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We examine theoretically the creep closure of subglacial tunnels cut into basal till, 
generalizing Nye's classical analysis of tunnel closure in glacier ice to rheologies in 
which the creep rate depends on effective pressure (the difference between total 
pressure and pore-water pressure). The solutions depend critically on a dimensionless 
permeability parameter. For the appealingly simple Boulton-Hindmarsh rheology in 
which strain rate depends on powers of applied stress and effective pressure, solutions 
to the closure problem may not exist; this is related to the existence of a 'failed' zone 
next to the channel, where piping occurs, and also to a non-physical degeneracy of 
the assumed rheology, whereby the viscosity is indeterminate at zero effective 
pressure. Consideration of the failed zone allows solutions to be obtained and shows 
that the closure characteristics of high permeability tills and low permeability tills 
are very different. 

1. Introduction 
The 'classical' theory of glacier sliding (Weertman 1957; Lliboutry 1968; Nye 1969; 
Kamb 1970) considers the flow of ice over an undeformable bedrock, and aims to 
derive a relation between the basal velocity ub and the basal shear stress Tb. In 
seeking this relation, one finds (Lliboutry 1968) that a third variable enters the 
equation: the basal water pressure. Therefore, to specify fully a realistic boundary 
condition for large-scale problems of ice dynamics, one must describe the subglacial 
drainage hydraulics, with a view to determining the basal water pressure. 

The 'classical' theory of subglacial drainage was expounded by R6thlisberger 
(1972), who suggested that basal water would flow (arterially) in channels (much like 
river networks) which were cut into the ice. The flow in such ' 

R6thlisberger channels' 
is at a lower pressure (pc) than the ice overburden pressure (pi), and the resultant 
'effective' pressure N = pi-Pc tends to cause closure of the channels by means of 
viscous creep of the ice. The flow is maintained, however, by a compensating melt- 
back of the channel walls, due to the heat released by viscous dissipation of the 
channel flow. It is the dynamics of this process which determines the 'effective' 
pressure N, and thus (in principle) the sliding law. The theory has been used with 
some success by Bindschadler (1983) for sliding of the Variegated Glacier. 

These classical theories have the appeal of simplicity, but it is a well-known fact 
that glaciers erode their beds, and the consequent erosion products (ranging from 
large boulders to clay-sized particles) form a layer at the base of a glacier. There is 
direct observation of such subglacial 'till' layers (Engelhardt et al. 1978; Clarke et al. 
1984), and similar layers have been inferred to exist at the base of ice stream B in the 
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Figure 1. Glacier ice overlying a layer of till that deforms in response to shear stress imposed by 
the ice. The sliding velocity u is here defined as the velocity of the ice relative to the bedrock, which 
is non-deformable. 

Ross Ice Shelf (Blankenship et al. 1986, 1987). Moreover, such till layers can deform, 
and the resultant displacement (integrated over the entire till thickness) may form 
a. significant part of the apparent sliding motion of the overlying ice, particularly 
under some ice streams. 

Thus we are faced with the problem of determining a sliding law for ice over a 
deformable till. Ultimately, the thickness of the till itself should be a dynamic 
variable (being produced by erosion of the bedrock, for example), but as a first 
approach, one would write a sliding law in terms of simple shearing of a till layer of 
thickness h and viscosity /: Tb = Yub/h. Here, however, we have the same problem 
as before: the viscosity of till is likely to depend on water pressure Pw through the 
effective pressure Pe = pi-Pw, since a decrease in effective pressure allows increased 
mobility of the till constituents. Therefore, we need to determine water pressures in 
the till, and as before, this involves a description of the subglacial drainage pattern. 

A model along the lines of Rothlisberger's will form the basis of a subsequent 
paper. One possibility is that drainage occurs through channels incised in the ice, as 
before. However, because the till is itself both erodible and deformable, another 
possibility is that water will flow in channels cut into the till. If the channel pressure 
is lower than the overburden (as we expect), there will be a consequent creep closure, 
just as for Rothlisberger channels. The dynamical equilibrium of these channels is 
then controlled by erosion of the channel bed, which must balance the inward creep 
of the till. Which of the two possibilities occurs will depend on the relative viscosities 
anid erosion/melt rates, and will be considered in a subsequent paper. Our purpose 
in the present paper is to consider only the problem of determining the creep closure 
of channels cut into till. This is the analogue of the problem considered by Nye 
(1953), that is, the closure of a conduit in ice. We shall find that the extension to a 
creeping two-phase medium (water and solid particles) is not as straightforward as 
was assumed by Boulton & Hindmarsh (1987), in their discussion of tunnel-valley 
f'ormation. The problem analysed in this paper may also have applications to 
problems of bore hole closure in sedimentary basins. 

