F O R  N U M E R I C A L  
R O U T I N E S  

Since the void fraction may vary rapidly within a short boundary layer next to the flow inlet, 
numerical routines for the solution of the differential equations should be constructed with care. 
To illustrate this point we will now consider the relationship, under steady flow conditions, between 
the value of EGi, which is prescribed as a boundary condition at the flow inlet and the 
(dimensionless) pressure drop along the tube, Ap. 

From [22c,d] we have 

[ 1 l 
--PG~=EL+~I ~ '~ kEG e L / l ,  

SO 

Ap = EL0 + t$, + ; e L ( - -  ----1yl '~ + 0  2 ' 
\E~ eL/J~° 

[40] 

where 

1 
EL = (1-- ClEo), EG0=(I+s ), EL0=(1--CIE~) • 

As we mentioned in section 2, it is Ap rather than EGi n which may be considered to be the physically 
prescribed boundary condition; so that given some (dimensionless) pressure drop Ap, we might wish 
to use [40] to determine a suitable value for Eo. for use as an equivalent boundary condition. 
However, we note that in [40] 61 is O(10-2), and so EGi. is very sensitive to the value of Ap (and 
in numerical routines, to the mesh size in the inlet region.) If the pressure drop (or inlet void 
fraction) boundary condition is instead ignored, then the work of section 4 shows that satisfactory 
approximations to the flow can be made by ignoring inertial terms in the momentum equations. 
However, such an approximation will lead to a computed pressure drop, Ap ~ EL0 which will be 
inaccurate. In fact, [40] implies that if Ap is prescribed and greater than EL0, then the inlet region 
will act as a constriction to the liquid flow. On the other hand, if one tried to impose a pressure 

MF IB/2--D 
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drop which is < EL0, then no physical value of EGi . can satisfy [40] and we might conclude that the 
tube would not contain bubbly flow, but rather slug flow. 

6. CONCLUSION 

In this paper we have shown how, when given a set of realistic equations for bubbly flow, scales 
can be constructed for various quantities in a logical manner. Using these scales, the equations were 
then non-dimensionalized. It was indicated how to identify those terms which could reasonably be 
neglected from these equations, and a set of simple, time-dependent equations was thereby derived 
([35a-c]). Under steady flow conditions, the equations could be simplified still further to give an 
expression ([36]-[39]) for the approximate value of the void fraction away from the inlet region 
of the flow. Predictions of this expression were found to compare well with experimental data from 
the theses by Mercadier (1981) and Micaelli (1982). The final section of this paper considered the 
relationship between the imposed pressure drop and the value of the void fraction. It was concluded 
that numerical routines for calculating the pressure drop using the full set of equations [ l ad ]  and 
a full set of boundary conditions should take care to treat the inlet region correctly. 
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