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ABSTRACT 

We describe the method used by Fowler and Krantz ( 1993 ) which reduces the Miller model of frost heave to two linear 
ordinary differential equations. Numerical solutions are presented and qualitative comparison is made with a numerical 
solution to the full system of equations given by O'Neill and Miller ( 1985 ). 

Introduction 

Whenever a soil is exposed to prolonged periods 
of  sub-zero temperatures its surface may rise by as 
much as half  a metre. This phenomenon is com- 
monly referred to as frost heave and can be directly 
attributed to the accumulation of  segregated seams 
of  ice (ice lenses) that form within the soil. These 
ice lenses form discretely several millimetres apart 
and grow by imbibing water from the unfrozen soil 
below. 

The pressures developed during the frost heave 
process are quite substantial and as a result the phe- 
nomenon is responsible for numerous environmen- 
tal problems including damage to roads, pavements  
and the foundations of  buildings. The formation of 
ice lenses gives rise to a dramatically increased 
(frozen) water content in the frozen soil and this 
leads to further problems when thawing com- 
mences. Ice lenses below the thawed region act as 
impermeable barriers causing the soil above to be- 
come completelely saturated and suffer a total loss 
of  strength. Problems of  this nature, costing mil- 
lions of  dollars each year to repair, have led to frost 
heave being the subject of  much research since the 
early part o f  this century. 

Substantial progress was made in the understand- 
ing of  the frost heave process from the early empir- 
ical studies of  Taber (1930) and Beskow (1935). 
However, because of  its complexity, theoretical 
studies were slow in coming. Gold (1957), Penner 
(1959) and Everett ( 1961 ) made significant theo- 
retical advances with the application of  basic ther- 
modynamics  and the inclusion of surface tension 
effects. All of  the aforementioned studies assume 
that an ice lens forms at the freezing front and are 
referred to as primary heave models. With this as- 
sumption it is difficult to produce a model which 
reflects all the characteristics of  the frost heave pro- 
cess such as a continuous heave rate, lens initiation 
and extremely high heaving pressures. It is found in 
general that ice lenses in fact form some way behind 
the freezing front (see Miller, 1972) and models 
which include this observation are termed second- 
ary heave models. Miller ( 1972, 1977, 1978, 1980) 
developed a model to describe secondary heave 
which in particular predicts much higher heaving 
pressures than those developed in the primary mode, 
predicts the formation of  lenses behind the freezing 
front and also contains a mechanism for the initia- 
tion of  a new lens. 

O'Neill  and Miller (1982, 1985) numerically 
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solved the equations which describe the Miller 
model and found that their results reflected the 
heaving process quite accurately. However, because 
the equations needed to be solved for every lens, the 
algorithm required for this simulation was ex- 
tremely complicated and not at all practical. Hol- 
den (1983), Holden et al. (1985) and Piper et al. 
(1988) simplify the model by supposing that cer- 
tain fringe variables, namely temperature and pore 
water pressure, are quasi-static. In each of these pa- 
pers a simple linear or exponential profile is used 
for the temperature while a consistent form for water 
pressure is only given in the latter paper as an ex- 
ponential function of distance. Fowler and Krantz 
( 1993 ) show that water pressure can be taken to be 
quasi-static and derive an explicit expression for its 
form. Using this and applying other asymptotic 
procedures they reduce the Miller model to two 
coupled ordinary differential equations for heave 
and frozen front depth which in fact, by a simple 
transformation, can be made linear. Although the 
work of Fowler and Krantz treats lens formation as 
a continuous process it is still possible to determine 
from their study such things as time of lens initia- 
tion, lens thickness and lens spacing. 

In this paper numerical solutions of the equa- 
tions found by Fowler and Krantz are presented and 
a qualitative comparison is made with the results of 
O'Neill and Miller ( 1985 ). 

