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Abstract. We study a class of delay differential equations which have been used to model
hematological stem cell regulation and dynamics. Under certain circumstances the model exhibits
self-sustained oscillations, with periods which can be significantly longer than the basic cell cycle
time. We show that the long periods in the oscillations occur when the cell generation rate is
small, and we provide an asymptotic analysis of the model in this case. This analysis bears a close
resemblance to the analysis of relaxation oscillators (such as the Van der Pol oscillator), except that
in our case the slow manifold is infinite dimensional. Despite this, a fairly complete analysis of the
problem is possible.
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1. Introduction. The understanding of periodic behavior in nonlinear ordinary
differential equations is reasonably complete. Near Hopf bifurcation, periodic solu-
tions are generically of small amplitude and can be analyzed using the methods of
multiple scales. At more extreme parameter values, oscillations are often strongly non-
linear, and it is frequently the case that the dynamics are relaxational, in which case
they can be understood through the existence of slow manifolds in phase space and
the associated asymptotic analysis of the resulting relaxation oscillators. The classic
example is the relaxation oscillation of the Van der Pol oscillator, whose analysis is
ably expounded by Kevorkian and Cole (1981).

The situation is much less satisfactory for delay differential equations, which are
frequently used to model populations, for example, in ecology (Gurney, Blythe, and
Nisbet (1980)) or physiology (Mackey (1997)). One example is the delay recruitment
equation

εẋ = −x+ f(x1),(1.1)

where x1 = x(t − 1). For unimodal f (i.e., f(0) = 0, (x − x∗)f ′(x) < 0 for some
x∗ > 0), periodic oscillations can occur for sufficiently small ε. In some circumstances,
a singular perturbation analysis of periodic solutions when ε � 1 is possible (Chow
and Mallet-Paret (1982); Chow, Lin, and Mallet-Paret (1989)), but the results have
been limited in scope.

Although linear and weakly nonlinear stability methods are straightforward for
delay differential equations, singular perturbation methods appear difficult to imple-
ment in general. Much of the work that has been done, such as Chow and Mallet-
Paret’s work cited above, is concerned with systems with large delay (thus (1.1) or
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its generalizations (Chow and Huang (1994); Hale and Huang (1996))). Artstein and
Slemrod (2001) place their discussion of relaxation oscillations in the context of slow
and fast manifolds familiar from ordinary differential equations and draw a distinction
between systems where the delay is “fast” or “slow.” (In this context we will find
that the delay in our system is fast.)

Actual constructive asymptotic methods are less common. Fowler (1982) ana-
lyzed the delayed logistic equation εẋ = x(1 − x1), and Bonilla and Liñan (1984)
analyzed a more general system having distributed delay and with diffusion. In a
sequence of papers, Lange and Miura (e.g., 1982, 1984) provided asymptotic analyses
of models with delays and exhibited boundary layer behavior, although they were
exclusively concerned with boundary value problems, and their systems were linear.
More recently, Pieroux et al. (2000) analyzed a laser system when the delay was large
but dependence on the delayed variable was weak, using multiple scale techniques.
In this paper, we show how a constructive relaxational perturbation analysis can be
carried out for a particular class of delay differential equations describing stem cell
dynamics, when the net proliferation rate is small.

2. A mathematical model of stem cell dynamics. Hematological diseases
are interesting and have attracted a significant amount of modeling attention be-
cause a number of them are periodic in nature (Haurie, Dale, and Mackey (1998)).
Some of these diseases involve only one blood cell type and are due to the destabi-
lization of peripheral control mechanisms, e.g., periodic auto-immune hemolytic ane-
mia (Bélair, Mackey, and Mahaffy (1995); Mahaffy, Bélair, and Mackey (1998)) and
cyclical thrombocytopenia (Swinburne and Mackey (2000); Santillan et al. (2000)).
Typically, periodic hematological diseases of this type involve periodicities between
two and four times the bone marrow production/maturation delay (which is different
from the delay considered in this paper).

Other periodic hematological diseases involve oscillations in all of the blood cells
(white cells, red blood cells, and platelets). Examples include cyclical neutropenia
(Haurie, Dale, and Mackey (1999); Haurie et al. (1999); Haurie et al. (2000)) and
periodic chronic myelogenous leukemia (Fortin and Mackey (1999)). These diseases
involve very long period dynamics (on the order of weeks to months) and are thought
to be due to a destabilization of the pluripotential stem cell (PPSC) compartment
from which all of these mature blood cell types are derived.

In Figure 2.1 we have given a pictorial representation of the PPSC compartment
and defined the important variables. The dynamics of this PPSC population are
governed (Mackey (1978), (1997), (2001)) by the pair of coupled differential delay
equations

dP

dt̂
= −γP + β(N)N − e−γτβ(Nτ )Nτ(2.1)

for the dynamics of the proliferating phase cells and

dN

dt̂
= −[β(N) + δ]N + 2e−γτβ(Nτ )Nτ(2.2)

for the nonproliferating (G0) phase cells. In these equations, t̂ is time, τ is the time
required for a cell to traverse the proliferative phase, Nτ = N(t̂− τ), and the resting
to proliferative phase feedback rate β is taken to be a Hill function of the form

β(N) =
β0θ

n

θn +Nn
.(2.3)
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Fig. 2.1. A schematic representation of the G0 stem cell model. Proliferating phase cells (P )
include those cells in S (DNA synthesis), G2, and M (mitosis) while the resting phase (N) cells
are in the G0 phase. δ is the rate of differentiation into all of the committed stem cell populations,
while γ represents a loss of proliferating phase cells due to apoptosis. β is the rate of cell reentry
from G0 into the proliferative phase, and τ is the duration of the proliferative phase. See Mackey
(1978), (1979), (1997) for further details.

