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Boundary Layer Theory and Subduction 

A. C. FOWLER 

Matheman'cal lnsn'tute, Oxford University, Oxford, England 

Numerical models of thermally activated convective flow in Earth's mantle do not resemble active 
plate tectonics because of their inability to model successfully the process of subduction, other than 
by the inclusion of artificial weak zones. Here we show, using a boundary layer argument, how the 
"rigid lid" style of convection favored by thermoviscous fluids leads to lithospheric stresses which 
may realistically exceed the yield stress and thus cause subduction to occur through the visoc-plastic 
failure of lithospheric rock. An explicit criterion for the failure of the lid is given, which is sensitive 
to the internal viscosity r/,, below the lid. For numbers appropriate to Earth's mantle, this criterion 
is approximately r/a > 10 21 Pa s. 

INTRODUCTION 

Boundary layer theory has been very suc- 
cessful in explaining many of the observed 
features of mantle convection. Turcotte and 

Ozburgh [1967] were able [o explain lithospheric 
plate velocities and oceanic heat flux variations 
using a high Rayleigh number flow of a con- 
stant viscosity fluid, but as we shall see, there 
are problems with this theory. 

One of these is the fact that the viscos- 

ity of mantle rocks is likely [Kirby, 1983] to 
be strongly temperature (and pressure) depen- 
dent, as well as being non-New[onian. Early 
numerical work on temperature dependent rhe- 
ology [ Torrance and Turcotte, 1971; Kopitzke, 
1979] showed that "[hermoviscous" convection 
develops a rigid lid, because the upper cold 
boundary layer is also highly viscous, and this 
was also demonstrated experimentally [Nataf 
and Richter, 1982]. Non-Newtonian effects seem 
[o be less significant [Parmentier et al., 1976]. 

Thus a problem with variable viscosity con- 
vection is how •o get the lithosphere [o subduct. 
In the past, various authors have simulated sub- 
duction by the means of marginal "weak zones" 
[e.g. Gurnis, 1989], but this is an arbitrary and 
unsatisfactory procedure. In general, numerical 
modelers have paid relatively little attention to 
this question, and there is little coherent pre- 
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diction that can be made concerning the con- 
vec[ive style of Venus, for example. 

On the other hand, quite a lot of work has 
been done on the rather different problem of 
initiating subduction on an already tectonically 
active planet. Turcotte et al. [1977] put for- 
ward an ingenious mechanism based on litho- 
spheric loading at hot spots by volcanic islands 
(and subsequent buckling of the lithosphere). 
McKenzie [1977] suggested that subduction 
could occur if two oceanic plates collided r•pidly 
enough, through creation of •n overthrust f•ult. 
Quite how two plates c•n collide is unclear. 
Cloetingh et al. [1982, 1989] suggest that sub- 
duction might occur •t p•ssive m•rgins through 
the plastic f•ilure of the lithosphere due to the 
weight of overlying sediments, Mthough it seems 
that this will not normMly occur. This mecha- 
nism is similar to that which we propose be- 
low, the difference lying in that we find the 
stresses to be generated by the internal convec- 
tive process r•ther th•n •ny external forcing, 
and Mso we consider the initiation of subduc- 

tion on • subduction-free m•ntle. As pointed 
out by Mueller and Phillips [1991], the initi- 
ation of primitive subduction complexes is •n 
altogether different problem to that of initiat- 
ing subduction on • plate-tectonically •ctive 
planet. 

CONVECTION AND STRESS 

Turcotte and Oxburgh's [1967] boundary 
layer theory was based on e[ constant viscos- 
ity mantle. However, it is well recognized [e.g., 
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Kirby, 1983] by experimental studies that any 
realistic rheology for mantle rock gives a viscos- 
ity which depends very strongly on temperature 
(and pressure). It was not until 1984 that the 
corresponding boundary layer theory was car- 
ried out [Morris and Canright, 1984; Fowler, 
1985], and as would be expected, the top cold 
boundary layer is very stiff and is essentially 
immobile. 