Just as in Nye (1953), the particular problem we choose to study is that of the 
closure of a cylindrical void at pressure po in an infinite, porous, viscous medium. The 
closure is driven by an external pressure P, where we assume Pc > p(. The hope is 
that this idealized problem may give the correct qualitative dynamics for the closure 
of' real till channels. In the next section, we discuss the relevant mechanical 
Iproperties of till, and then turn to the particular problem we are concerned with in 
?3. Conclusions follow in ?4. 
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2. Rheology, permeability and compressibility of subglacial till 
(a) Rheology 

There is very little data on the creep behaviour of subglacial till. Blake & Clarke 
(1988) measured an apparent viscosity of 101? Pa s at Trapridge Glacier by in situ 
measurements of basal till deformation, and Boulton & Hindmarsh (1987) used 
similar measurements at Breidamerkurjokull to infer a flow law of the form 

= AV apeb, (2.1) 
where r is shear stress, e is shear strain rate, Pe = pi Pw is the effective pressure, Pi 
is the ice overburden pressure, and Pw is the pore-water pressure in the till. Their 
fitted values for the parameters Av, a and b based on seven data points were 

A= 3.99 barb--a-1, a = 1.33, b = 1.8, (2.2) 
where T and Pe are measured in barst. It can be argued that a law such as (2.1) can 
hardly be justified from such a small sample; however, (2.1) is the simplest nonlinear 
flow law which incorporates the idea that the viscosity decreases as effective pressure 
decreases. It seems to us that this qualitative behaviour is the minimal requirement 
for a realistic flow law, and so we consider (2.1) as the simplest feasible relation, 
consistent with our physical expectations. For example, Alley et al. (1987) treat the 
till as a linear viscous material, whereas Clarke (1987) uses a viscoplastic model, with 
the viscosity taken as a function of porosity n, itself a function of r and Pe. Kamb 
(1991) has recently argued, on the basis of both experiments on till and soil- 
mechanics experience, that (2.1) may be feasible but only if a b > 1. If this is 
correct, then, as Kamb points out, the flow law (2.1) is very nearly equivalent to a 
perfectly plastic failure criterion, with a yield strength rT given by 

f = c + rpe,. (2.3) 
An unrealistic aspect of (2.1) is when pe tends to zero. (2.1) predicts an infinite shear 
rate, consistent with Roscoe's (1952) inference of viscosity as a function of porosity. 
The implication is that when p, - 0, then arbitrary large dilation can occur to allow 
the till grains to move freely past each other. For a confined flow, where a confining 
pressure represses excess dilatancy, this will not be realistic; one approach to 
resolving this problem might be explicitly to consider a 'dilatancy law' for the till, 
i.e. 

n = n(e, Pe), (2.4) 
with On/Ue > 0 (dilatant) and an/ape < 0. However, in this paper we will adopt a 
much simpler assumption, which, in the absence of useful data, is perhaps as useful, 
and which is also physically plausible. 

(b) Permeability and compressibility 
Till is a permeable medium, and therefore we suppose that Darcy's law may be 

applied: 
q = - (k/aw)[Vw + Pw g], (2.5) 

where q is the water flux, /w the water viscosity, Pw the pore water pressure, Pw the 
density of water, g the acceleration of gravity, and z is a unit vector directed 
vertically upwards. The permeability is generally an increasing function of n, e.g. the 
Kozeny-Carman relation 

k c n3/(1-n)' (2.6) 
t 1 bar = 10 Pa. 
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(Clarke 1987), or the empirical 
c oc exp (yn) (2.7) 

(Boulton & Hindmarsh 1987). In any event, measurements indicate a range for k of 
10 -13-0-19 m2, depending on the clay fraction (Freeze & Cherry 1979; Boulton et al. 
1974), with a typical variation of one or two orders of magnitude in a given till as 
effective pressure increases. Permeability also varies as the till is deformed, i.e. k = 
k(,,pe) (Clarke & Murray 1991). The form of these constitutive relations obviously 
has a bearing on the analysis of water flow, but we shall make the simpler assumption 
that the precise functional forms are not important. 

3. Tunnel closure with power law rheology 
We now examine the creep closure of a cylindrical void in an infinite medium (till) 

with a nonlinear viscous rheology, which is saturated with water (figure 3). Although 
such channels are unlikely to exist subglacially, results of this analysis should give 
a reasonable estimate of the creep rate of till into a sediment-floored channel, as 
depicted in figure 2, as long as some characteristic dimension of the channel, such as 
its depth, is small compared to the total till thickness. This methodology is the same 
as that of R6thlisberger (1972), who applied Nye's (1953) results for closure of 
cylindrical tunnels in ice to study the hydraulics of semicircular tunnels at the glacier 
bed. 