The origin of the terms in these equations is fairly obvious. For example, the first
term of (2.2) represents the loss of proliferating cells to cell division (β(N)N) and
to differentiation (δN). The second term represents the production of proliferating
stem cells, with the factor 2 accounting for the amplifying effect of cell division while
e−γτ accounts for the attenuation due to apoptosis (programmed cell death) at rate γ.
It is clear that in investigating the dynamics of the PPSC we need only understand
the dynamics of the G0 phase resting cell population since the proliferating phase
dynamics are driven by the dynamics of N .

Typical values of the parameters for humans are given by Mackey (1978), (1997)
as

δ = 0.05 d−1, β0 = 1.77 d
−1, τ = 2.2 d, n = 3.(2.4)

(The value of θ is 1.62× 108 cells kg−1, but this is immaterial for dynamic consider-
ations.) For values of γ in the range 0.2 d−1, the consequent steady state is unstable
and there is a periodic solution whose period P at the bifurcation ranges from 20–
40 days. It is the observation that P � τ , which arouses our curiosity, and which
we wish to explain. (In differential delay equations, periodic oscillations have periods
bounded below by 2τ and under certain circumstances the period may be in the range
2τ to 4τ .)

We rewrite (2.2) in a standard form as follows. First scale the nonproliferating
phase cell numbers by θ and the time by τ so that

N → θN, t̂ = τt∗,(2.5)
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Fig. 2.2. Solution of (2.6) with ε = 0.11, b = 3.9, and µ = 1.2.

and (2.2) becomes

Ṅ = g(N1)− g(N) + ε[µg(N1)−N ],(2.6)

where Ṅ = dN/dt∗, N1 = N(t∗ − 1),

g(N) =
bN

1 +Nn
,(2.7)

and the parameters are defined by

b = β0τ, ε = δτ, µ =
2e−γτ − 1

δτ
.(2.8)

The biological interpretation of these is as follows: b represents the rate at which cells
migrate round the loop in Figure 2.1, ε represents the rate of loss through differenti-
ation, and µ represents the net proliferation rate round the loop. The dimensionless
time t∗ is measured in units of the proliferative time spent in the loop. If we take
γ ∼ 0.2 d−1, then typical values of the parameters are

b ∼ 3.9, µ ∼ 2.6, ε ∼ 0.11.(2.9)

On this basis, we suppose b, µ = O(1). The long periods are associated with the
relatively small value of ε, and so the aim of our analysis is to solve (2.6) when ε � 1.
Figure 2.2 shows the periodic behavior when ε = 0.11, b = 3.9, and µ = 1.2 (the
steady state is stable when µ = 2.6).

3. Singular perturbation analysis. The first order delay differential equation
(2.6) is an infinite dimensional system. For example, defining the function

ut∗(s) = N(t∗ + s), s ∈ [−1, 0],(3.1)
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we can consider (2.6) as a sequence of ordinary differential equations on the Banach
space C[−1, 0] of continuous functions on [−1, 0]. Singular perturbation analysis is
therefore not necessarily straightforward, but we shall see that a formal procedure is
indeed possible.

The key observation for our investigation is that a solution of (2.6) can be slowly
varying, on a slow time scale

t = εt∗,(3.2)

or on a rather loosely defined “slow manifold” on which N ≈ N1. In terms of t, which
represents time measured in units of the slower differentiation time scale, we have
N(t∗ − 1) = N(t− ε); thus (2.6) is (N ′ = dN/dt)

N ′ =
g(Nε)− g(N)

ε
+ µg(Nε)−N.(3.3)

Also, by expanding Nε for small ε, we have

Nε = N − εN ′ + 1
2ε

2N ′′ . . . ,
g(Nε) = g(N)− [εN ′ − 1

2ε
2N ′′ + 1

6ε
3N ′′′ . . . ]g′(N) + [ 12ε

2N ′2 . . . ]g′′(N) + · · · ;
(3.4)

note that N ′ = dN/dt, while g′(N) = dg/dN . We thus have

[1 + g′(N)]N ′ = µg(N)−N + ε[−µg′N ′ + 1
2N

′′g′ + 1
2N

′2g′′] + · · · ,(3.5)

and successive terms in the expansion

N ∼ N0 + εN1 + · · ·(3.6)

satisfy the equations

N ′
0 =

µg(N0)−N0

1 + g′(N0)
,(3.7)

[1 + g′(N0)]N
′
1 + g′′(N0)N

′
0N1

= µg′(N0)N1 −N1 + [−µg′(N0)N
′
0 +

1
2N

′′
0 g

′(N0) +
1
2N

′2
0 g′′(N0)],(3.8)

and so on. Note particularly that in this slow region N1 denotes the second term in
the expansion for N and does not represent N(t∗ − 1); it will revert to the former
meaning when we consider the dynamics in the fast “shock” layer (when the expansion
will use u and v as first and second order terms). Equation (3.7) states that the rate
of change of the resting stem cell population is due to net proliferation (the first term
in the numerator) and loss by differentiation (the second). The effect of the delay in
the proliferative cycle is to mediate the rate by the denominator. In our procedure we
now begin to follow Kevorkian and Cole’s (1981) exposition (pp. 67 and the following
ones) quite closely.

The function g = bN/(1 +Nn) is unimodal. If g′ > −1 everywhere, then N will
evolve on the slow time scale to a steady state. Suppose now that

b > bc =
4n

(n− 1)2 ,(3.9)
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Fig. 3.1. Graphs of g(N) and N/µ for b = 3.9, n = 3, and µ = 1.2 in the range (µ−, µ+) =
(0.52, 1.48). Also shown are graphs of N/µ− and N/µ+.

which is the criterion for g′ to reach −1. Then there are two values N− < N+ at
which g′ = −1; for (2.7), we have, explicitly,

Nn
± =

1
2 (n− 1)[b± (b2 − bcb)

1/2]− 1.(3.10)

If µb < 1, N = 0 is stable, by consideration of (3.7). If µb > 1, then there is a
positive steady state N∗ in which N∗ = µg(N∗). We define the two values of µ where
N∗ = N± as µ±; thus,

µ± =
N±

g(N±)
, µ− < µ+.(3.11)

Using (3.10), we have, explicitly,

µ± = 1
2 (n− 1)

[
1±

(
1− bc

b

)1/2
]
.(3.12)

The situation which is of interest is when µ− < µ < µ+, and this is depicted in Figure
3.1. In this situation, the graph of N ′

0 versus N0 is as shown in Figure 3.2, and it is
apparent that the fixed point in (N−, N+) is unstable, because the slope of the graph
at the fixed point (where N ′ = 0) is positive. (Conversely, there is a stable fixed point
when µ is outside this range.)