In Earth's mantle, we take the viscosity r/ 
to be the thermally activated form 

E* + pV*] r/- r/0 exp (1) RT ' 

where r/0 is a viscosity, p is pressure, T is tem- 
perature, E* is the activation energy, V* is the 
activation volume, and R is the gas constant. 
For nonlinear rheology, one often takes r/0 oc 
r -{'•-l), with a value of n = 3 for dislocation 
creep or n = I for diffusion creep. The possible 
nonlinearity of the flow law will not affect the 
tenor of the discussion, and we therefore take r/0 
constant for convenience. (This is because the 
viscosity does not vary strongly with stress.) 

In analyzing the equations of convection, 
one first nondimensionalises the variables. Al- 

though V* may be significant over the depth 
of the mantle, it has little effect over the litho- 
sphere, and we can ignore it. Suppose the am- 
bient sublithospheric temperature is T,, with 
corresponding viscosity 

r/, - r/0 exp RT, ' (2) 
We write T in terms of T,, and r/in terms of 
q,•, thus 

•1 = •h•]*, T = T•T*, (3) 

and the dimensionless viscosity r/* is then 

r•* - exp eT* ' (4) 
where 

(s) 

The parameter e is a measure of the strength 
of viscosity variation; if e << 1, the viscosity is 
strongly variable. Putting E* = 125 kcal mol -• 
[Kirby, 1983], R = 8.3 J mol -• K -•, T• = 1500 

K [Turcotte and Schubert, 1982], we find 

• • 0.024, (6) 

or e = 1/42. The viscosity ratio between sur- 
face and asthenosphere is then 

1 -T•] Ar/-- exp eT• J' (7) 
where T• - To/T•. Taking To - 300 K, T• = 
0.2, then Ar/ • 1.8 x 1073. We see that the 
viscosity is strongly variable. 

Of course, the rheology becomes plastic and 
then elastic in the shallow lithosphere; never- 
theless, this does not alter the fact that the 
lithosphere is very stiff when cold. If we analyze 
the equations of convection at large Rayleigh 
number Ra, which we can define as 

Ra- ø•pøgl3T" , (8) 

where I is the convective cell width (or depth), 
a is the thermal expansion coefficient, p0 is the 
density, 9 is gravity, and • is the thermal diffu- 
sivity, then we find that provided Ra > e-s, the 
convection is characterized by vigorous bound- 
ary layer motion beneath a thick, virtually stag- 
nant lid [Fowler, 1985]. 

The large negative buoyancy associated with 
this lid causes large stresses to exist in the lid, 
and in order to force the shear stress down to 

zero at the top, there is a thin skin at the sur- 
face where longitudinal stresses increase dra- 
matically. If we use values relevant to Earth, 
we find that these stresses can be significantly 
in excess of an appropriate plastic yield stress, 
of perhaps 10 kbar. 

The existence of these large stresses neces- 
sitates a rethinking in our analysis. We modify 
the rheology to be a viscoplastic one, such that 
if the second invariant of the stress tensor r 

reaches the yield stress r•, then we have a plas- 
tic region where r = r• and r/is indeterminate. 
In the following section, we modify our bound- 
ary layer analysis to include this plastic region. 
So long as it lies within the rigid lid, the stag- 
nant lid solution remains valid. We find that as 

the yield stress is reduced, the plastic zone in- 
creases in thickness, until at some critical yield 
stress, it reaches the lid base. At this point, 
the lid can become mobile, and we expect it to 
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partake of the circulatory motion. This, then, 
will be our subduction mechanism, and it will 
provide us with an explicit criterion for its on- 
set. 

VISCOPLASTIC BOUNDARY LAYER THEORY 

The following analysis relies heavily on work 
by Fowler [1985, 1986], and to save space, we 
will refer the reader extensively to those papers 
for details of the analysis. 