The Miller model 

For modelling purposes a heaving soil is usually 
divided into three distinct regions: (1) the com- 
pletely frozen soil, (2) the partially frozen soil be- 
low the lowest ice lens (frozen fringe) and (3) the 
unfrozen soil (Fig. 1 ). Because the criterion for lens 
formation is a mechanical condition rather than a 
thermal one (see below), Fowler and Krantz intro- 
duce a fourth region which lies above the lowest lens 
and next to the frozen fringe. This region contains 
ice lenses separated by partially frozen soil. 

A brief description of the equations describing the 
Miller model is given below. (For a more complete 
account see for example O'Neill and Miller ( 1985 ) 
or Fowler and Krantz (1993). ) For simplicity it is 
usually assumed that the soil matrix is incompres- 

sible. With this assumption we effectively only need 
consider the water and ice phases when writing 
down equations for the processes in the frozen 
fringe. Conservation of mass in this region leads to 
two differential equations coupled by a source term 
which arises because of ice production in the fringe. 
When considering energy conservation it is usually 
assumed that conduction and convection of heat are 
the dominant terms in the energy balance. The re- 
sulting expression is thus a parabolic equation for 
the temperature containing a source term which is 
again due to the ice production in this region. Con- 
servation of momentum is given by Darcy's law 
where the hydraulic conductivity is a function of the 
water content. The form of this function, a large 
power of the v~ater content, plays an important role 
in the reduction given by Fowler and Krantz. The 
large exponent gives rise to a boundary layer below 
the lowest lens and asymptotic analysis results in an 
explicit expression for the pore water pressure. 

The temperature in the fringe is related to the 
water and ice pressures via a generalised form of the 
Clapeyron equation (Loch, 1978). The capillary 
equation expresses the difference in ice and water 
pressure as a known function of the water content. 
A typical function of this type, taken from O'Neill 
and Miller (1985), is given in .Fig. 2. Similar nu- 
merical results have been produced for other forms 
of capillary relation taken from Black (1990). 

The criterion given by Miller for the initiation of 
a new lens is that the stress between soil grains (ef- 
fective stress) should become zero at some point 
within the fringe. The new lens will then form at 
this point. Bishop and Blight (1963) suggest that 
the effective stress in soil containing two permeat- 
ing media is simply the difference between the ov- 
erburden and a weighted average of the stresses in 
the permeating media. The weighting factor is called 
the stress partition factor and a typical example of 
its form, again taken from O'Neill and Miller 
(1985), is given in Fig. 3. 

The model proposed by Miller is often called the 
rigid ice model of frost heave. This is due to the fact 
that it is assumed that the ice within the fringe 
moves, by a process of regelation, with a constant 
velocity equal to the heave rate. Fowler and Krantz 
argue that this hypothesis breaks down in more than 
one dimension and suggest an alternative form for 
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Overburden, P. 

z = z~, T = T, 

z = O  

R.egion 1. Frozen Soil. 

l~egion 2, Frozen Fringe. 

z = z t  

z = z f  

'Region 3, Unfrozen SoiL. 

z = z ~ , T = T ~  

Fig. 1. Schematic picture of a heaving soil. 

the ice velocity within the fringe. However, in order 
to give a qualitative comparison with the results of  
O'Neill and Miller the latter approach will not be 
adopted for the work presented here. 

The equations applicable in regions one and three 
are more straight forward. We require conservation 
of  mass, energy and momentum (Darcy's Law) in 
the unfrozen region while in the completely frozen 
zone we simply require an energy equation. Appro- 
priate boundary conditions for each region may be 
found in either of  the works cited above. 

We now detail the observations used by Fowler 
and Krantz which reduce the equations describing 
the Miller model to two ordinary differential equa- 

tions. Two of these observations lead to explicit 
temperature profiles in regions one and three. The 
first is that the fringe is thin compared to the height 
of  the soil and is consequently seen as a line by the 
rest of  the soil. The second is that the convective 
transport of  heat is small compared with the con- 
ductive flux (i.e. the Peclet number, Pe, << 1 ). The 
energy equations in regions one and three then re- 
duce to 

VET=0 (1) 

in z s>z>z f  and Zf>Z>Zb with boundary condi- 
tions T=  Ts on z = z~, T=  To on z = zf and T =  Tb on 
Z=Zb. The solution to this equation is then 
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T=Ts+Zs-Z (To-Ts) 
Z s - -  Zf 

in zs>z>zf and 

T=To+ Zf--2 (Tb-- To) 
Z f  - -  Z b 

10 6 

10 5 

0 

"~ 

10 4 

(2) 

(3) 

in Zf > Z > Z s. 