Suppose that N > N+ initially. Then N0 decreases and reaches N+ at finite time.
Define this time to be when t = 0; then∫ N0

N+

{
1 + g′(N)
N − µg(N)

}
dN = −t.(3.13)
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Fig. 3.2. Graph of N ′
0(N0) given by (3.7) when n = 3, b = 3.9, and µ = 1.2.

Since 1+g′(N+) = 0, the first term in the expansion of the integral in (3.13) for small
N0 −N+ is quadratic, and from this we find, as −t → 0+,

N0 ∼ N+ + q1(−t)1/2 + q2(−t) +O[(−t)3/2].(3.14)

Detailed expressions for the coefficients are given in the appendix.
Rearrangement of (3.8) using (3.7) allows N1 to be obtained in the form

N1 =

(
N0 − µg(N0)

1 + g′(N0)

)[
A1 − g′(N0)

2{1 + g′(N0)} +
∫ N0

N+

k(N) dN + h+ ln(N0 −N+)

]
,

(3.15)
where h+ = h(N+),

h(N) = −g′(N){1− µg′(N)}(N −N+)

2{N − µg(N)}{1 + g′(N)}(3.16)

(with the singularity at N+ removed), and

k(N) =
h(N)− h(N+)

N −N+
− µg′(N)

N − µg(N)
.(3.17)

In particular,

h+ =
1 + µ

2g′′+(N+ − µg+)
,(3.18)

where g+ = g(N+), etc. Higher order terms can be obtained in a similar way. Note
that, sinceN0−N+ ∼ (−t)1/2 as−t → 0, and g′(N+) = −1, it follows that 1+g′(N0) ∼
(−t)1/2 as −t → 0, and therefore (3.15) implies that N1 = O(1/(−t)) as −t → 0+,
and the validity of the expansion breaks down when (−t)1/2 ∼ ε/(−t), i.e., when
−t ∼ ε2/3.
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3.1. Transition layer. The solution becomes disordered as −t → 0, and specif-
ically when −t ∼ ε2/3. In this section we analyze this “transition” layer. In addition,
we might anticipate the existence of a region in which N changes on the fast (delay)
time scale t∗, and this will indeed turn out to be the case. However, it transpires that
such a fast region cannot be matched directly to the slow outer region, and, just as for
the Van der Pol oscillator, the inability to match slow and fast regions also suggests
that there is a transition region which joins the two. In terms of the outer time scale
t, we shall find that the slow solution is valid for −t ∼ O(1), the transition region
for −t ∼ O(ε2/3), and the fast “shock” layer for −t ∼ O(ε). Indeed, the dynamics of
these three regions are essentially the same as those of the corresponding regions in the
analysis of the Van der Pol equations, and we follow the exposition in Kevorkian and
Cole (1981) closely. In particular, consultation of this book is strongly recommended
for those less familiar with the basic procedure of matched asymptotic expansions.
(Note that there are some algebraic errors in Kevorkian and Cole’s exposition.)

A distinguished limit exists in which we put

t = ρ(ε) +

(
ε2/3

Ω

)
t̃,(3.19)

where we assume t̃ is O(1). The definition of Ω is

Ω = (g′′+q1)
2/3,(3.20)

and ρ(ε) is a (small) origin shift which is introduced to allow matching to be carried
out. Since N − N+ ∼ (−t)1/2 as −t → 0+, this requires N − N+ ∼ ε1/3, and we
define f via

N = N+ +

(
ε1/3Ω

g′′+

)
f.(3.21)

It is still appropriate to expand the delay term, and we find, from (3.3), that f(t̃)
satisfies

f ′′ + 2ff ′ + 1 = ε1/3[−κf + 1
3Ωf

′′′ +Ω(f ′2 + ff ′′)− λf2f ′] +O(ε2/3),(3.22)

where

λ =
Ωg′′′+

g′′2+

, κ =
2

Ω2
(1 + µ).(3.23)

We expand f in powers of ε1/3, thus

f ∼ f1 + ε1/3f2 + · · · ;(3.24)

then from (3.22) we find that

f ′′
1 + 2f1f

′
1 + 1 = 0,

f ′′
2 + 2(f1f2)

′ = −κf1 +
1
3Ωf

′′′
1 +Ω(f1f

′
1)

′ − λf2
1 f

′
1,(3.25)

and so on. The first of these may be integrated to yield

f ′
1 + f2

1 + t̃ = 0,(3.26)
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where the constant of integration is absorbed into the time shift ρ(ε) in (3.19). The
solution of the Riccati equation (3.26) is

f1 =
V ′(t̃)
V (t̃)

,(3.27)

where V satisfies the modified Airy equation

V ′′ + t̃V = 0.(3.28)

The solutions of (3.28) are Ai (−t̃) and Bi (−t̃), whose leading order behaviors as
t̃ → −∞ are V ∼ exp

[± 2
3 (−t̃)3/2

]
(minus for Ai). Thus if V contains any Bi, it will

dominate as t̃ → −∞, and hence f1 = V ′(t̃)/V (t̃) ∼ −(−t̃)1/2 in this limit. Therefore,
in order to obtain f1 ∼ (−t̃)1/2 as t̃ → −∞, which is required for matching purposes,
we must suppress the Bi component and choose