We consider two-dimensional Boussinesq 
equations of variable viscosity convection at in- 
finite Prandtl number. They are given by (2.1) 
of Fowler[1985]. We use z as a vertically down- 
ward coordinate, x as a horizontal coordinate, 
with v and u being the relevant velocity com- 
ponents. We introduce scales 

x,,•l, z~d, u~U, 

v ... Ud/l, t... l/U, (9) [r], rx 
p- pogz • l[r]/d, 

where l is given, but d, U, It] are to be chosen. 
Here p is pressure, r•, re are longitudinal and 
shear components of the stress tensor. Intro- 
duction of a stream function • then leads to the 
following dimensionless set [cf. Fowler, 1986, 
equations (3.5)] 

p• - v •ra•- r2,, (10a) 

- v•(r•4-ra•)4-T-1, (10b) 
1 

/•'• T1 
1 

e- • r2 

where 

- 2r/•b•, (10c) 

--•?(•bzz -- u2•bzz), (10d) 

exp[-0/e], 0 - 1 - (l/T), (10½) 

-- e3(Tzz -3- y2Tzz), (100 

ß 

y-d]l, (11) 
and we have chosen 

v - 1/eRa •/s, 
(12) 

where 

Uo - to/l, ro- rl•tc/l •. (13) 
The choice of scales is relevant for the litho- 

spheric slab, where all the variables (except •) 
are 0(1). Thus d is the (order of) the slab 
thickness. We assume y (( 1 (thin slab) and 
also that e (( 1. We now solve the equations 
under the assumption that the slab has a plas- 
tic zone overlying a viscous, sticky zone. 

Viscous Lid 

We suppose the lid base is at z = s(x), and 
the plastic/viscous transition zone is z = q(x). 
ThusO< z < qisplastic, and q < z < sis 
viscous. In this latter region, we put 

^zu(x) 
•b = + --, (14) 

where % = r/]q, and the choice (14) is dic- 
tated by considerations of Fowler [1985], as we 
shall require a "stress skin" near z = q. A is 
a parameter to be chosen, and it is anticipated 
that it is only algebraically large in e, whence 
in q < z < s, A (( r/q/r/, so that 

It then follows, exactly as in Fowler [1985], 
that, to leading order in e and u, 

T •, To + (1 - To)z/s, (15a) 

[ r• ~ (1- To)s' lza _ si z+ sa (15b) 

P ~ _(1-Tø)(s_z) 2 (15c) 
where p, re go quadratically to zero at z - s in 
order to match to the shear layer at z - s (see 
below). Also 

r• ,• -90•, ra ~ 290•0•, (16) 
which determine r• and q•. 

Plastic Lid 

Here 0 < z < q(x); the equations are still 
(10), but we replace the definition of r/ by the 
Von Mises yield criterion, which can be written 

where 

//27.12 q_ q __ ½2, (17) 

c- r•/[r], (18) 
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and % is the yield stress. A realistic determi- 
nation of the yield envelope [Uloetin#h et al., 
1982] gives yield stress as a function of depth, 
in the range 2-5 kbar. This could be accom- 
modated here by choosing c as a function of z, 
but we forgo this complication: r• should be 
thought of as some average value. 

We rescale the longitudinal deviatoric stress 
by putting 

r• - T•/u2; (19) 
then the (rescaled) stress equations are, to lead- 
ing order (neglecting O(•2)), 

-p• - T,•- (1 - T), (20) 

This hyperbolic set of equations [Hill, 1989] has 
a first integral 

p+T, - A+ (1- rø)s (1-To) 2 - •.• (s - z) 2, (21) 
where A is determined from the topographic 
uplift h at the surface (assumed << d) as 

h- [rl A. (22) 
Pogu 

We put 

T 1 • •c cos • 

T2 - csin•, (23) 

where k - dx/dr, etc., with 

•--0, z--0, x--or on r--0. (26) 

We thus obtain •,x, z as functions of cr and r, 
and elimination of cr and r (in principle) yields 

The two relations for q•, (10c,d), determine 
both •b and r/. Bearing in mind the rescaled r•, 
we therefore find 

½ "'" Azu(x)/rlq, (27) 

and the lid velocity (Au/q•) is transcendentally 
small provided q• >> 1, i.e., if q < s. The effec- 
tive viscosity in the plastic zone is then given 
by 

r• -c cos d 

(2s) 
If q,A, and s are known, then with qb de- 

termined from (25), the values of T• and T2 at 
z - q are found from (23). We denote these 
as T? • and T• t•*, respectively. On the other 
hand, the corresponding values at z - q from 
the viscous part of the lid are, from (15), 

and also 

(1 - To)ss' [ 1 - q + (29a) s • ' 