Using these expressions to evaluate the tempera- 
ture gradient on each side of the fringe, the fringe 
equations may be solved to determine the locations 
of the moving boundaries zs and zf. Rather than do 
this numerically, Fowler and Krantz use the obser- 
vations given previously together with the facts that 

0.1 5' 0.20' 0.25' O. 30' O. 35' O. 40' 
',,~ t e/" Contenc, W 

0.45' 0.50 

Fig. 2. Capillary relation, f ( W ) .  
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Fig. 3. Stress partition function, Z(W). 
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the effects of  gravity are negligible and the expo- 
nent in the hydraulic conductivity function is large. 
This form for the hydraulic conductivity gives rise 
to a boundary layer below the lowest ice lens in 
which the water pressure changes rapidly. Asymp- 
totic methods applied to Darcy's equation lead to a 
uniformly valid expression for the water pressure as 
a function of  water content. Fowler and Krantz sub- 
sequently show that on the formation of  a new lens, 
water content within the boundary layer relaxes 
rapidly to a steady state and consequently consider 
the water pressure to be quasi-static. 

The remaining differential equations in the fringe 
express conservation of  mass and energy. The small 
Peclet number and thin fringe allow these equations 
to be written as a set of  algebraic equations for vari- 
ables evaluated at each side of  the fringe. Using the 
forms found for the temperature and pressure pro- 

files and also the remaining fringe relations, it is 
possible to reduce these algebraic equations to the 
two (dimensional) ordinary differential equations 

A B 
kf= ~ - -  (4)  

A - z f  Z f - -  Zb 

Zs = O/(\Z s --]/Zf-[- WIZf)  '" ( 5 )  

where the constants are defined in the appendix. 
These constants depend upon the quasi-static water 
content at the base of  the lowest lens. Fowler and 
Krantz show that lens formation can be treated as a 
continuous process and as a result suppose t h e  ef- 
fective pressure at the lowest lens is always zero. The 
existence of  the boundary layer for the water pres- 
sure then enables this water content to be calculated 
from the stress relation. 
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Fig. 4. Heave against time for different overburdens. 

These differential equations essentially express 
conservation of  energy across the whole fringe (Ste- 
fan condit ion)  and conservation of  mass at the base 
of  the lowest lens. 

I . . . . . . . . . . . . . . . . . . . . .  P=IO kPa 
~ P = 2 0  kPa 
. . . . . .  P=30 kPa 
-- P=40 kPa 
-- P=45 kPa 

/ 
// 

// 
// 

/ 
// 

// 

3 xlO 5 4 xlO 5 5 xlO 5 

time (secs) 

water contents at the lens and at the new lens posi- 
tion. Using this method, a solution is only obtained 
for overburdens smaller than about 50 kPa. For 
larger overburdens we suggest that heave is sup- 

Numerical results 

Fowler and Krantz assume that the capillary re- 
lation and its derivative have the same order of  
magnitude. It can be seen from Fig. 2 that this as- 
sumption may break down when the capillary suc- 
tion becomes large. Most of  their analysis remains 
valid although some care is needed when calculat- 
ing the water content at the base of  the lowest lens 
because of  the rapid change in the capillary relation 
within the boundary layer (Noon,  1993).  Calcula- 
tion of  this water content becomes slightly more 
complicated. Rather than say it is simply a zero of  
the stress relation we also require it to be a station- 
ary value (see Fowler and Krantz, 1993). These 
conditions give two simultaneous equations for 