V (t̃) = 2
√
πAi (−t̃),(3.29)

where the premultiplicative constant is chosen for later algebraic convenience (it does
not affect the definition of f1). Since f1 ∼ (−t̃)1/2 as t̃ → −∞, f1 is monotonically
decreasing for large −t̃, and hence from (3.26) f1 > (−t̃)1/2. If f ′

1 first reaches zero for
some value of t̃ = t̃c < 0, then at that point (3.26) implies that f1 = (−t̃)1/2 and also
that (since f ′

1 is continuous and f1 > (−t̃)1/2 for t̃ < t̃c) f
′
1 < 0, which contradicts the

assertion. Thus f ′
1 < 0 for all t̃ < 0, and (3.26) implies this directly for t̃ > 0. Thus

we find f1 is monotonically decreasing while it is finite, which is in the region t̃ < t̃0,
where t̃0 ≈ 2.338 is the first zero of Ai (−t̃). The solution will break down as t̃ → t̃0,
where it will match to an inner region, or shock layer, in which t∗ = O(1) (with a
suitably chosen origin for t∗).

The first integral of (3.25)2 is (using f1 = V ′/V )

f ′
2 + 2f1f2 = −κ lnV + 1

3Ωf
′′
1 +Ωf1f

′
1 − 1

3λf
3
1 + C2,(3.30)

where C2 is constant. By differentiation of (3.26) we find that −C2f
′
1 is a particular

solution for (3.30) when only the C2 term is present on the right-hand side. Using
f1 = V ′/V , we have

(V 2f2)
′ = C2V

2 − κV 2 lnV + 1
3ΩV

2f ′′
1 +ΩV

2f1f
′
1 − 1

3λV
2f3

1 .(3.31)

Next we make use of the following identities, which can be obtained by integrating
by parts and using (3.27) and (3.28):∫

V 2f1f
′
1 =

1
2V

2f2
1 −

∫
V 2f3

1 ,∫
V 2f ′′

1 = V 2f ′
1 − V 2f2

1 + 2

∫
V 2f3

1 ,∫
V 2f3

1 = V ′2 lnV + (V 2 lnV − 1
2V

2)t̃−
∫
(V 2 lnV − 1

2V
2).(3.32)

The comment after (3.30) implies that

1

V 2

∫ t̃

−∞
V 2dt̃ = −f ′

1,(3.33)
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and use of (3.26) and integration by parts in (3.32) implies that

1

V 2

∫
V 2f3

1 = −f ′
1 lnV − 1

V 2

∫
V 2 lnV + 1

2f
2
1 .(3.34)

Hence we obtain the solution

f2 = f ′
1[−C2 +

1
3Ω+

1
3 (Ω + λ) lnV ]− 1

6λf
2
1

+ [ 13 (Ω + λ)− κ]
1

V 2

∫ t̃

−∞
V 2 lnV dt̃,(3.35)

where we have set the integration constant D2 (in a term D2/V
2) to zero to prevent

exponential growth as t̃ → −∞.
3.2. Matching. In order to match the outer solution to the transition solution,

we expand the latter for large −t̃ and the former for small −t. Equation (3.14) gives
the behavior of N0 for small (−t), while if we expand (3.15) for N0 near N+, and use
(3.14), we find

N1 ∼ r1
(−t)

+
r21(A1) + r22 ln(−t)

(−t)1/2
+O(1),(3.36)

where the constants r1, r21, r22 are given in the appendix; r1 and r22 are known, while
r21 involves the unknown constant A1 in (3.15).

Next we need the behavior of f1 and f2 as t̃ → −∞. The function V = 2
√
πAi (−t̃)

has the following asymptotic behavior as t̃ → −∞:

V ∼ (−t̃)−1/4 exp
[− 2

3 (−t̃)3/2
] [
1− 5

48(−t̃)3/2
+ · · ·

]
.(3.37)

Since f1 = V ′/V , we have

f1 ∼ (−t̃)1/2 +
1

4(−t̃)
+O[(−t̃)−5/2],(3.38)

and thence we find from (3.35) that

f2 ∼ s1(−t̃) +
s21(C2) + s22 ln(−t̃)

(−t̃)1/2
+O

[
ln(−t̃)

(−t̃)2

]
,(3.39)

and the coefficients s1, s22, and s21 are given in the appendix. Again, s1 and s22 are
known, and s21 involves the unknown constant C2 in (3.35).

We match in an intermediate region where

t = ηtη + ρ(ε), t̃ =

(
Ω

ε2/3

)
ηtη,(3.40)

and we take ε2/3 � η � 1 and also presume that η � ρ. Writing both expansions
(3.6) and (3.24) in terms of tη, the outer expansion is given by

N ∼ N+ + q1(−ηtη)
1/2 − ρq1

2(−ηtη)1/2
· · ·+ q2(−ηtη) + · · ·

+
εr1

(−ηtη)
· · ·+ ε[r21 + r22 ln(−ηtη) . . . ]

(−ηtη)1/2
. . . ,(3.41)



RELAXATION OSCILLATIONS IN DELAY EQUATIONS 309

while the transition expansion is

N ∼ N+ + q1(−ηtη)
1/2 +

ε

4g′′+(−ηtη)
. . .

+
s1Ω

2

g′′+
(−ηtη) +

εΩ1/2

g′′+

[s21 + s22{ln(Ω/ε2/3) + ln(−ηtη)}]
(−ηtη)1/2

. . . ,(3.42)

and matching requires

r1 =
1

4g′′+
, q2 =

s1Ω
2

g′′+
, r22 =

Ω1/2

g′′+
s22,

r21 =
Ω1/2

g′′+
[s21 + s22 lnΩ],

ρ =
4Ω1/2s22

3g′′+q1
ε ln ε.(3.43)

The first three of these are satisfied identically (see the appendix), while the fourth
and fifth determine s21 and ρ, given r21 in the outer solution.