(29b) 

so that (19) reduces to 
P ... _ (1 - T0)s [1 - (•)]a (30) 2 ' 

-2qb• sin qb + • cos qb 

__l_ [A'+ (1-To)s'z2 ] c 2s 2 
(24) 

with the zero shear stress condition r2 = 0 cor- 

responding to d = 0 on z = 0 (the alternative, 
• = •r, leads to a solution with negative viscos- 
ity in the plastic lid). The solution of (24) must 
be obtained numerically, using the method of 
characteristics. Thus we solve 

:• = -2sin 

• - cos 6, 

• - i[A'+ (1 - To) s' ] 2 s -• z2 ' (25) 

Now at the join between the two regions, we 
require p + r• and r2 to be continuous, and we 
have yet to choose A, q, and s. 

We choose A so that p + r• is continuous. 
From (21) and (30), this requires 

ZX- _ (1 - To)s ß (31) 2 

The viscous lid base s(x) is determined by the 
equations in a shear layer at the lid base. Specif- 
ically, by putting 

z - s + e(, T- l+eqS, r2 - e2T2, 
r•- •P•, p- •P, •b - ½•, (32) 
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we regain the boundary layer equations of 
Fowler [1985] (but with •b-• (1-To)(/s as ( -• 
-oo). These have a similarity solution in which 
s(z) is self-consistently determined [Fowler, 
1985] as (we first write s - (1- T0).•, T• = 
(1-T0)•/2•P2, •P - (1-T0)1/2• t, x - (1-T0)1/2:•, 
where the hatted variables are those of Fowler 

[1985]) 

s - k(1 - ro)4[5x 2[5, k • 0.82. (33) 

We now see that we cannot have continuity 
of r2 at z - q, since •6 in z < q satisfies 

•---- 1- >0 (34) c • ' 

since A • < 0, and thus • > 0, hence r• > 0 
(since • < •r/2, otherwise the characteristics in- 
tersect to form a shock), while _•i•c •2 < 0. There 
is therefore a jump in r2 at z - q, and this is 
facilitated by a stress boundary layer, in which 
also T• jumps, and we choose u in order that 
ITel be continuous also (SO that the yield stress 
is approached from below). 

The analysis of this stress layer follows that 
of Fowler [1985]. We put 

z-q+c(. (35) 

With 0- Oq at z - q, •q - e-ø•/', we find, to 
leading order, 

where O,q - O• Iq, and we have chosen 

(36) 

1 
A - (37) •v 2' 

Also (eul%)'... uO;/%, thus 

,,, 2uO' e (38) 
Straightforward integration yields p + T• con- 
stant through the layer, confirming our choice 
of A in (31). Then 

r2½ - -2q'T• c, (39) 

thus, if r• •i'• and T; •i'• denote the values of r• 
and T• at z- q, then 

T•kin _visc in = r 2 - 2q'r• • 
T; •in - 20'•u. 

(40a) 

(40b) 

With s given by (33), A by (31), we have to 
choose q and u to satisfy the two relations 

r•t,•, ,•,i,-, (41a) 

-t-T• 't•*= T• •'ir', (4lb) 

where these four variables are defined through 
(23), (40), and (29a). The minus sign allows 
for a possible tangential stress discontinuity at 
z - q, of dubious plausibility, since it is not a 
slip line. 

Determination of q(z). As we require 0 < 
_•t• T?• r•i• c r) < •r/2, then "2 > 0, < 0. Also < 

0, thus (40a) necessitates that qtT•t•in < 0, and 
from (4lb), q-q'Tf t"• < 0; thus q- - sgn q' in 
(4lb). From (40a)and (41), 

,r•las _risc qt , - - 21 (42) 
i.e. (using (29a)) 

2 Iq'l cos 4 - sin 4 

i - , (43) 

where q• = 4 Iq is determined through the so- 
lution of (25). This is a first order differential 
equation for q which can be solved numerically, 
with q(0) = 0 (since s(0) = 0). Hence q' > 0, 
and we can replace Iq'l by q' in (43). Thus we 
select the positive sign in (4lb), and there is no 
stress discontinuity. Having found q, u is then 
determined explicitly from (40) and (41); thus 

u- T?*/20;, (44) 
! 

and u > 0 if 0• < 0, which will be the case if 
(q/s)' > 0, which it in fact is. 