To proceed, we must generalize the shear deformation law (2.1) to the case of more 
general deformations of a compressible two-phase medium. We make the simplest 
assumption, which is that the deviatoric stress tensor ij is related to the strain rate 
tensor ij by the relation 

ij-(V)' u) j = rjj/2y, (3.1) 
where ij = i(ui/xj +uj/8xi), and the viscosity y for the power law (2.1) is defined 
by -1 = A, a-lp-b, (3.2) 
and where r is the second stress invariant (2T2 = j Tij). It is natural in considering 
deformation of the till, to take u in (3.1) to be the (averaged) velocity of the till 
particles and ?ij as the corresponding strain rate tensor; we may take Trj as the stress 
applied to the solids. 

In what follows, we neglect gravitational effects. This should be an accurate 
assumption, provided pw yd <E N, where d is a typical length scale, and N a typical 
differential (effective) pressure. For example, if d = 1 m, g = 10 m S-2, w 
103 kg m-3, then pw gd - 104 Pa, and is negligible for N> 105 Pa. We do not consider 
that gravity will have a significant part to play in the closure dynamics. 

Radial contraction of a cylindrical hole induces axial strain rates or stresses, or 
both. We shall choose a flow in which there is zero axial deviatoric stress, although 
in the event this assumption has little bearing on the results, at least provided the 
till permeability is quite 'low'. 

More importantly, we neglect the effect of axial shear stress. Though potentially 
important, this may in fact be quite a reasonable approximation. It will be so if 
Tb < Ap, where Tb is the basal shear stress, and Ap is the difference between the 
overburden pressure and the channel pressure. For glaciers, values of Tb 10^5 Pa are 
common, but we find that then Ap > 106 Pa, typically, for steady channel flow. For 
ice sheets, we will find values of Ap 10 Pa, but then shear stresses are likely to be 
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Figure 2. Schematic drawing of a channel at the bed of a till-floored glacier. In general, the channel 
will be cut into both ice and till. Arrows indicate creep of ice and till into the channel. Melting of 
the ice roof and erosion of the sediment flow must balance this inward creep if the channel is to 
remain open. 
Figure 3. Idealized picture of a channel through till. Water pressure Pc acts inside the channel; total 
pressure P, and water pressure p, are applied far from the channel. 

lower, e.g. ca. 104 Pa if 1 km of ice has a surface slope of 10-3. Thus the neglect of 
shear stress should represent, if only crudely, a useful approximation (see Humphrey 
1987). 

Let v be the water velocity relative to the till matrix. Darcy's law may then be 
written (neglecting gravity) as 

nv = - (k/w) Vpw. (3.3) 
Conservation of mass for each phase gives (cf. Fowler 1985) 

-an/t + V[(1 -n)u] = 0, an/at +V [n(u +v)]= 0, (3.4) 
where we ignore erosional processes of comminution, and losses due to washing out 
of fines. 

In the case at hand, we use cylindrical polar coordinates, and we seek a solution 
in which the till velocity is (u, 0, w), where u is the radial component and w is the axial 
component, and the water velocity is purely radial, of magnitude v. In other words, 
all water within the till is evacuated by first draining to a channel, thence along the 
channel towards the glacier terminus. This is in fact a rather restrictive assumption. 
Beneath an actual glacier, water within the basal till might instead tend to drain 
downward to relatively permeable strata underlying the till (cf. Boulton & 
Hindmarsh 1987; Clarke 1987). The present analysis is not applicable in that case, 
on which we will remark in ?4. We suppose that u = u(r,t), v = v(r,t), but w = 
w(r, z, t). Then 

er = /, = nu/r, Ke = wu/r, =(3.5) 
and all other components of ej vanish. We seek a solution in which 

TzZ = 0, (3.6) 
and thus from (3.1), l = w / rz = [u/ nr+u/r +? w/0z], (3.7) 
whence w = -z(u/Or+ u/r). (3.8) 
It follows that V'u = 3(Ou/ar + u/r), (3.9) 
and so er-V 'u = '(Ou/dr-u/r) =- _[00V - u]; (3.10) 
hence Trr =-00 = T, (3.11) 
Proc. R. Soc. Lond. A (1993) 

21 



A. Fowler and J. Walder 
where 7 is the second stress invariant (if 7rr > 0) since 2T2 = T7r+ T. Thus the 
constitutive relation between stress and strain rates is, using (3.2), 

Du/r --u/r = AvTaPe. (3.12) 
Consider now the momentum equation for the mixture, which (neglecting inertial 

terms) may be written as 
_3 T0 Pl _3 

-(^rr ) -? "- 0, (3.13) r or r or 

where P is the total pressure. The effective pressure in (3.2) is defined by 
Pe - P-w. (3.14) 

Suppose the void is at r < R, thus the till occupies the region r > R (figure 3). In 
general, if the channel contains water at pressure pc, then denoting 

P, - lirnP(r), 

we expect closure of the channel if PO > pc; hence R = R(t), and the kinematic 
condition at the channel wall (neglecting spallation) is 

R=u at r=R, (3.15) 
where R - dR/dt. Other boundary conditions for the flow are a normal force balance 
at r = R, and as r- oo; thus 

-P+Trr = -pc at r = R, -P+ rr-> -Po as r = oo. (3.16) 
In addition, we expect the water pressure to be continuous, whence 

w =pc at r=R, pwp-> as r-> oo. (3.17) 
The effective pressure in till far from the channel is thus PO -p,. 

