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Delay recognitionin chaotictime series
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We show how theuseof “smart” embeddingsof time seriescan indicate thepresenceof (large) delay in a system,andhow
theycanbeusedto enhancepredictionsbasedonnonlineardynamicsmethods.

1. Delayequationsareof wide relevanceto natural x=f(x1) [7], but the rapid oscillationsmakeany
dynamical systems, particularly in medicine and sucheasycomparisonopaque.In this paperwe focus
physiology.Forexample,modelsof respiration[1 on the Mackey—Glassequation [2], which canbe
andcell maturation[2] naturally includesignificant written in the form (1), with
delays;othersystemswhich havebeenmodelledwith
delaydifferentialequationsarepopulationdynamics f(x) = ~ (2)
[3], andlasers [4]. X

Sincesuchsystemscandisplayextremelychaotic The equationwasstudiedby Farmer[6], andcanbe
behaviour,evenfor afirst orderequationwith a sin- obtained in the form (1) by putting ~.=a/b, ~=

gle delay, it is of interestto know whetheranyof the I /bt, witha,b, r asin Farmer’spaper.Hechoseval-
currentnonlineardynamicalmethodsof time series uesc= 10, A=2, anda rangeof ~< 1. He found that
analysis(e.g.ref. [5]) havethe potential to recog- the informationdimensionof thechaoticattractorat
niseandmakeuseof thedelay. In thisLetterwewill small ~wasD~l/~.A typical timeseriesof the so-
reportone ideawhich seemsto havesome applica- lution is shown in fig. 1, whenthe attractordimen-
tion in this context. sion is about20. In this note,we alwayskeepc= 10,

Many of the systemswhich incorporatedelaysare )~= 2.
modelledby delay-recruitmentequations,ofthe gen-
eralform 2. In the normalway, a systemof largedimension

— + ~ ~l requiresan equivalentnumberof variablesfor its
~x——x .i / description.And yet thetime seriesin fig. 1 is gen-
wherex1 =x(t— 1). Such modelscombinean expo- cratedby a single equation.Is there some way in
nentialrelaxationtermwith a nonlinearforcingterm which this information canbe extracted?In partic-
dependenton the retardedargumentx1. Of partic- ular, canwe inferthedelayfromthetimeseries?The
ular interestis whenthedimensionlessparameter~, answer,surprisingly,is yes.
the ratio of the relaxationtime to thedelay, is small, Thebasicideais this. For smallenoughô (7<e),
for thensolutionsoscillateon a time scalet—~~, and we approximate~ (x—x~)/ö(x~=x(t—ö)),thus
asa consequence,the effectivedimensionof chaotic
behaviouris of order l/~[6]. x~~ —~f(x1). (3)

Chaosin equationssuchas (1) is associatedwith
chaosin the discretemapx—~f(x),althoughthepre- While (3) is not necessarilyvery accurate,the ideas
cisc relationshipis not clear.When ~ is small, one of embeddingtechniquessuggestthat if the time se-
mightexpectsolutionsto becloseto thesingularlimit ries in fig. 1 is embeddedin 1R~as (x, x,~,x1), then
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Fig. I. Timeseriesfor Mackey—Glassequation(1), (2) with A=2, c= 10, 6=0.05.

thetrajectorywill lie closeto a surface.On theother fraction fsv(k) as (dEFsv—k)/(dE—k),or equiva-
handfor fixed ~5—~E and A ~ 1, the trajectoryembed- lently,
ded in ER3 as (x, x~,xA) shouldfill a three-dimen- 1 d~
sional volume, since the attractor dimension is f

8~(k)=1— ~ o~. (5)
(tIE —k)Nk+I1/f. Therefore,if we plot somemeasureof trajec-

tory volume versusA, weshouldseea sharpchange ThusfsvE [0, 1] for 1 ~k~dE, andis monotonein-
nearA= I, correspondingto a collapseofthevolume, creasingwith k (andf8~(dE)= 1). Iffsv = 1 for k< tIE,

Themeasurewe havechosenis calledthesingular then the attractorresidesin a k-dimensionalsub-
valuefraction (SYF), and is constructedas follows, space.Now sincethe attractordimension ‘~ 1/f 15

Given a time series,we choosean embeddingwith large,we assumethat dE < I / �, sothat theembedded
one variable time lag A. We then normalise the trajectorywill fill the phasespace.We thenexpect
embeddedtime seriesso that it has zero meanand that if we plotf~,,as a function of A, therewill be a
unit variance.For eachembedding,we use global sharpriseat A = 1 as theattractorvolume collapses.
singularvaluedecomposition(SVD) to determine In fig. 2, weshowthatfsv(A) experiencesjusta max-
theprincipalsingularvectorsw1, ..., w~andtheiras- imum nearA = 1. Furtherdetailson the useof sin-
sociatedsingularvalueso~,..., ~ where dE is the gular value fractionsin diagnosingdelaysand Se-
embeddingdimension,ando~~ a2 ~ ... ~ ~0. For lecting optimal embeddinglags will be presented

elsewhere;herewe wish to examinethepossibleuse
anygiven choiceof k, wedefine

of so-called“smart” embeddingsin making predic-
tions.

