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Abstract. The classical model of plant root nutrient uptake due to Nye, Tinker and Barber
is developed and extended. We provide an explicit closed formula for the uptake by a single
cylindrical root for all cases of practical interest by solving the absorption-diffusion equa-
tion for the soil nutrient concentration asymptotically in the limit of large time. We then use
this single root model as a building block to construct a model which allows for root size
distribution in a more realistic plant root system, and we include the effects of root branching
and growth. The results are compared with previous theoretical and experimental studies.

1. Introduction

Conventional agriculture requires the use of fertilisers to maximise crop yields and
this is an issue of concern for several reasons. Many fertilisers are applied in ex-
cess because the amounts required for optimum economic yield cannot be estimated
with precision (Swoboda, 1990). The surplus pollutes groundwater with nitrate and
surface water with both nitrates and phosphate, decreasing drinking water quality
and amenity value. Neither the economics nor the environmental impact of such
practices are sustainable (Magdoff et al., 1997). A further concern is that of under-
standing how climatic change will affect crop yield and nutrient uptake, through
variation in CO2 concentration, sunlight, temperature and rainfall (Wullschleger
et al., 1994). A better understanding of the rates at which plants assimilate nutri-
ents would therefore be welcome.

Plants require thirteen nutrients from the soil for their growth and deficiencies in
their uptake can have profound dietary consequences for human health (Welch and
Graham, 1999). The principal nutrients are nitrogen, phosphorus, sulphur, potassi-
um, magnesium and calcium, and are taken up mainly as ionic species (e.g. nitrate,
phosphate) from soil water. Nutrient uptake is thought to occur through binding to
certain specific ion-binding proteins in the root wall (Bowling, 1976), so that the
uptake mechanism is kinetically similar to the Michaelis-Menten reaction of en-
zyme kinetics (Murray, 1993). In this paper we will consider the root as a uniform
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cylindrical structure with uptake localised on the surface. We shall not consider
the extra complications associated with root hairs or an internal uptake pathway,
nor indeed shall we consider the extra nutrient uptake due to mycorrhizae, which
essentially act as fungal nutrient conduits to the root system (Marschner, 1995).

The classical model for nutrient uptake is due to Nye and Tinker (1977) and
Barber (1984). It supposes a single cylindrical root to be surrounded by an infinite
extent of soil, with prescribed far field soil water concentration. The nutrient diffus-
es through the soil water (via the pore water), and its uptake at the root is given by a
Michaelis-Menten dependence on concentration. This absorption-diffusion model
thus consists of a linear diffusion equation with the nonlinear root surface absorption
condition. Because of the nonlinearity, Nye and Tinker (1977) and Barber (1984)
were forced to solve the problem numerically. Although this is straightforward, it
requires a separate calculation for each parameter set, which is time consuming and
in addition means that the extension of the single root model to more realistic root
systems is hazardous. In this paper we deal with this problem by providing a fully
explicit approximation to the basic Nye–Tinker–Barber model; we are then able to
build a more realistic model which incorporates root size distribution.

On a larger scale, root systems are similar to tree branch systems. As roots grow,
they form sub-branches of smaller radius, which themselves grow and form their
own sub-branches. Root structure depends on the plant (genetics), and also on the
soil characteristics (phenotypic plasticity). For example, Marschner (1995) showed
that there is a prevalence of proteoid roots in Lupinus albus L. (the white lupin)
when grown in a phosphorus-deficient environment. We do not try to account for
the ability of a root system to evolve according to the environment it finds itself in.

As described above, the Nye–Tinker–Barber model combines diffusion of nu-
trient through the soil with its absorption at the root surface. It also includes con-
vection by soil water; Jungk and Claassen (1997) observed that for most nutrients,
the convective transport was negligible, and we confirm this here.

The plan for the rest of this paper is as follows. In section 2 we present and
analyse the Nye–Tinker–Barber model, deriving an explicit formula for the nutrient
uptake by a single cylindrical root. In section 3 a root system model is presented
and analysed, using the results of section 2 as an ingredient. Concluding remarks
follow in section 4.