These equations represent a significant complication over Nye's (1953) closure 
problem for ice. The equations (3.3) and (3.4) can be written 

nv -t + r [(1 - n) ru] + a [(1 -n) w] =0, ,aw or Ot rOr Qz 
On 1 p a (3.18) - + - - nr(u + v)] + (-nw) = 0; at r ar oz 

supposing that n = n(r, t), and using (3.8), we find 

u =-C/r-]nv, (3.19) 
-n 3n (1?- n) and thus ?+u 

n 
= - ) a 

(nrv). (3.20) at ar r Or 
In effect, this is a diffusion equation for Pe (or n), on account of the dilatancy relation 
(2.7) between n and Pe (= P-pw), with an/Dpe < 0. For purposes of illustration, let 
us suppose n = n(pe), and write I[n(pe)l = fl,, which is essentially a measure of 
sediment compressibility. (The normal compression index Cc would be defined in soil 
mechanics practice as -pen'(pe)/(l -n)2, hence /?=(1-n)2CU/pe.) We non- 
dimensionalize the equations by writing 

P = p. +NP*, T = NT*, pw =p +Npw, r = RO r 
R = RoR, [l = (AvNa-b-l)-l t= tvt* u = (Ro/tv)u*, (3.21) 

v = (Rot)/t,)C*, tv= */N, 
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where R0 is the initial channel radius and now N = P -p~p,. The model equations 
become 

a u 2u a-b P aT 2T 
u = -C/r-2nv, u---= =Tap - + +_ = 0, o r r e or or r 

(3.22) 
nv = -- KAp w/Or: e P-pw, - en) (r ) dat Or r Or Or 

where the dimensionless parameters K and A are defined as 

K = /vN, A= t/tD = k[/L]/lfvR2/tN, (3.23) 

and tD is the Darcy timescale, 

t = Rv Rl0 /ki. (3.24) 
In writing (3.22)6, we have assumed that /f is constant, but this will not affect our 
principal conclusions. In addition, we have omitted the asterisks for convenience. 

The boundary conditions for (3.22) are that 

as r- oo, -P+T>- 1, 
pw-O, 

on r = R u, R u, (3.25) 
-P+T =-A, 

Pw = A, 

where = (pc-pX)/N (3.26) 
is the scaled excess channel pressure. 

Values of compression index Cc are usually quite low, in the range 0.01-0.1 (Lambe 
& Whitman 1979). Since /f, CC/N, this suggests that a plausible magnitude of K is 

K 0.1. (3.27) 

To estimate A, take a range of permeability from k 10-13 m2 (coarse gravelly till) 
to k 10-"9 m2 (clay-rich till), [H] 10"? Pa s (a typical inferred value), K = 0.1, = 
1 m, #w = 10-3 kg m-l s-l. We find that 

10-5 < A < 10. (3.28) 

Evidently, A can be large or small, and its size depends primarily on the till 
permeability. Since our goal is to obtain parameterizable information which can be 
incorporated into subglacial drainage theories, we will choose to study solutions 
using simplifications based on asymptotic limits. In this case, two approximations 
may be appropriate, when A is large or small, and we now give approximations for 
these limits. We have also solved the problem numerically, and the results confirm 
the nature of the asymptotic behaviour. From our estimates, it would seem that 
A << 1 is the more common case, and we consider this first. 

(a) Small permeability: the case A < 1 
In general, the channel pressure p, will not be equal to the far field pore pressure 

(just as for river flow). We may, for example, expect p,0 to be some sort of long term 
average of p, through the diffusion due to Darcy flow. If A < 1, then the limit 
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A-> 0 is a regular limit for the till deformation. However, it is a singular limit for 
the diffusion equation (3.22)6, and a boundary layer is necessary to solve for p,. 
We anticipate that C = 0(1); then the far field solution of (3.22)6 is just 