The solution for q depends on the parameter 
c = %/It]. For very large values of c, there will 
be no plastic region at all, except perhaps near 
the surface, and the stress skin will occur at the 
surface, as in the study by Fowler [1985]. For 
lower values of c (but still large), an approx- 
imate solution is possible. The characteristic 
equations are, from (25) and (34), 
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• = -2sind•, 

(45) 

with•b-O,z-O,z-aonr-O. If c>> 1, 
then •b << 1, so that, approximately, 

x,-,a, z-•r, •b-• - r- , (46) 
½ 

and thus 

c s - õ • (47) 
at z- q, and (43) gives 

q "' 3c' (48) 
and thus, using (31) and (33), 

q ,•, [(1- Tø)'•/•k•] x4/$ (49) 12c ' 

We see that q • s for small x, but •s c de- 
creases, we find that q reaches s first at x - 1, 
when 

(• - T0)•/• 
c- c* • -•, .046 (50) 

12 

x 

0.0 0.25 0.5 0.75 1.0 
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Fig. 1. The doLLed line indicates the ba•e of the lid 
ß (=). •],e •a•e o• L•e p]•ti• zone, •(=), i• •own •o• 
various values of c between 0.05 and 0.1. Also shown 

(a•ea) is t•e estimate •or • in (4•), va]ia •or z cc • 
orc• 1. 
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Fig. 2. The arcuate subvertical curves are the char- 
acteristics of (45). They terminate on the plastic base 
q(x), here computed using c = 0.1. The dashed line 
just above is the estimate (49) for q, valid for c >> 1 or 
x << 1. The lowest (dotted) curve is the •id base s(z). 

for values To - 0.2, k - 0.82. Of course, the 
assumption that c >> 1 is then invalid. A nu- 
merical solution of (45) in z < q, together with 
(43) for q, is straightforward, and for values 
To- 0.2, k- 0.82, we find that q first reaches 
s at x - 1, when c - c* • 0.056. Since • 

ß 

increases as z increases, (45) suggests possible 
problems if 45 reaches •r/2, for then the char- 
acteristics turn round and a shock would form. 

However, it is easy to see from (43) that q must 
reach s before • reaches -•r/2, for otherwise, 
(43) implies q' and hence q -• oo as • -• •r/2, 
so that q must have reached s first. 

In solving the problem numerically, we need 
the small x solution for q. It can be shown that 
this is also given by (49) and that is then used 
to seed the solution at a small initial value of x. 

In fact, this solution is a useful approximation 
even for small c. Figure i shows a set of results 
for various values of c, and Figure 2 shows a 
typical set of characteristics for c- 0.1. 

DISCUSSION 

If c < c* the plastic zone extends to the 
base of the viscous lid. Furthermore, the effec- 
tive viscosity in the plastic lid is given by (28) 
and is 
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that is, r/ .-- %, so that when q reaches s, the 
plastic viscosity drops to the sub-lithospheric 
value, and there is then nothing to prevent the 
lid taking part in the circulation. This is a 
mechanism for the onset of subduction. 

Once subduction is initiated, the style of 
convection changes, because the lid now par- 
takes in the flow (and will in fact be the dom- 
inant driving force). The maintenance of such 
active plate tectonics then only requires plastic 
yielding to occur at the trench. 