2. The Nye–Tinker–Barber model

We will derive the diffusion model in some detail, since the nutrient in the soil
can exist in solution but also as adsorbed particulate in the soil phase. Let c be the
concentration of nutrient in pore water (mass per unit volume of pore water) and
cs the ion concentration in solid form, mass per unit volume of soil. The relevant
solid concentration is that adsorbed at solid surfaces, and more properly cs might be
measured as mass per unit surface area of solid phase. This simply involves subse-
quent multiplication by the soil specific surface area (surface area per unit volume
of soil) to convert to a volume concentration. Although this needs to be borne in
mind, it does not effect the derivation of the model and is therefore ignored.
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Conservation of c and cs follows from an approximate two-phase model, which
can be written

∂cs

∂t
= ds,

∂

∂t
(φc) + ∇ · (cu) = ∇ · [φD∇c] − ds, (2.1)

where φ is the liquid saturation (equal to the porosity if the soil is saturated), u is
the Darcy flux of pore water, D is the diffusion coefficient of nutrient in pore water,
ds is the interfacial ion transport, which is non-zero if the liquid is below saturation.

In order to derive an equation for c alone, we need to prescribe how ion adsorp-
tion occurs. A simple assumption is that adsorption and desorption of ions at the
soil particle surface are proportional to the respective concentrations, whence we
can write

ds = kac − kdcs, (2.2)

and if kd is large (relative to the diffusion time) then (2.1) implies

cs = bc, (2.3)

where b = ka/kd is called the soil buffer power (Barber, 1984; Nye and Tinker,
1977).

We now obtain an equation for c by adding the equations for cs and c in (2.1),
using (2.3), so that (φ and D being constant)

(φ + b)
∂c

∂t
+ ∇ · (cu) = φD∇2c. (2.4)

In general u is determined through solution of local groundwater flow to the root
surface. We presume this is prescribed.

2.1. Boundary conditions

At the root surface, we presume an uptake flux of Michaelis-Menten type. If n is a
unit vector at the root surface pointing into the soil, then the flux is taken to be

φD
∂c

∂n
− cun = Fmc

Km + c
, (2.5)

where Fm and Km are properties of the root surface. It is common to add an extra
term −E to the right hand side of (2.5), to represent the fact that there is a minimum
nutrient level in the soil below which no uptake occurs. Practical values of E are so
low, however, that this term appears generally to be negligible, and hence we omit
its consideration henceforth.

The initial soil concentration is prescribed, and equal to the farfield concentra-
tion away from the root:

c → c0 as |x| → ∞. (2.6)

For the specific case of a cylindrical root the problem can be written in terms of
polar radius r , and moreover the Darcy flux (satisfying ∇ · u = 0) is given as
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u = −aV/r , where V is the water flux to the root and a is the root radius. The
absorption-diffusion model is then

(φ + b)
∂c

∂t
− aV

r

∂c

∂r
= φD

r

∂

∂r
(r

∂c

∂r
),

φD
∂c

∂r
+ V c = Fmc

Km + c
on r = a,

c → c0 as r → ∞, (2.7)

and c = c0 at t = 0.

2.2. Non-dimensionalisation

We scale the variables by writing

c = Kmc∗, r = ar∗, t = (φ + b)a2

φD
t∗, (2.8)

so that the dimensionless model is, on dropping asterisks,

∂c

∂t
− Pe

1

r

∂c

∂r
= 1

r

∂

∂r
(r

∂c

∂r
),

∂c

∂r
+ Pe c = λc

1 + c
at r = 1,

c → c∞ as r → ∞, t → 0, (2.9)

where the parameters are the Péclet number

Pe = aV

φD
, (2.10)

the uptake coefficient

λ = Fma

φDKm

, (2.11)

and the farfield scaled concentration

c∞ = c0

Km

. (2.12)

The dimensionless (scaled with φDKm/a = Fm/λ) nutrient flux to the root is

F = λc

1 + c

∣∣∣∣
r=1

, (2.13)

and our object is to calculate this as a function of t ; evidently it depends on the
parameters Pe, λ and c∞, which implies F may vary widely with different plant
and soil characteristics.
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2.3. Parameter estimation

Typical estimates of soil water movement and diffusion coefficients are V ∼ 10−7

cm s−1, D <∼ 10−5 cm2s−1, while root radii of interest are a ∼ 5×10−4 −6×10−2

cm. Even for a = 10−1 cm, and if φ is as low as 0.1, Pe ∼ 10−2, and mostly will
be lower. This implies that the Péclet number is generally negligible, and we begin
by ignoring it. Obviously, this assumption needs to be scrutinised in (2.9) if, for
example, λ ∼ Pe, and this warning needs to be borne in mind: we return to this
case later.