Pe 1 (r-R= 0(1)). (3.29) 
Two cases now arise. Firstly, suppose that, as indicated in the problem formulation, 
the channel closes at a rate -R. If we seek a boundary layer for Pw near r = R, we 
put r =R(t) + As, (3.30) 
and then (anticipating that P hardly changes in the boundary layer) 

apw (u -- apw a P2 Pw + (1 -) aa(3.31) dt A As , (8) 

where we take n = constant for simplicity. Expanding (3.22), near r = R, we have 

u -C/R + A[(C/R2) s + Kn pw/,s]: (3.32) 
thus R =-C/R +KnAipo , po = Japw/SI\=O, (3.33) 
and thus (u-R)/A (C/R2) s+Kn(Op,w/s-po). (3.34) 
Now for the case of closure, C> 0, and (3.31) does not have a solution with a 
boundary layer attached to r = R, which decays as s - oo. In fact, u-R/ > 0 for large 
s, so that we expect a moving front to develop, which propagates into the till, and 
which separates two regions of constant, but different, effective pressures. 

Actually, this case is of less physical interest, since we expect erosion of the walls 
to keep R essentially constant. In that case, we put 

r = R +As, (3.35) 
and approximately, ignoring transients, 

|3K\ 
^ 

'pw ( l -n) a2 ,(3.36) 

which can be solved explicitly. 
With dpw/asI,=o = P', the closure rate is then given by 

-R =-u = C/R-Kp. (3.37) 
A convenient alternative gives the (dimensional) strain rate, based on the 
dimensional cross-sectional area S, as 

= -S/S = 2ANa-b(R/R), (3.38) 
with R and R still dimensionless. The outer approximations to (3.22)2,3 are thus 

2Cr2 = Ta (3.39) 
?P D' 2T P + D+- + = 0, (3.40) or or r 

since Pe= 1. Now the boundary condition on -P+T at r = 1 cannot necessarily be 
applied, since P and T will generally change within the boundary layer. However, 
(3.22)3 indicates that 

2=- 
a(-P+T) =_ - (3.41) Dr r 
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so that the change in -P+T through the boundary layer will be O(A), providing 
T = 0(1). It follows that the boundary condition -P+ = -A can be applied to the 
far-field stress. Integration is straightforward (Nye 1953), and we find that C is given 
by C = R2((1-A)/a)a, (3.42) 

providing A < 1, i.e. P, > p, as we assume for closure. The wall stress 7w, i.e. the 
value of T at r = R, is = ( 

7T- (l--A)/a. 
Thus across the pore pressure boundary layer, Pe satisfies 

-L+3]K -s = (1-n) (3.43) 

with Pe = Tw on s = 0, Pe~ 1 as s-- oo, (3.44) 
and with p' defined by --pe/ds at s = O, R is given by (3.37). Explicit integration of 
(3.43) gives 

Po - I exp {K( ) }, (3.45) 
3 R = 3(1-n)J 

whence (3.37) is -R = 2exp (12 
- 

(3.46) 
- 3(l- - n) 

and the dimensional closure rate C from (3.38) is, using (3.42), 
C = AvNa-b exp [2K( -Tw)/3(1-n)], (3.47) 

where Tw = (1- )/a = (P,-p,)/{a(P,-p,)}. 
Notice that C is a non-monotonic function of Tw. Because K < 1, however, the effect 

due to sediment compressibility is small, and 
C f {Av/a} (P-pc)(Pp -p)-b. (3.48) 

The above results are to be compared with Boulton & Hindmarsh's heuristic result 
C x (P, -po)a-b. The results are the same ifc p = p, but not otherwise. 

(b) Large permeability: the case A > 1 
The analysis in this case is less transparent, and was in fact finally only resolved 

by examining numerical solutions of the problem. We now sketch the asymptotic 
structure of the solutions, applicable specifically to the case 1 < a < b of interest 
here. The details are given in Appendix A. 

We find that the pore pressure Pw decays to zero over a long range r 
exp[O(Al/7)], while the effective pressure Pe and stress T are very small for r < 
r* A (8-1)/23, increase sharply near r*, and then in r > r*, T declines algebraically 
towards zero, while Pe is approximately constant. A solution can only be found for 
0 < A < I, and the closure rate C given by (3.38) is found to be, using (A 24) together 
with the definition of A in (3.21) and (3.23), 

kC 2A1/t(-)(pc-poo)-(8-l)8 (3.49) 
independent of N, where 8 = 1+ b- a. 

(c) Piping 
The two principal results we have are (3.48) and (3.49). The second of these (for 

very permeable tills) gives C (pc-poo)-( -1)/, and only exists for pc > p,. As pc- 
po, the closure rate becomes very large. What happens physically in this case? 
Proc. R. Soc. Lond. A (1993) 
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A condition that the till maintains its integrity is that the minimum effective 

compressive stress be positive. This is crm = P-T-p,, thus the condition of integrity 
is that Pe > T. When A > 1, we see from (A 25) that close to the channel, 0om A1/d 
and goes to zero as pc-> p (it is always zero at r = R because of the boundary 
conditions). Thus we see that as Pc -> p~, rn -> 0, and we pose the hypothesis that 
piping occurs: that is, channels or pipes can spontaneously form to alleviate the 
negative stress condition. 