3.3. Matching to the shock layer. The transition solution governed by (3.22)
breaks down as t̃ → t̃0. Near t̃0, we have that

V ≈ −K(t̃− t̃0) +
1
6Kt̃0(t̃− t̃0)

3 +O[(t̃− t̃0)
4],(3.44)

where K = 2
√
πAi ′(−t̃0) ≈ 2.486, and thus

f1 ∼ − 1

(t̃0 − t̃)
+ 1

3 t̃0(t̃0 − t̃) . . . .(3.45)

N −N+ becomes of O(1) when t̃0 − t̃ ∼ ε1/3 (this follows from (3.45) together with
(3.21)), and this suggests that we put

t̃ = t̃0 +Ω{ε1/3t∗ + σ(ε)},(3.46)

and we anticipate that σ � 1. In terms of t,

t = ρ(ε) +

(
ε2/3

Ω

)
t̃0 + ε2/3σ(ε) + εt∗,(3.47)

so that in the transition layer N(t∗) satisfies (2.6), i.e.,

dN

dt∗
= g(N1)− g(N) + ε[µg(N1)−N ],(3.48)

and N1 reverts here to its original meaning as N(t
∗−1). The behavior of f2 as t̃ → t̃0

follows from (3.35), which implies

f2 ∼ − 1
3 (Ω + λ)

ln(t̃0 − t̃)

(t̃0 − t̃)2
+

C3

(t̃0 − t̃)2
,(3.49)

where

C3 = C2 − 1
3Ω− 1

3 (Ω + λ) lnK − 1
6λ+ [

1
3 (Ω + λ)− κ]

I0
K2

,(3.50)

I0 =

∫ t̃0

−∞
V 2 lnV dV.(3.51)
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If we expand N in a transition region where ε1/3t∗ = ηtη � 1, and we suppose σ � η,
then from (3.45) and (3.49) we find that

N ∼ N+ +
ε1/3

g′′+

[
1

ηtη

{
1− σ

ηtη

}
− 1

3Ω
2t̃0(ηtη + σ) . . .

]

+
ε2/3

Ωg′′+

1

(ηtη)2
[{C3 − 1

3 (Ω + λ) lnΩ} − 1
3 (Ω + λ) ln(−ηtη)

]
. . . .(3.52)

The presence of the term in ε2/3 formally requires that we expand (3.48) as

N ∼ u+ ε2/3v +O(ε)(3.53)

and that u, v satisfy

u′ = g(u1)− g(u),

v′ = g′(u1)v1 − g′(u)v,(3.54)

where the suffix 1 indicates a delayed argument.
Evidently, u → N+ as t∗ → −∞, and its asymptotic behavior can be determined

by writing

u = N+ + φ(3.55)

and expanding for small φ, together with a Taylor expansion for φ1 ≡ φ(t∗ − 1) as
φ− φ′ + · · ·. This leads (with the ansatz φ � φ′ � φ′′ . . .) to

0 = [− 1
2φ

′′ − g′′+φφ
′] + [16φ

′′′ + 1
2g

′′
+(φ

′2 + φφ′′)− 1
2g

′′′
+φ2φ′] + · · · ,(3.56)

where the brackets enclose terms of similar order. Two terms of the solution of this
as t∗ → −∞ yield

φ ∼ 1

g′′+t∗
+
[E1 − E2 ln(−t∗)]

t∗2
+ · · · ,(3.57)

where E1 is an arbitrary constant, and E2 is defined in the appendix. The equation
for φ is autonomous, and an arbitrary constant can be added to t∗. It is clear that
this is equivalent to changing the value of E1; therefore the value of E1 fixes the phase
of φ.

The asymptotic behavior of v can then be found in a similar way, and we find that

0 = [− 1
2v

′′ − g′′+(φv)
′] + [16v

′′′ + 1
2g

′′
+(vφ)

′′ − 1
2g

′′′
+ (φ

2v)′] + · · · ,(3.58)

whence

v ∼ −E3[t
∗ + g′′+E2 ln(−t∗)− E4 + · · ·],(3.59)

where E3 is arbitrary and E4 is given in the appendix. As in the Van der Pol analysis, v
has a “homogeneous” solution v = g′(u)u′, which is O(1/t∗2) as t∗ → −∞, and (3.59)
comes from the “particular” solution of (3.54)2, which does not tend to zero at −∞.

The behavior of N as t∗ → −∞ is thus

N ∼ N+ +
1

g′′+t∗
+
[E1 − E2 ln(−t∗)]

t∗2
+ · · ·

− ε2/3E3[t
∗ + g′′+E2 ln(−t∗)− E4],(3.60)
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and putting ε1/3t∗ = ηtη in the matching region gives

N ∼ N+ +
ε1/3

g′′+ηtη
+

ε2/3[E1 + E2 ln ε
1/3 − E2 ln(−ηtη)]

(ηtη)2
. . .

− ε1/3E3(ηtη)− ε2/3E3[g
′′
+E2 ln(−ηtη)− g′′+E2 ln ε

1/3 − E4] . . . .(3.61)

Terms in (3.52) can be matched to the corresponding terms in (3.61) if

σ = −ε1/3
{

1
3g

′′
+E2 ln ε− E4

}
,

E1 =
C3 − 1

3 (Ω + λ) lnΩ

Ωg′′+
− E4

g′′+
,

E3 =
Ω2t̃0
3g′′+

,

E2 =
Ω+ λ

3Ωg′′+
;(3.62)

these determine E1, E3, and σ, while the equation for E2 is satisfied automatically.

3.4. Shock layer. To compute N for t∗ = O(1), we must solve for N = u+ε2/3v
the equations

u′ = g(u1)− g(u),

u ∼ N+ +
1

g′′+t∗
+
[E1 − E2 ln(−t∗)]

t∗2
+ · · · as t∗ → −∞,

v′ = g′(u1)v1 − g′(u)v,
v ∼ −E3[t

∗ + g′′+E2 ln(−t∗)− E4] as t∗ → −∞.(3.63)

The solutions of these must be obtained numerically. Note that the value of E1

determines the origin of t∗, i.e., varying E1 in (3.63)2 simply phase shifts the solution.
It is at this point that the solution method deviates significantly from the Van

der Pol procedure. The Van der Pol shock layer equation admits a first integral, and
the solution can be written as a quadrature. The important point, however, is the
existence of this first integral. Remarkably, an analogous procedure can be followed
for the delay equations (3.63).