We give typical plant macro-nutrient characteristics for maize in a normal soil,
according to Barber (1984), in Table 1. Computed values of λ and c∞ are then as
shown in Table 2. Typically we see that λ >∼ 1, while c∞ may be large or small. If
instead we focus on the nutrient, phosphorus, then the values of the parameters for
soybean, lettuce and tomato are shown in Table 3; for this mineral, λ and c∞ are
O(1) for different plants.

In Table 1 we see that the diffusional time scale a2(φ + b)/Dφ is typically of
order 105 seconds or less, i. e. of the order of one day. We are specifically concerned
in this paper with the growth of agricultural plants over a growing season of about
four months ≈ 107 seconds, and thus we see that in the dimensionless model, we
are interested in the evolution of the solution over long time scales of O(102).

Table 1. Dimensional parameter estimation for maize after Barber (1984). In the right hand
column, values of a, φ and D are taken as 0.02 cm, 0.3 and 0.3×10−5 cm2 s−1, respectively.

Parameter c0 b Fm Km

a2(φ + b)

Dφ
(µmol cm−3) – (µmol cm−2s−1) (µmol cm−3) (s)

NO−
3 5 1.0 10−5 0.025 0.58 × 103

K 0.046 39 3 × 10−5 14 × 10−3 1.75 × 104

S 0.1 2 3 × 10−7 10−2 1.02 × 103

P 2.9 × 10−3 239 3.26 × 10−6 5.8 × 10−3 1.06 × 105

Mg 10−3 1.2 4 × 10−6 0.15 0.67 × 103

Ca 0.8 × 10−3 156 10−6 4 0.69 × 105

Table 2. Non-dimensional parameter estimation for maize with D = Df f , where Df =
10−5 cm2 s−1, f = φ = 0.3.

Parameter λ c∞

NO−
3 8.8 200

K 47 3.28
S 0.66 10
P 12.3 0.5
Mg 0.55 6.7 × 10−3

Ca 5.5 × 10−3 2 × 10−4
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Table 3. Parameter estimation for phosphorus for different plants.

Plant Fm Km λ c∞

Soybean 6.4 × 10−7 2.7 × 10−3 5.2 1.07
Lettuce 10.6 × 10−7 2 × 10−3 11.7 1.45
Tomato 49.9 × 10−7 6.1 × 10−3 18.2 0.475

2.4. Solution strategy

In view of the wide variety of parameter values for λ and c∞, which we see in table
2, it is possible to attempt to solve the model in various asymptotic limits (λ  1,
c∞  1, etc.), and this approach was adopted by Roose (2000). However, a more
direct observation is that from Table 1, we see that the longest diffusive timescale
is for phosphorus in maize, and is approximately one day. Since the time scale for
plant growth is much larger than this, we only require the solution of (2.9) for large
times. By restricting ourselves in this way, we can derive an approximate solution
which is valid for all values of λ and c∞ (so long as Pe is negligible). With Pe = 0,
we have to solve

∂c

∂t
= 1

r

∂

∂r
(r

∂c

∂r
),

∂c

∂r
= λc

1 + c
on r = 1,

c → c∞ as r → ∞, (2.14)

and we wish to compute the dimensionless flux F = ∂c
∂r

|r=1. At large times, the
concentration profile has spread out over a large distance. To specify this, we write

t = τ

σ 2
, r = R

σ
, (2.15)

where σ � 1. The concentration field in R ∼ 1 sees a boundary at R = σ � 1,
and it seems reasonable to anticipate that a farfield similarity solution will be ap-
propriate. In terms of a similarity variable R2/τ , a solution of the far field diffusion
equation is

c = c∞ − BE1(
R2

4τ
), (2.16)

where

E1(x) =
∫ ∞

x

e−y

y
dy, (2.17)

is the exponential integral.
There is an inner region near the root, where we revert to the variable r , so that

σ 2 ∂c

∂τ
= 1

r

∂

∂r
(r

∂c

∂r
), (2.18)

with solution
c = c1 + F ln r + O(σ 2), (2.19)
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where F is the dimensionless flux at the root. Note that c1 and F may be functions
of τ in (2.19). We determine F by matching (2.19) and (2.16). As x → 0, the
exponential integral is given by