P=IO kPa P=20 kPa P=30 kPa P=40 kPa P=45 kPa 

Fig. 5. Schematic sections showing twelve lenses for each ov- 
erburden (crossed regions indicate lenses ). 
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Fig. 6. Lens thickness against lens initiation time for different overburdens. 

pressed for this particular capillary relation. 
Equation s (4) and (5) are two first order differ- 

ential equations, and can be solved numerically us- 
ing any standard solver, such as a Runge-Kutta 
method. If  we write 

hi =z ,  --zf, h2 =Zf--Zb 

where ht and h 2 are thus the thickness of the frozen 
and unfrozen zones respectively, then Eqs. (4) and 
(5) can be written as 

Zf ~-- 1~2 = -Ah2 +Bhl 
hlh2 (6) 

~ _~f=[~t_a(vh2 + Wlhlh2/t2) ]~2 (7) 
hi ]12 

(since zb is a constant) whence 

hi h2/~2 = -Ah2 +Bhl (8) 

hlh2hl =avh2+(1-ctW1)(Ah2-Bh~) (9) 

Now note that by defining a nonlinear transforma- 
tion of time to z defined by 

dt 
-~r=hl h2 (10) 

Eqs. (8) and (9) can be written as 

d~z =auh2 + (1-otW1) (Ah2 -Bhl ) (11) 

dh2 - -Ah2 +Bhl (12) dz 

which are a pair of linear differential equations, 
which can be solved exactly. By then integrating Eq. 
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Fig. 7. Lens spacing against initiation time of following lens for different overburdens. 

(10),  the exact solution can be obtained in the par- 
ametric form hi =h i  (z),  h2=h2(z) ,  t=  t ( r ) .  

If  we consider a simple step-freeze experiment 
where an initially unfrozen soil is subjected to a sur- 
face temperature which is below the freezing point, 
then appropriate initial conditions are that zs= 0, 
zf= 0 at t = 0. With the explicit exact solutions avail- 
able, it is a straightforward matter to compute A and 
zf as functions of  time. Typical plots of  heave are 
given in Fig. 4 for varying overburdens. These plots 
are only given to the time of  formation of  the final 
lens. This is because methods used to obtain the re- 
duced model break down when lens formation 
ceases. 

Fowler and Krantz (1993) also suggest a method 
for calculating lens spacing. It is then possible, from 
knowledge of  the frozen front depth, to define an 
iterative procedure from which times for lens initi- 

ation may be found. Lens thickness may then be de- 
termined from the knowledge of  the surface heave. 
From these calculations schematic plots of  the 
twelve lenses above the final lens are given in Fig. 5 
and plots of lens thickness and lens spacing are given 
in Figs. 6 and 7. 

It is difficult to obtain, from the papers of  O'Neill 
and Miller (1982, 1985), all the information re- 
quired for a quantitative comparison between the 
full system of equations and the reduced set given 
here. Instead we try to give a qualitative compari- 
son of  our Figs. 4, 5, 6 and 7 with Figs. 4 and 5 from 
O'Neill and Miller ( 1985 ). 

O'Neill and Miller's Fig. 4 shows that lens spac- 
ing tends to a constant as the final lens is ap- 
proached while lens thickness increases. This is in 
agreement with our theory, as shown in Figs. 5, 6 
and 7. Plots of  heave against time are also very sim- 



SIMPLIFIED NUMERICAL SOLUTION OF THE MILLER MODEL OF SECONDARY FROST HEAVE 335 

ilar. For each set of  plots, heave goes initially like 
the square root of time before becoming linear at 
larger times. 

Conclusion 

The Miller model of  frost heave is the only model 
available which predicts all the characteristics of the 
frost heave process and has consequently become 
very popular. However, analytical solutions are not 
possible and because of  its complexity numerical 
solutions are very difficult to produce. In recent 
years, several attempts have been made to simplify 
the model by "guessing" quasi-static forms for the 
temperature and water pressure. Fowler and Krantz 
( 1993 ) derive quasi-static forms for these variables 
and proceed to reduce Miller's model to two ordi- 
nary differential equations. This dramatic reduc- 
tion requires that: 1) the convective transport of 
heat may be neglected, 2 ) the effects of  gravity are 
small, 3) the frozen fringe is thin and 4) the expo- 
nent in the hydraulic conductivity is large. Numer- 
ical solutions of  this reduced model are very easily 
obtained and comparisons with numerical solu- 
tions of  the full system are favourable. 