Piping can also occur if A <K 1. We have Pe = T = rw at r = R, and Pe jumps to the 
value one through the pore pressure boundary layer, hence piping will occur if 
Tw > 1, i.e. if A < 1-a. Although a mathematical solution exists in this case, it 
is unphysical, and we expect piping and till failure to occur near the wall. 

There are various modifications one can make to the model to alleviate the piping. 
We have carried out such modifications, but they simply help in justifying one's 
intuition. Firstly, it is reasonable to expect piping to occur near the wall if 

< --*, (3.50) 
where A * depends on A, A*(0) = a --1, A*(o) = 0; in general, if the channel pressure 
is too low. There are two consequences of piping failure we must address: the effect 
on the till rheology, and the effect on the till permeability. Piping is sometimes 
associated with slope failure in dams for example, and thus one possible consequence 
of the onset of piping is that the till loses integrity entirely. In this case we would 
suppose that the failed zone would be unable to maintain any shear stress, and we 
would expect that in practice a rapid collapse of the tunnel structure would occur (as 
sometimes occurs when river banks are destabilized by groundwater seepage). 
Failure in dams occurs through the progressive enlargement of flow 'pipes' due to the 
existence of large driving pressures. When driving pressures are lower, or are varied 
more slowly, it is feasible that the till may retain its integrity, and in this case the 
momentum balance equation still makes sense. 

We consider the possibility of tunnel collapse to be a real one, either when p, is 
sufficiently low (during the winter, for example) or if p is lowered suddenly (as would 
be the case when boreholes are drilled, or water is pumped out, as in Boulton & 
Hindmarsh's experiment), but the issue as to whether piping necessarily leads to 
collapse is not one that we are able to address here. 

The other effect of piping is to increase the permeability dramatically. In fact, we 
may legitimately assume that the failed region increases its permeability sufficiently 
by the creation of interconnected cracks and pipes so that the water pressure does 
not exceed the minimum compressive stress. 

Another feature manifested by the solution for A > 1 is that C - oo as A -> 0. This 
is a consequence of the singular form of the rheological law, which allows infinite 
strain rate at zero effective pressure. This is unrealistic, since even at zero effective 
pressure, a saturated till must dilate when sheared: a given sample of till must then 
suck in water to increase the pore space, implying an increase in Pe If one makes the 
simplest modification to the rheology which circumvents this difficulty, i.e. replace 
(2.1) by = Av Ta(pe + sc)b, where o-, is a kind of cohesion term, then one can obtain 
large but finite closure rates when A > 1 and A = 0. Introduction of 'plastic' failed 
zones having T = pc = D, Opw/ar = 2D/r (consistent with a large permeability) then 
allows one to obtain solutions with A < 0: the failed zone is extensive, and the closure 
rate is large. 

Based on considerations of this type, we posit the following scenarios. If Pc is too 
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low, and A > 1, then till failure will be followed by rapid tunnel collapse. The 
practical effect of this is to squeeze the channels until the channel pressure is 
increased again to p,. On the other hand, if A << 1, i.e. permeability is low, then a 
sufficiently low p, can induce piping. As low permeability tills are likely to be more 
cohesive, we might then expect a failed zone which reduces z to p, but little further 
effect. 

4. Discussion 
In seeking to develop a theory describing the flow in subglacial channels incised 

into basal till (which will form the subject of a subsequent paper), we are led to study 
the problem of the closure of a cylindrical void in a saturated, deformable, two-phase 
medium. Glacial till is an example of such a medium, but other relevant examples are 
soil, and consolidated or cemented sediments. The study of this problem may also be 
of interest in the oil industry, for example. 

In studying this problem, a crucial parameter is the dimensionless permeability 
parameter A, defined by (3.23) as 

A = tk[]L/IvNR aw, (4.1) 
where the symbols are as defined in ?3. This parameter is the ratio of the viscous 
creep time scale tv and the Darcy flow time scale tD, and can be plausibly either large 
or small for different till types. If the till is coarse and gravel-rich, then A > 1, 
whereas if it is clay-rich, then A <E 1. In fact, we suspect that the lower value is more 
typically appropriate. If we take a more precise estimate based on the Boulton- 
Hindmarsh rheology, using R0 = 5m (corresponding to the anticipated result 
that streams will be wide), N = bar, K = N= 0.1, Av= 4 barb-a a-~, w= 
10-3 kg m-1 s-1 then A [k] x 3 x 1014, (4.2) 
where k = [k] m3. Thus for k < 10-10 m2, A is small, and only the most porous tills 
allow sufficient drainage to have A significant (with this choice of parameters). Of 
course we might also expect [y] to depend significantly on porosity and clay fraction. 