First, numerical integration of (3.63) indicates that u tends to a constant as
t∗ → ∞. This is shown in Figure 3.3. The phase of the solution depends on the
location of the initial interval, as shown in Figure 3.4. For the purposes of our analysis,
we need to know this constant, and it can be found as follows. A trivial integration
of (3.63)1 shows that

u(t∗) +
∫ t∗

t∗−1

g[u(s)]ds = N+ + g+(3.64)

is constant, where the right-hand side is evaluated from the asymptotic expression
for u as t∗ → −∞. This immediately implies u is bounded (by N+ + g+ ±max g) as
t → ∞, and if we suppose that u tends to a constant NL (as in Figure 3.3), then the
value of the constant is easily found from (3.64) to satisfy

NL + gL = N+ + g+,(3.65)
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Fig. 3.3. The solution u∆(t
∗) of (3.63)1 for u with the initial data taken from (3.63)2 on the

interval [−∆ − 1,−∆). The solution u20(t∗) shown is obtained using E1 = 0 and ∆ = 20. The
choice of ∆ affects the phase of the solution, as indicated in Figure 3.4. This phase shift does not
affect the analysis since the solution tends to a constant exponentially, so that only exponentially
small terms in the slow recovery phase are affected.
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Fig. 3.4. The variation of the computed value δ where u = 1 (i.e., a measure of the phase of
the solution of (3.63)1) as a function of the location ∆ of the initial interval [−∆− 1,−∆).
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where gL = g(NL).
Next, we study the behavior of u near NL by writing

u = NL + U,(3.66)

so that

U ′ ≈ g′L(U1 − U),(3.67)

where g′L = g′(NL), and solutions are e−λt∗ for a denumerable set λ1, λ2, . . . of ex-
ponents. It is straightforward to show that, if these are assigned in order of in-
creasing real part, then Reλ1 > 0, and Imλk ∈ ((2k − 1)π, 2kπ) if g′L > 0, Imλk ∈
(2(k − 1)π, (2k − 1)π) if−1 < g′L < 0 (we can assume g′L > −1) except that Imλ1 = 0.
In any event u = NL is stable, and

u = NL +O(e−λ1t
∗
) as t∗ → ∞.(3.68)

Integration of (3.63)3 with the matching condition (3.63)4 now shows that

N(t) +

∫ t

t−1

g′[u(s)]v(s)ds = −E3

[
3
2 + g′′+E2

]
,(3.69)

and therefore

v = −vL +O(e−λ1t
∗
) as t∗ → ∞,(3.70)

where

vL =
E3[

3
2 + g′′+E2]

1 + g′L
.(3.71)

Thus as t∗ → ∞,

N ∼ NL − ε2/3vL +O(ε,TST),(3.72)

where TST denotes the transcendentally small exponential terms.

3.5. Recovery phase. The second part of the oscillation resembles the first.
There follows a slow recovery phase, terminating with transition and shock regions,
and then the first slow phase is repeated. As Kevorkian and Cole (1981) point out,
it is not worth the effort to compute the O(ε ln ε) terms without also computing the
O(ε) terms, which requires solving for further terms in the expansions. Having shown
that the matching procedure does indeed work, we now abandon the O(ε ln ε) terms,
and thus we do not require all the detail presented previously. Since the details of the
recovery phase are similar to those of the preceding (initiation) phase, we summarize
the relevant results much more briefly.

In the recovery phase, we revert to the slow time defined by (3.47):

t = α+ εt∗,(3.73)

where

α =
ε2/3t̃0
Ω

+O(ε ln ε),(3.74)
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bearing in mind the definitions of ρ and σ. As before, N satisfies (3.5), although
the O(ε2/3) term in the shock layer requires a corresponding term in the expansion.
However, it is convenient (since there is no forcing term at O(ε2/3)) to lump this
correction into the O(1) term, accommodating the O(ε2/3) correction by a further
phase shift in the time origin. Specifically,

N ∼ N0 + εN1 + · · · ,(3.75)

and the solution for N0 can be written as∫ N−

N0

{
1 + g′

µg −N

}
dN = t− − t.(3.76)

Note that N0 → NL as t → α, and (cf. Figure 3.2) NL < N−; thus in the recovery
phase 1 + g′ > 0 and µg > N . In (3.70), t− is the time when the second transition
region occurs.

We match (3.76) to the preceding shock layer by writing N ∼ N0 ∼ NL − ε2/3vL,
t = α+ εt∗ in (3.76), and we find that matching requires that

t− =
∫ N−

NL

{
1 + g′(N)
µg(N)−N

}
dN + ε2/3

[
t̃0
Ω
+ vL

{
1 + g′L

µgL −NL

}]
+O(ε ln ε).(3.77)

As t → t−, (3.76) gives, analogously to (3.14),

N0 ∼ N− −Q1(t− − t)1/2 +Q2(t− − t) + · · · ,(3.78)

and in the transition region at t = t−, we get

N = N− +
ε1/3ω

g′′−
f,

t = t− + r(ε) +
ε2/3

ω
t̃,(3.79)

where

ω = [−g′′−Q1]
2/3(3.80)

(note g′′− < 0 and Q1 > 0).
This leads directly to (3.22), but with k, l, ω replacing κ, λ,Ω; k and l are defined

in the appendix as κ and λ, but with ω, g′′−, g
′′′
− replacing Ω, g′′+, g

′′′
+ . Hence

f ∼ −Ai′(−t̃)