E1(x) ∼ −γ − ln x + O(x), (2.20)

where γ is Euler’s constant, so that (2.16) as R → 0 is given by

c ∼ c∞ + γB − B ln 4τ + 2B ln σ + 2B ln r + O(σ 2). (2.21)

This indicates that (2.16) is correct to order O(σ 2), and also determines B and c1
through the matching conditions

B = F

2
, c1 = c∞ + F

2
(γ − ln 4τ + 2 ln σ), (2.22)

and the flux is finally determined through application of the root surface boundary
condition:

F = λ[c∞ + F
2 {γ − ln 4t}]

1 + c∞ + F
2 {γ − ln 4t} . (2.23)

As t → 0, the two roots of this quadratic equation approach λ and 0, and the correct
root is determined as that which approaches λ. Evidently the expression for F is not
valid for times of O(1). It is algebraically convenient to ‘fix’ this by introducing a
time origin shift which forces F → λc∞/(1 + c∞) at t = 0. From (2.23), we can
evidently do this by replacing ln 4t by ln(4t + eγ ); after some algebra, the correct
solution for F can be written as

F(t) = 2λc∞
1 + c∞ + λ

2 ln(4e−γ t + 1) + [4c∞ + {1 − c∞ + λ
2 ln(4e−γ t + 1)}2]1/2

.

(2.24)

2.5. Pore water convection

The Equation (2.24) gives an explicit expression for the root uptake flux, valid for
all t  1 and for all λ and c∞, providing the Péclet number is sufficiently small,
the precise condition being, from (2.9) and (2.22),

Pe � λ

1 + c∞ − F
2 ln(4e−γ t + 1)

, (2.25)

and this is valid for all t if Pe << λ/(1 + c∞). Consulting Table 2, we see that
the dangerous ions are nitrate, where λ/(1 + c∞) ≈ 0.044, and sulphur, where
λ/(1 + c∞) ≈ 0.06. (calcium is less significant, since it has λ � 1.) These can be
comparable to Pe if root radii are larger than 0.5 cm. However, note that as long as
Pe is small, it can still be neglected in solving the diffusion equation, so that the
only modification to (2.24) if Pe ∼ λ/(1 + c∞) is that F = ∂c/∂r|r=1 in (2.22),
which is no longer the total flux. In fact, the total flux is then

Ftot = Pe c1 + F = λc1

1 + c1
; (2.26)
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solving this as before, and making the time origin shift (which is the same), we
find, for Pe << 1,

Ftot = 2λc∞
1 + c∞ + L

2 (λ − Pe) + {[1 − c∞ + L
2 (λ − Pe)]2 + 4c∞(1 − L

2 Pe)}1/2
,

(2.27)
where

L = ln(4e−γ t + 1). (2.28)

Figure 1 shows comparisons of the formula (2.24) to numerical solutions of the
model (with Pe = 0) for several different parameter values of c∞ and λ. It can be
seen that the agreement is good.

Finally we point out that it is straightforward to extend the results above if
Pe ∼ 1. The only difference is that the far field solution which replaces (2.16) is

c = c∞ − B

∫ ∞

R2/4τ

e−ηdη

η1+Pe/2
, (2.29)

Fig. 1. Comparison of the formula (2.24) for the scaled flux F/c∞ with that obtained by nu-
merical solution of the full model, for three different values of λ and c∞. The approximating
formula is virtually exact.
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while the inner solution for r ∼ 1 is (F = ∂c
∂r

∣∣
r=1)

c = c1 + F

Pe
(1 − r−Pe), (2.30)

and the solution procedure then follows as before. We leave the details to the reader,
in view of the common irrelevance of such large values of Pe.

3. Root system model

We wish to calculate the nutrient uptake by the root system of an agricultural plant
like maize. We will use the nutrient uptake by a single isolated root as a constituent
in calculating this expression. Specifically, we will suppose that in a developing
root system, the roots are of a typical radius a, and are separated by distances much
larger than a. If this is the case, then the single root uptake can be used for each root,
and we have what might be called ‘dilute network theory’. Maize has root radii in
the range 0.001−0.05 cm and inter-root distances of the order of 1 cm (Pagès et al.,
1989), and thus this assumption of root sparseness is well satisfied. More generally,
we will always suppose that roots are separated by a distance that is much larger
than their radius (Varney et al., 1991), and hence we can use the expression for the
flux that was derived in the preceding section.