We have solved the closure problem in the two approximate limits A < 1 and 
A > 1, for the case in which all pore water drains into channels rather than into a 
subtill aquifer. Providing compressibility is relatively small, we obtain the closure 
rate C= -S/S in the form of (3.48) and (3.49): 

C {Av/aa}(P -p,)a(p -p, )-b A< , 
C - {AV/t-1}ll(pc p- )--1/, A > 1j 

where 6 = l+b-a. These results are principally distinguished by exhibiting the 
dependence on p, as well as p,. 

We have found that piping failure is likely to occur if 

Pc-Poo < -A*(A) (POo-p,), (4.4) 
where A*(0) = a-1, z*(oo) = 0, and we consider that the high A response will be 
rapid tunnel closure, while the effect will be less dramatic if A < 1, and possibly 
irrelevant. 

Since our preferred value is A < 1, and since we can expect Pc to take a value near 
p, as a long term average, it seems reasonable to suppose that in this case, a suitable 
average of (4.3)1 is approximately 

C {Av/aa}(P - <)ab, , (4.5) 
as suggested by Boulton & Hindmarsh (1987). 
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For gravel-rich till, the result may be altogether different. (4.3)2 suggests that the 
closure rate is independent of confining pressure. Moreover, if pc < po, we expect 
rapid collapse to occur, squeezing the channels to force p, up to p,, while in flood 
conditions, steady closure can be maintained with Pc > p,. It seems that any 
drainage theory would have to take into account the fluctuations in the water 
supply, and could be altogether different from the classic Rothlisberger theory. 

Finally, we emphasize that the results obtained in the present paper are intended 
to apply specifically to the case where the sub-till medium is an aquitard, either 
bedrock or clay rich sediments. In many (perhaps most) cases, this will not be the 
case, and water may drain vertically to a layer of permeable sediments or fractured 
bedrock. Some modification of the present theory is necessary in that case, and has 
been considered by Clarke (1987) and Boulton & Hindmarsh (1987). 

In a subsequent paper, we will develop a drainage theory based on the results of 
the present paper. 

Appendix A. Tunnel closure analysis when A > 1 
In this appendix, we derive a solution for the tunnel closure problem of ? 3 for the 

case A > 1. 
The basic equations are (3.22), which we recast in the form 

u == -C/r + 2K/A Dpw/6r, n/ur - u/r T= ap,-b 

6r 726r8 .... 1 Q( ePw\ ' r Pe ?T+ 2T pw- appe X- A n a I p (A 1) 
+ = - =A(1-n)- r 

or or r or r' or r J 

where we suppose a quasi-static pore pressure distribution. In our intended 
application, this will in fact be reasonable, since a channel will be maintained at 
constant radius by sediment erosion. The boundary conditions for the variables are 

-Pe+-T= 0, = A on r = 1, (A 
-pe+T--> , pw->0 as r? -co. 

The fourth equation in (A 1) suggests that Pw changes slowly with r, and this is the 
basis for our approximate solution. Substituting for u, we have 

[_+2? KA Dp wap2wc LPW T2TIA(l -n) I (rDPw) (A 3) r or Jor or r r or or 

If we anticipate that T changes on a scale much less than that on which p, changes, 
then a uniformly valid approximation to (A 3) can be found by neglecting the terms 
in z. In this case, we can explicitly integrate the equation, and we obtain 

3(1 -n) Ar " 
w 2K Ar 2KA (A4) 

..3(1-~): r" A- 
where A is given by A =3( -n)1 A1 (A ) 

2K nA2A KAA) 

and v = C/L[A(-n)]. (A 6) 
Note that our assumption on Pw will be valid if v is small enough. 
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We now rescale the problem by writing 

C = AC, A = AA, u= Au, (A7) 
so that 

C a 1 r=a b APe T 2T Cg 1 U-- 1[ + 1K, ArT --+-+ - = 
r =3 Or r\r ) Pe r Or r r A1r 2K' 

(A 8) 
We report this scaling here, since the problem was solved numerically in this form. 
The numerical strategy involved a further rescaling 

uI = (C,/p) f, r = pr, A = (p2/C1,) , A = p-vA, (A 9) 
where p is to be determined. This rescaling renders the inner boundary indeterminate, 
but the equations are independent of p, so one can determine the solution explicitly, 
for given C, A and A, by integrating inwards from infinity until -Pe +T = 0, which 
then determines p, and hence A. In this way, we solve implicitly for C, in the form 
A = A(C,A). 