We have already applied the techniques used by 
Fowler and Krantz to saline soils and found that the 
system can again be reduced to two ordinary differ- 
ential equations. We hope in the future to perform 
similar reductions to the three dimensional prob- 
lem and also to the problems of  compressible and 
unsaturated soils. 

Appendix 

We define the constants required for the Solution 
of  the equations given above and give the values 
used in our analysis. 

z = Displacement. 
zs = Displacement of  the surface. 
zf = Displacement of  the frozen fringe. 
zt = Position of  the base of  the lowest lens. 
Zb =Posi t ion of  the base of the soil column 

( - 0 . 1 5 3  m) .  
T = Temperature. 

Ts =Temperature  of  the soil surface (272.5 K).  
To = Freezing point of water (273 K).  
Tb = Temperature at the base of  the soil column 

(274 K).  
W = Water volume fraction. 
Wl = Quasi-static water content at the base of the 

lowest lens. 
=Pore  volume fraction (0.411 ). 

u( l + 6 - (  l +fl)(O-W~)a) 
A = . . . .  . . . . . . . .  . . . . . . . . . .  

6Wi + 0+]~(q~- Wi) - a (  1 +fl) (q~- Wi) W I" 

v(1+6) (l+fl)Ob 
B 

--6W~ + 0+]~(0- W~) --o~( 1 +]~)(~- W~) W 1" 
/7(1+6) 

ot -- (1 +/~) (1 _ ¢ +  Wl). 

k (  T o -  T~) 

i] -- L p  w 

T~- To 
Ob - T o - T s "  

Pw --Pi ci _ 
Pi 

_ [  f - N  -~l~,w,~' +6y~-U))" 
~pi t 2 k o ( W l ~  ~ 

fl' - gkTo  \ fb J "  

f = Capillary relation evaluated at Wt. 
f [  =Derivat ive of the capillary relation 

evaluated at Wv 
N = P - p ~ .  
Pw = Density of  water ( 1000 kg m -  3). 
Pi = Density of ice ( 917 kg m -  3 ). 
g = Acceleration due to gravity (9.8 m s-  z ). 
L = Latent heat of fusion for water ( 3.35 × 105 J 

kg -1 ). 

k = Thermal conductivity (4 W m -  1 K -  ~ ). 
ko = Hydraulic conductivity of  ice free soil 

(1 × 1 0 - 9 m s - l ) .  
? = Exponent in the hydraulic conductivity 

function (Eq. 9 ). 
P =Overburden ( 10, 20, 30, 40, 45 kPa). 
Po~ = Water pressure at zb (0 Pa).  

= 

WI is calculated numerically for each overburden 
from the equations 

7( N -  ( 1 - Z (  W n ) f (  Wn)  ) w,_  
0 

O W [  ( 1 - z ) J q w = w o  
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(1-z(w,,)f(w,,)= 

N+(f(WI)-N)exp( y(Wn- HI,)) 
The  capi l la ry  re la t ion ,  stress pa r t i t i on  and  hy- 

draul ic  conduc t iv i ty  func t ions  used for  this  analysis  
a r e  

l o g f ( W )  = 0.343941og(0.411 - W) 

- 8 . 5 ×  10 -3 ( log (0 .411  - W) )2 

- 0 . 7 8 3 3 4 1 o g ( W - 0 . 1 4 )  

+ 3.91 X 10-2 ( log(  W -  0 .14)  )2 

The  func t iona l  forms chosen  here  have  been  sug- 
gested by  O 'Ne i l l  a n d  Mi l l e r  (1985) ;  the  coeffi- 
c ients  in f ( W )  were d e t e r m i n e d  by  a least  squares  
fit to the  curve given by  them.  
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