The dimensional flux FD into a root of radius a is given from (2.24), if Pe is
negligible, by using (2.13) to obtain

FD = 2Fmc∞
1 + c∞ + λ

2L + [4c∞ + (1 − c∞ + λ
2L)2]1/2

, (3.1)

where, in terms of dimensional time tD in (2.8),

L = ln[1 + 4e−γ φD

(φ + b)a2
tD], (3.2)

where γ ≈ 0.5772, so e−γ ≈ 0.56. We now wish to use (3.1) to construct a model
for the nutrient uptake of a plant root system. We conceptualise the root mass as
consisting of a distribution of roots of radius a and length l(a). In the soil, we
visualise a network of well separated roots, so that the flux to each root can be
represented by (3.1), which, it can be seen, is a highly non-linear function of a.
We suppose that the roots are distributed homogeneously in the soil, and are dis-
tinguished by their order (Nye and Tinker, 1977): the roots which emerge from the
seed are zero order roots, and so on. Roots of cereal plants, such as maize, typically
have three or four orders. Root branching is described as follows. Mature roots
consist of a basal non-branching zone of length la , an apical non-branching zone
of length la , and (if l > la + lb) a branching zone between these, wherein new
branches develop at intervals of ln, the inter-nodal distance. Hence, a root of length
l has [(l − la − lb)/ ln]+ branches, where [x]+ = int(x), assumed non-negative.

We suppose roots of different orders i have different radii ai , and that they grow
at a rate which decreases with age. Specifically, we take the elongation of roots of
order i to be

Li = ri(1 − l

Ki

). (3.3)
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The above description of root order development is similar to that of Pagès et al.,
(1989) in studying the evolution of root architecture. The details are not essential
to the structure of the model, now to be described, but some such constitutive detail
must be provided.

Let the root size density function of order i roots be φi(l, t), so that φi dl is
the number density of roots of order i and lengths between l and l + dl, measured
as a number of roots per unit volume of soil. We are assuming that root spacing is
sufficiently small that a ‘representative elementary volume’ of soil can be chosen,
large enough so that φi is well defined in the sense of the continuum hypothesis.

The structure of the model is essentially that of an age-dependent population
growth model, where root length masquerades as age, and the rate of ‘aging’ is
non-uniform. Conservation of root density leads to the hyperbolic equation

∂φi

∂t
+ ∂

∂l
(Liφi) = −µiφi, (3.4)

where µi is the mortality rate of order i roots.
At t = 0 we take

φ0(l, 0) = φ00(l),

φi(l, 0) = 0, t > 0, (3.5)

where φ00(l) is prescribed: the plant has germinated but no root development has
taken place. At l = 0, the renewal equation describes the generation of new roots,
and we have

φ0(0, t) = 0,

riφi(0, t) =
∫ ∞

0
Li−1(l)Gi−1(l)φi−1(l, t) dl, (3.6)

where Gi−1(l) is the length specific root generation rate, i.e., the number of roots
of order i created per root of order i−1 per unit length. For the particular branching
rule described above

Gi−1(l) =
∞∑
k=0

δ[l − l0,i−1 − kln,i−1], (3.7)

where l0 = la + lb is the sum of apical and basal non-branching zones, and ln is
the inter-nodal distance.

The solution of (3.4) can be determined using characteristics. There is a dividing
characteristic from l = 0, t = 0, which is

l = l∗(t) = Ki(1 − e−ri t/Ki ), (3.8)

and then for l > l∗,

φi = φi[Ki − (Ki − l)eri t/Ki , 0]exp[(
ri

Ki

− µi)t], (3.9)

while for l < l∗,

φi =
φi[0, t − Ki

ri
ln{ 1

1−l/Ki
}]

[1 − l
Ki

]1−µiKi/ri
, (3.10)
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where the initial values φi(ξ, 0), ξ > 0, φi(0, τ ), τ > 0, are given by (3.5) and
(3.6), the latter of which determines φi in terms of φi−1.