The numerical solutions suggest the following further rescaling of the variables: 

T=C'T , pe =Cn, C=AC =AC-b, (A 10) 

so that the model is given by 

Fil2 a DHb OH DR 2T g 1 - Ar 2f I+TH -g = = 2 A a- A Jcr -{+ g} - r r = r' A 2r (-K 

and -7H+T= Oon r = 1; -7H+T--/C asr-> o. (A 12) 
We suppose A = 0(1) (for example, numerical results with a = 1.33, b = 1.8 suggest 
A 0.5 at A w 0.5, A 0.4 at A ~ 0.7); thus (with a-b< 1) C1 <, 1, and so v = 
C1/(1-n) < 1. Now with A = 0(1), (A 5) and (A 7) suggest A1 = 0(1), so that with 
K = O.1, we can reasonably neglect the 2K terms in (A 11)1; furthermore, since v <E 1, 
g is slowly varying, and it is sufficient to put g = 1/(A1 -K) as constant in (A 11)2. 

Now define (neglecting the term in K in (A 11)1) 

T= (ary'/V)1/(1-?), 7=- VT, A 
a =(2A)-l/b, =a/b 0.74, y = 2/b 1.1; 

we find that V satisfies 

dV V 
V' - ) [(V-5)-(1-,8)g( V/o)l/(1)], (A 14) dr (flV- 1)r 

together with (V- ) T = 0 on r = l, (V-l ) T-> /C, as r ->oo. (A 15) 
In order to satisfy the second of these, V > 1 for r > 1. When r is large, g is small, and 
we can neglect the second term in square brackets in (A 14). Integrating, we find, for 
large r, 

V(V-3)C x LX(r/r*) (, (A 16) 

where 
8 = 1-(a-bb) 1.47, C = ,- -1% 0.09, (A 17) where r* = C(l-f)/Y > 1. 
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The problem for small r thus reduces to that of solving (A 14) together with the 
boundary condition (A 12), namely (V- 1) (ar7/ V)1'/(1- 0 on r = 1, whence either 
V = 1 or V-> oo (since 0 < / < 1). However, since 1 < 1/fl, the choice of V 1 will 
cause a singularity in V (at 1//l) on solving (A 14) unless a is chosen so that the square 
bracketed term vanishes at V = 1/fl. However, this flexibility is not available, since 
a must be chosen so that V matches to (A 16) when r > 1. Therefore, we decline the 
finite boundary condition and specify that 

V-?oo on r=, (A 18) 
and c (hence A) must be chosen so that V matches to (A 16) for r > 1 and r < r*, thus 
we choose a so that (to leading order) 

V--> as r->oo. (A 19) 

Here, 'infinity' is in the matching region between the solution of (A 14) for r - 1, and 
(A 16) for r > 1; more precisely, we require V to satisfy V = + o(1) when 1 < r <K r*. 
That such a solution exists is attested by the fact that (A 14) has asymptotic 
solutions V - + kr-7/(1-P) for r > 1, with k > 0. Because solutions of V will vary 
monotonically with a, it is obvious that a unique such ca will exist. 

One can go further if A1 > K, since then (A 5) and (A 6) imply 
A (1 -n)/A1 (A 20) 

(and this will be accurate for a value such as K = 0.1), whence (A 8) gives 

g I 1/A1 /(l1-n). (A 21) 
Now it is clear from (A 14) that gf/l/(l-/) will be constant, Y*/( -n) say, and then 
we find a (d/g*)l-f, so that 

A1/ lz-/l (A 22) 
where I = 2-1/g( -l)/ = (d- 1)/S6 0.32. (A 23) 
Then the closure rate is approximately given (for small K) by C, and 

C lA-#A#. (A 24) 
Both Pe and z are very low for r < r* (1-A )/7~, (1 --/)/ y 0.16, and for 1 < r < 
r*, the solutions have the explicit approximations 

V , T (21)- l( 

- 

(A 25) 

while for r > r*, 

V [x(r/r*)Y]1/l, T (21)l/a(A/J)(8-l1)/ar-Y/fi, e 1. (A 26) 
Thus Pe and r are small for r < r* and increase suddenly near r*, with a subsequent 
slow decline of r over a scale r - A(-11)/2 A0'16. The pore pressure is given by (A 4), 
and for A1 > K, this is (using also (A 20)) 

Pw Al/rv, v [1/(1 -n)] z-t'A-~1, (A 27) 
and it decays to zero over a space scale 

r - exp [O(l/v)] = exp [O(A1I)], (A 28) 
which is much larger than the stress adjustment scale r* , A(l-)/7f for A > 1. 

Evidently, the solution exists for A > 0. As before, it follows directly from 
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integrating (A 1)3 (since r > 0) that A < 1 (consistent with the physical expectation 
that Po > Pc, see remark following (3.50)). Hence the problem has a solution when 
0 < A < I, but the closure rate tends to infinity as A ->0. 
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