Our explicit criterion for the onset of sub- 
duction is that c • c*, or recalling the definition 
of c via (18),(12),(8), and (5), 

Zc < c'(Ra3/$1e2)Zo- z'. (52) 
Using the definitions of Ra and e in (5) and (8), 
as well as r/. in (2) and ro in (13), this criterion 
can be written as 

. /2 T/2 R s 
rla > tic c.$/2(apog)a/2•cE. $ . (53) 

If we use values a = 4 x 10 -s K -1, Ta - 1500 
K po 3 X 103 kg m -3 2 I -- 3000 , -- ,g-- 10ms- , 
km, r/• - 10 •9 Pa s, •- 10 -6 m2 s -1, relevant 
to present-day oceanic mantle conditions, then 
Ra • 3.7 x 109. For a viscosity more appropri- 
ate to the lower part of the mantle, % = 1021 
Pa s, then Ra = 3.7 x 107. For E* = 125 
kcal mo1-1 [Kirby, 1983], we have e - 0.024 
(see (6)). Also r0 - 1.1 x 10 -s bars (or 10 -3 
with % - 1021 Pa s). With c* - 0.06, we then 
find r* • 600 bars for the lower viscosity, while 
r* • 4 kbar for the higher value. Cloetingh et 
al. [1982] suggest that r• typically lies in the 
range 2-4 kbar, so that we might expect sub- 
duction to be initiated in the latter case. 

Other features of the stagnant lid flow can 
be determined as well; in particular, the lid 
thickness and the topographic uplift. 

The depth of the lid is given through the 
aspect ratio t/ as •/ -- 1/eRa •/s, or more pre- 
cisely t/s(x). With k - 0.82 and To - 0.2, 

-- 

s(1) - 0.69, the maximum lid depth is d - 0.69 
yl, and with c - 0.024 and Ra - 3.7 x 109 , 
this is 0.351, or 1050 km for I = 3000 km. 

For r/, = 10 21 Pa s, Ra = 3.7 x 107, we have 
Ra •/$ < l/e, and the approximations break 
down (but the lid is thicker still). 

Uplift in the absence of convection is deter- 
mined by (22); thus 

h- [r] A---[r] (1-To)O/$kx2/$, (54) 
pogy pogy 2 

and 

Ah = h(O) - h(1) = 
[r] k(1 - To) ø/s 

pogt/ 2 
(55) 

With [r] ,-, 1 - 7 x 104 bars, corresponding to 
r/a = 10 •9 - 102• Pa s, then Ah ,-, 0.1 - 0.6 x 
10s/u m; i.e., for u -,, 0.1 -0.6, Ah -,, 100 km. 
We discuss these values below. 

CONCLUSIONS 

Convection of a strongly variable viscosity 
fluid in a box of lateral dimension I has rigid lid 

-- 

style convection, with a lid of thickness d. This 
lid will typically have a plastic upper part and 
a very viscous lower part and will be essentially 
stagnant. The effective plastic viscosity will be 
of the order of that at the top of the viscous 
part of the lid. 
uplift is 

In this case, its topographic 

k] 
pogt,' 

and the lid thickness is 

where 

c•,,,, l/eR 1/$, (57) 

e - RT,,/E*, R- c•pogTa13/rla•c, (58) 

T• and r/. being the sublithospheric temper- 
ature and viscosity, respectively, and the lid 
stress is of order [r] defined by 

k]- (59) 
The plastic lid becomes thicker as the parame- 
ter c decreases, where 

= (60) 
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r• being the yield stress, and reaches the base 
of the lid if c- c* - 0.06. At this point, sub- 
duction must occur; thus our criterion for sub- 
duction is that 

R3/s 
ß •2 12 

and the value of c* is probably a lower estimate. 
Subduction occurs if % > r/c, where r/• ,-, 10 e2 
P for Earth-type values. 

Although we have computed values appro- 
priate to Earth, it is important to put our re- 
suits in the correct context. We are not cal- 

culating lid thickness, topographic uplift, etc., 
which are relevant to Earth as it is. We are pos- 
ing the hypothetical question: For a planetary 
mantle akin to that of Earth, is rigid skin con- 
vection possible, or not? Our conclusion is then 
the following. For an Earth-type mantle with- 
out active plate tectonics, and allowing for all 
the features neglected here, we would propose, 
if r/• - 10 TM P a s, that the lid thickness would 
be ,,, 1050 km and topographic uplift would be 
100 km. 