The total length of order i roots per unit volume of soil is

li =
∫ Ki

0
lφi(l, t) dl, (3.11)

and the nutrient uptake by order i roots per unit volume is therefore

Fi = 2πailiFD(t; ai), (3.12)

where FD is given by (3.1) with a = ai in (3.2) and λ = Fmai/DKm; the total
uptake per volume by the root system is then

Fsys =
∑
i

Fi . (3.13)

Figure 2 shows the nutrient uptake rate and the cumulative uptake calculated from
this model using the root branching parameters shown in Table 4, following Pagès
et al., (1989); µi is taken to be zero in these calculations. In order to compare this
solution with the Barber–Nye–Tinker derived flux, we need to consider the average
root radius of the root system. In their calculations, Nye and Tinker (1977) and
Barber (1984) use an average root radius derived from experiments. For example,
Barber (1984) and Schenck and Barber (1979) use a root volume averaged radius
evaluated at the end of the experiment. The total root length development in the case
of the ‘Barber experiment’ is calculated using the total length of the root system
at the beginning and end of the experiment assuming that the elongation rate κ is
given by κ = (ln(lB(τ )) − ln(lB(0)))/τ , where lB(t) is the total length of the root
system at time t , i.e., lB = ∑

i li ; τ is the duration of the experiment (typically
τ = 21 days). Hence the total length as a function of time in the case of the Barber
experiment is then given by

lB(t) = lB(0)e
κt . (3.14)

In terms of the root size distribution φi(l, t), the total root volume per unit volume
of soil at time t is

V =
∑
i

πa2
i

∫ Ki

0
lφi(l, t) dl, (3.15)

where the total root length is given by (3.11). Hence the mean volume averaged
root radius at time t is

āv =
(∑

i a
2
i

∫ Ki

0 lφi dl∑
i

∫ Ki

0 lφi dl

)1/2

, (3.16)

and we define the Barber flux to be 2πāv(τ )lB(t)FD(t; āv), based on this repre-
sentative radius; i.e.,

FB = 2π

(∑
i a

2
i

∫ Ki

0 lφi dl∑
i

∫ Ki

0 lφi dl

)1/2

t=τ

lB(t)FD(t; āv), (3.17)
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Fig. 2. Nutrient uptake curves for the root branching model. The upper figure gives the rate
of uptake for each order of roots, together with the total uptake, while the lower figure gives
the integral of these curves in time, i.e. the cumulative uptake.

as compared to the ‘correct’ value from (3.13),

Fsys = 2π
∑
i

ai

∫ Ki

0
lφi dl FD(t; ai). (3.18)
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Table 4. Root branching parameters.

Order i 0 1 2

Ki [cm] 51 8 0.1875
ri [cm day−1] 2 6.4 1.5
l0,i [cm] 15.7 2.7 —
ln,i [cm] 0.7 0.7 —

Fig. 3. A comparison of the root branching model calculated cumulative uptake Fsys with
the Barber uptake FB given by (3.17).

Figure 3 compares the calculated Barber flux FB with the root system value Fsys
for the system developing according to the branching rules developed earlier. It can
be seen that there is a significant difference in the results.

4. Conclusions

The classical model of nutrient uptake by a plant root system assumes an appropri-
ately equivalent cylindrical root, with the Barber flux (3.17) being determined in
terms of the advection-diffusion-absorption fluxFD , which depends on the effective
root radius and time. In previous studies, this flux has been calculated numerically,
and so must be recalculated for each plant and each effective root radius. We have
shown in this paper that for most macronutrients, with the exception of sulphur and
also nitrate in nitrogen rich soils, that pore water advection is negligible, and also
that the plant growth time scale is always much longer than the nutrient diffusional
time scale. In this circumstance, it is possible to find an explicit closed form solution
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to the diffusion-adsorption problem, and in fact this can be extended to include the
effects of pore water advection of sulphur and nitrate.

The existence of the resulting explicit formula for the nutrient uptake renders
the numerical solution of the advection-diffusion-adsorption model obsolete, and in
addition provides a basis for a rational calculation of the nutrient uptake in a distrib-
uted root mass. We show how a root system distribution model can be formulated
similarly to an age-structured population model, and indeed the equation for the
evolving size distribution can be solved explicitly. This leads to a correctly formu-
lated calculation of the system nutrient uptake, which differs significantly from the
equivalent Barber flux calculated using the Nye–Tinker–Barber formulation.

This result provides the basis for future experimental work, and will also pro-
vide a platform for the development of whole plant nutrient uptake models, with
a view to establishing the interaction of plant growth and yield with rainfall levels
and fertilisation programmes.
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