Ai(−t̃)
+O(ε1/3),(3.81)

and matching occurs automatically at leading order (and r = O(ε ln ε)).
The transition layer leads to a shock layer where we write, by analogy to (3.47),

t = t− +
ε2/3t̃0
ω

+ [r(ε) + ε2/3s(ε)] + εt∗,(3.82)

and r + ε2/3s = O(ε ln ε). Now, notice that to obtain the O(ε2/3) shift in (3.77), we
need to know vL, and thus E2 and E3 in (3.71). Similarly, we find that, putting

N ∼ u+ ε2/3v +O(ε)(3.83)
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in the recovery shock, then

u ∼ N− +
1

g′′−t∗
+

e1 − e2ln(−t∗)
t∗2

+ · · · ,

v ∼ −e3[t
∗ + e2g

′′
−ln(−t∗)− e4 . . . ](3.84)

as t∗ → −∞, and we will need e2 and e3. Since the equation for f in the recovery
transition region is of the same form as in the first transition region, e2 and e3 are
found in the same way, and thus

e2 =
ω + l

3ωg′′−
, e3 =

ω2t̃0
3g′′−

.(3.85)

Finally, as t∗ → ∞ in the recovery shock,

N ∼ NU − ε2/3vU +O(ε,TST),(3.86)

where

NU + gU = N− + g−,

vU =
e3[

3
2 + g′′−e2]
1 + g′U

.(3.87)

At this point, we reenter the first slow phase, and if the motion is periodic, with
period P (ε), then we should regain the slow phase solution (3.13) with t replaced by
t+, where

t+ = t− P (ε);(3.88)

thus ∫ N

N+

{
1 + g′

N − µg

}
dN ∼ −t+ = P (ε)− t,(3.89)

and we match this directly to the recovery shock as t+ → 0. We haveN ∼ NU−ε2/3vU ,
t = t−+ε2/3t̃0/ω+εt∗+O(ε ln ε), and matching of the two expressions requires, using
(3.77), that

P (ε) =

∫ NU

N+

(
1 + g′

N − µg

)
dN +

∫ N−

NL

(
1 + g′

µg −N

)
dN

+ ε2/3

[
t̃0

(
1

ω
+
1

Ω

)
+ vL

(
1 + g′L

µgL −NL

)
− vU

(
1 + g′U

NU − µgU

)]
+O(ε ln ε),(3.90)

and this completes our analysis of the periodic solutions.

4. Discussion. The model we have sought to understand is (2.6):

Ṅ = g(N1)− g(N) + ε[µg(N1)−N ].(4.1)

If written in terms of the slow time t = εt∗, this is

εN ′ = g(Nε)− g(N) + ε[µg(Nε)−N ].(4.2)
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Fig. 4.1. Numerical solution for N(t∗) when b = 3.9, µ = 1.2, n = 3, and ε = 0.0001. For a
choice of origin for t at the minimum, the subsequent value t− at the next transition is shown, and
also shown is the phase resetting origin for t+ = t+ P .

The analysis applies generally for unimodal functions satisfying g′(N±) = −1, and
oscillations occur for µ ∈ (µ−, µ+), where

µ± =
N±

g(N±)
.(4.3)

As ε → 0, we predict periodic solutions having periods (in t∗) of P (ε)/ε, where P is
given by (3.90). The maximum and minimum values are approximately

Nmax = NU − ε2/3vU(4.4)

and

Nmin = NL − ε2/3vL,(4.5)

respectively. Figure 4.1 shows an example of the solution at very low ε, while Table 4.1
and Figures 4.2–4.5 show how these predictions compare with numerical solutions, for
the particular choice of g = bN/(1+Nn). It can be seen that the agreement improves,
as expected, as ε becomes small.

In terms of the original dimensional quantities of the model, we see that the
maximum and minimum values of N depend asymptotically entirely on the form of
the function g(N). The dimensional period is given to leading order by P0τ/ε, where

P0 =

∫ NU

N+

(
1 + g′

N − µg

)
dN +

∫ N−

NL

(
1 + g′

µg −N

)
dN.(4.6)
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Table 4.1
Numerical and predicted values of Nmax, Nmin, and period P given by (4.4), (4.5), and (3.90).

Upper figures in each row are the values from numerical solutions; lower figures are analytical results.
Parameter values used are n = 3, b = 3.9, and µ = 1.2. A fourth order Runge–Kutta method is used
to solve the equation, and results vary somewhat with step size, as can be seen in Figures 4.4 and
4.5. All these results are using a step size of 0.01.

ε Max Min P/ε P
0.11 2.401 0.753 9.8 1.078

0.1 2.393 0.760 10.31 1.031
3.546 0.578 16.14 1.614

0.05 2.342 0.778 15.03 0.7515
3.060 0.645 21.91 1.095

0.02 2.300 0.776 26.17 0.5234
2.681 0.698 34.58 0.692

0.005 2.260 0.765 69.11 0.34555
2.410 0.736 80.47 0.402

0.001 2.237 0.762 260.14 0.26014
2.293 0.753 277.12 0.277

0.0001 2.223 0.763 2220.9 0.2221
2.245 0.759 2260.6 0.226

0.00002 2.220 0.763 10738.0 0.21476
2.236 0.760 10841.6 0.217

1
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10000

100000

1e-05 0.0001 0.001 0.01 0.1

P/

ε

ε

Fig. 4.2. Variation of the actual period (in t∗) of the numerical solution (crosses) as a function
of ε, together with the theoretical prediction (solid curve) from (3.90), for b = 3.9, µ = 1.2, n = 3.

P0 essentially depends only on the shape of g(N), and thus the period is

Pdim =
P0

δ
,(4.7)

that is, it is controlled by the rate of differentiation. However, oscillations do not
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Fig. 4.3. As for Figure 4.2, but plotting the period in t, P , versus ε.
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Fig. 4.4. Numerical values of Nmax (crosses) and predicted values (solid curve) from (4.4) as a

function of ε for b = 3.9, µ = 1.2, n = 3. When more than one cross is plotted, as at ε = 0.001, the
different values come from the use of different step sizes in the integrator. Specifically, at ε = 0.001,
decreasing step sizes 0.01, 0.005, 0.001 gave increasing values of Nmax.
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Fig. 4.5. Computed and predicted values for Nmin, similar to Figure 4.4. Here decreasing step

size at ε = 0.001 leads to decreasing Nmin.

occur at all unless µ is a finite range of O(1), and this requires that γτ is increased
over normal values, which can be due either to an increased proliferation delay τ or
to an increased apoptotic rate γ.