Now, such an unrealistically large uplift 
would be dramatically reduced by erosion. In- 
deed, a millimeter per year is equivalent to 100 
km/100 M.Y. Thus the value of this number 
qua prediction is very little. If we wanted to 
make a relevant prediction for a proto-earth 
without subduction, we would necessarily have 
to include a model for the uplift. A viscous 
relaxational model (analogous to postglacial re- 
bound) would be J• - (ho-h)/r•-t)(h), where 
h0 is the topography predicted here, % is a vis- 

ß 

cous relaxation time, and E is an erosion rate 
which can be expected to increase dramatically 
with h. Such a model could be used to predict 
equilibrium values of h well below h0. Note 
that such a model would also alter the bound- 

ary layer analysis somewhat, as it would allow 
for a vertical velocity at the surface. 

In a similar vein, a lithosphere thickness 
of 1050 km (for % - 10 • Pa s) seems much 
thicker than present estimates for Earth; but 
again, this is not a statement about the present 
Earth but only an estimate for a possible proto- 
Earth without subduction. Even with this, it 
is not the best estimate one could make in view 

of the simplifications in the model. 

To give one example, lid thickness will be 
affected by the presence of radioactive elements 
in the lithosphere. If heat is released at a rate 
q (heat per unit mass per unit time), then the 
scaled temperature in the lid satisfies (compare 
(15a)) T• + 2/• = 0, where/• = pqd2/2KT•, K 
being the thermal conductivity. If we take/• as 
constant, then 

T • To + (1 - To -I- l•e)z/• - •z 2 (62) 

replaces (15a), so that 

1 -- T0-fls 2 
$ 

at z - s. Now this will have some effect on 

the slab stresses, but the lid thickness can be 
calculated directly. Equation (33) relies on a 
similarity solution, which is no longer available 
for (63), but the sense of the effect of/• g 0 is 
to replace (33) by 

s - k[1 - To-/•s2]4/Sx•/S. (64) 
If we adopt this and put k - 0.82, x - l, then 

-- 

the maximum depth of the lid, d- r, ls - ds, is 
computed from 

Pq •2 . (65) •-0.82u/ 1-To- 2KT• 
If we take % - 10 21 Pa s, then (with To- 1/7 
corresponding to T• = 1900 K) Ra = 4.7 x 10 •, 
e = 0.03, hence u = 0.97 and 0.82•1 = 2400 
km. The effect of heat sources depends on the 
value of q. If we choose q = 6 x 10 -•2 W kg -1 
[Turcotte and Schubert, 1982], p - 4 kg m -a, 
K = 4 W m-lK -1, then pq/2KT• .,. 1.5 x 10 -• 
km 2, and this term becomes significant for e/.-. 
1000 km (which would in fact be the maximum 
possible depth). In fact, solving (65) gives d- 
660 km, and if any concentration of q occurs, 
this value would be lower. In the Archaean, a 
value of q twice as high gives a value around 
490 km. 

In summary, we wish to draw two possi- 
ble conclusions and offer one suggestion. The 
first conclusion is that if allowance is made for 

a yield stress in numerical models of variable 
viscosity convection, then high Nusselt num- 
ber rigid lid convection is possible if % is low 
enough (so that the lid is thin, specifically 
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era 1/$ > 1), and the lid will yield if r/, is high 
enough (r/• > r/• given by (53)). This should 
be clearly demonstrable by adequate numerical 
computations. 

As far as Earth is concerned, a straightfor- 
ward application of these results to a proto- 
Earth having no subduction suggests that rigid 
lid convection will yield and cause subduction 
if r/• > 10 TM Pa s. That is to say, subduction 
would be marginally feasible. However, there 
are other features of the real Earth, notably 
internal heat production, which may alter this 
numerical value. In particular, we expect inter- 
nal heat to cause a decrease in the lid thickness, 
although the effect of this on the lid stresses is 
unknown. 

The suggestion is this. Active plate tecton- 
ics occurs as a consequence of subduction. The 
resulting volcanism depletes the mantle, lead- 
ing to a concentration of radioactive elements 
in the continental crust. Higher heat produc- 
tion leads to thinner lids, and it is tempting 
to suppose that while oceanic lithosphere is the 
surface expression of a mobile thermal bound- 
ary layer, so continental lithosphere is the sur- 
face expression of a rigid lid convection cell, and 
that the two types of convective system coex- 
ist on Earth. These and other issues require 
further scrutiny. 
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