k Id5
F5~,,( k) = ~a~/ ~ a~. (4) It shouldbeemphasisedthatothermethodscould

1 I i beusedto establishtheattractorcollapseat A= 1. In
particular,useof generaliseddimensionstatistics[8]

Notice that 0<F~~~1 for 1 ~k~dE, and F~vis suchas the correlationintegralC2(r) (which meas-
monotoneincreasing.We canshow that in fact F5~ uresthe proportionof pairsof points in theembed-
~ k/dE,and thereforewe definethe singular value ded trajectorywhich are a distanceless than r from
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Fig. 2. SVF for Mackey—Glassequation,k=2,asa functionof Afor the3-Dembedding(x, x
4, xA) with ö=t/4.

eachother) might allow for possiblefolding, which erageabsolutepredictionerror,P. In general,P will
the SVF would notbe good for. Specifically,we can dependon thenumberofdatapoints,N; theembed-
expect dingdimension,dE; as well as thepredictionmethod,

noiselevel, etc. If the attractordimensionis D, then
C2(r)’..~g(A)(r/D) (6)

for dE<D, we can expect the trajectoryto fill the
for small r, whereD is the linear dimensionof the embeddingspace— it is beingprojectedonto it, and
embeddingtrajectory,and ii is the correlation di- nearbypoints in ER~’~may notbe closeon the attrac-
mension. Reasonably, one can expect the pre- tor. Thus P shoulddecreaseuntil dE reachesD, pro-
multiplicativefactorg to dependon thevariablelag viding N is large enough.As dE increasesfurther, P
time.Now if the attractorreallycollapsedto a lower will increaseagain,sincethe Ndatapointsarebeing
dimension,one might expectC2~(r/D)~’ when spreadarounda largerand largerspace.
A~1, and thusg(A) shouldexperiencea sharppeak In a delaysystemwith a largedelay, thereis ase-
nearA = 1, at fixed (small) r, We havenottestedthis rious problem if N is limited. If D is large,onetyp-
conjecturalidea, thoughit may haveits own prob- ically expectsexp[O(D)] datapointsasa require-
lems;the point to bemadeis that,wherefolding of mentto makeuseful diagnosticsor predictions [9].
thecollapsedtrajectorydoesoccur,SYD is notlikely This makesthe use of smart embeddingsvery at-
to be as useful. tractive,astheyprovidean effectivewayof decreas-

ing the dimension of the attractor — or at least
3. The standardembeddingfor a time seriessuch squashingit flatter.

as in fig. 1 would be x, x4, x25 We designatea Figure3 showsthemeanabsolutepredictionerror
smart embedding as (x, xo, x2o x~, P versusA for the Mackey—Glassequation,usinga
xJ, x4, xk), whereô is a “normal” lag selection, three-dimensionalsmartembedding(x, xE,4, xj), and
andA1, A2, ... are oneor morelags selectedby suc- local linearpredictionusingtheaverageof fournear-
cessiveuseof SVF, or somesimilarmethod.In mak- est neighbours.Predictionis onestep (f/4) ahead.
ing predictionsbasedon local linear or nonlinear We see that there is a sharpminimum nearA— 1
predictors,we are interestedin minimising the av- (rememberthenormalisedtimeserieshasunit stan-
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Fig. 3. AverageabsolutepredictionerrorPversusA for Mackey—Glassequation,embeddingasfor fig. 2.
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Fig. 4. PredictionerrorPversusdE for thenormalembedding(x, x,
1 X(~_

darddeviation). In fig. 4 we plot PversusdE for the step aheadto be I. This point will be pursued
smartembedding(x, xo XdE_2, x4) with ~= E/4, elsewhere.
A = 1. Apparentlyparadoxically,P increaseswith dE.
ThisisduetothefactthatdE< 1/f, SO thatthepoints 4. The evidencepresentedaboveillustrates our
continueto spreadapartas dE increases.To obtain main thesis, that particularly in delay differential
P decreasingwith dE, we canchangethe prediction equations,smart embeddingsprovide a usefulye-
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hide for constructingaccuratelow-dimensionalre- trajectorycollapsesclose to f(x5) when t~ 1. This
constructions.Moreover,this approachmay be ex- suggeststhat in someaveragesense,thesingularlimit
tendedto othersystemswith, for example,different f = 0 in (1) is attained,althoughthe meansby which
timescalesof behaviour.Herewe wish to pursuea this occursis very unclear.In fig. 6, we showthe av-
featureof (1), as exhibitedby fig. 3. This is most eragevalue of x—f(x4) as a function of A. The
strikingly illustratedif we plot phaseportraits(x, x~) minimumnearA = 1 is verysimilarto the minimum
of fig. 1, using in fig. 5a ~= 1.5, and in fig. Sb displayedby the predictionerror.
t= 1.025,wherealsof(x5) is plotted.We seethatthe Someunderstandingof this comesfrom rewriting
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Fig. 5. Phaseplot offig. I, xversusx~:(a) ô= 1.5; (b) ö= 1.025.
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4) I> as a function ofA,Mackey—Glass,6=0.05.
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Fig. 7. x(t) (solid line) andf(x1) (dotted)as functions of t.

the equationasanintegralequation,neglectingtran- which suggeststhatx ~f1at leadingorder.However,
sients,and expandingin powersof �. Equivalently, as we expectd/dt 1/f, thereis in factno guarantee
weuse operationalcalculusto write that thetermsdiminish.Nevertheless,(6) is sugges-

x= (1 + ED) — ‘f~=f~— Ef, + E
2f — f 3f + (7) tive, as are successivefinite differenceapproxima-tions:
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