It is difficult to give a useful characterization of the dimensional maximum and
minimum values of N . These are simply Nmax

dim ≈ θNU and Nmin
dim ≈ θNL. The easiest

interpretation of NU and NL is that shown graphically in Figure 4.6. We can get a
crude idea of the magnitude of the maximum and minimum values, however, if we
consider the specific proliferation rate β(N) to be adequately represented by the two
quantities β0, which is the maximum specific proliferation rate, and θ, which gives an
estimate of the value of N where the proliferation rate “turns off.” Our crude estimate
idealizes β as being piecewise constant, with a switch off occurring at N = θ, and will
generally be reasonably accurate if the switch at N ≈ θ is sharp. Then we have the
estimates

Nmin
dim ≈ θ

1 + β0τ
,

Nmax
dim ≈ (1 + β0τ)θ,(4.8)

and these could in principle be used to constrain the appropriate form of β in the
model. The amplitude of the oscillation is, very roughly, 2β0τθ.

From a mathematical perspective, the most interesting feature of the analysis
is that it is completely analogous to that of a second order relaxational differential
equation. In fact, Figure 4.6 indicates the similarity which can be drawn between the
present model and that of the simple system

εN ′ = v − g(N),

N ′ + v′ = µg(N)−N − εµv′.(4.9)
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Fig. 4.6. Phase diagram of the relaxation oscillations of both (4.9) and (4.13). g(N) is plotted
for b = 5, n = 3.

In (4.9), the slow manifold is v = g(N), and on this

N ′ ≈ µg −N

1 + g′
(4.10)

just as for (4.2). For (4.9), there is a fast phase as N → N+ or N → N−, and in the
fast phases, N + v is approximately constant; since v → g(N) at either end we have
the same results

N+ + g(N+) = NL + g(NL),

N− + g(N−) = NU + g(NU ),(4.11)

as for (4.2).
The analogy can be slightly tightened by defining the functions

v = g(Nε) + ε[µg(Nε)−N ],

v̂ =
g(N)− g(Nε)

ε
.(4.12)

Evidently v̂ is functionally dependent on v, and for slowly varying N , we have v ≈
g(N), v̂ ≈ [g(N)]′, i.e., v̂ ≈ v′; clearly this is inappropriate when N is rapidly varying.
The definitions (4.12) allow us to write (4.2) in the suggestive form

εN ′ = v − g(N),

N ′ + v̂ = µg(N)−N − εµv̂,(4.13)

and we see that the functional equation reduces precisely to the second order system
(4.9) under the identification v̂ = v′. What appears to be extraordinary is that the
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infinite dimensional breakdown of this approximation in the fast shock layers does
not affect the analytical description in any significant way.

Apart from the mathematical novelty of solving a delay differential equation,
there are some physiological ramifications of our analysis. The model for stem cell
proliferation in (2.2) is a reasonable synopsis of the process, but the rate function of
progress through the cycle, β(N), is not well constrained. Nor is it possible to access
this function directly, since the stem cell population itself is hidden, and oscillations
are manifested in the differentiated products, which are themselves dynamically con-
trolled by peripheral controlling mechanisms. Therefore it is useful to be able to
characterize the oscillations of the resting stem cell population for a variety of differ-
ent progression functions β(N), and our analysis allows us to do this. It will also allow
us in future work to analyze how oscillations in the stem cell population propagate
through the maturing cell types, so that in principle we can use resulting observed
cell cycles as a constraint on the stem cell dynamics.

Appendix. In (3.14), we find q1 and q2:

q1 =

[
2(N+ − µg+)

g′′+

]1/2

,(A.1)

q2 =
1
3q

2
1

[(
1 + µ

N+ − µg+

)
− g′′′+

2g′′+

]
;(A.2)

h+ is defined in (3.18):

h+ =
1 + µ

2g′′+(N+ − µg+)
;(A.3)

Ω is defined in (3.20):

Ω = q
2/3
1 g

′′2/3
+ ;(A.4)

κ and λ are defined in (3.23):

κ =
2

Ω2
(1 + µ),(A.5)

λ =
Ωg′′′+

g′′2+

;(A.6)

r1, r21, and r22 are defined in (3.41):

r1 =
1

4g′′+
,(A.7)

r21 =
q1
2

[
A1 +

q2
2g′′+q2

1

− 1
2 − g′′′+

4g′′2+

+ h+ ln q1

]
,(A.8)

r22 =
1
4q1h+;(A.9)

s1, s21, and s22 are defined in (3.42):

s1 =
1
3κ− 1

6λ,(A.10)

s21 =
1
2C2 − 1

4Ω− 1
6λ+

1
12κ,(A.11)

s22 =
1
8κ.(A.12)
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E2 and E4 appear in (3.57) and (3.59):

E2 =
1

3g′′+

(
1 +

g′′′+

g′′2+

)
,(A.13)

E4 =
1
2g

′′
+E2 +

g′′′+

g′′2+

+ g′′+E1.(A.14)

In (3.78) we find Q1 and Q2:

Q1 =

[
2(N− − µg−)

g′′−

]1/2

,(A.15)

Q2 =
1
3Q

2
1

[(
1 + µ

N− − µg−

)
− g′′′−
2g′′−

]
,(A.16)

and then ω, k, and l are introduced in (3.80) and are restated below:

ω = (−Q1g
′′
−)

2/3,(A.17)

k =
2

ω2
(1 + µ),(A.18)

l =
ωg′′′−
g′′2−

.(A.19)
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