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ABSTRACT: The O’Neill-Miller model of frost heave, which takes account of a partially frozen fringe be-
tween the frozen and unfrozen soil, is used to study the mechanism of differential frost heave, which is a pos-
sible cause of earth hummocks and stone circles. In order to facilitate this study, the model must firstly be 
generalised to three dimensions, which requires a modification, due to Gilpin, of Miller’s concept of regela-
tion; secondly, four key simplifications, variously introduced in previous work by Holden, Fowler and Krantz, 
must be made  to render the computation of the model tractable. With these simplifications, and with the as-
sumption that frozen soil deforms viscously, the model can be reduced to a coupled set of partial differential 
equations for the frozen soil temperature and velocity. A quasi-stationary stability analysis of the uniform 
heaving state is conducted on a simplified version of this reduced model to examine whether spatial instabili-
ties can occur in physically realistic conditions. I give an explicit parametric criterion for the occurrence of 
differential frost heave. 

1 INTRODUCTION 

Earth hummocks and stone circles are two forms of 
patterned ground which occur in perennially frozen 
ground (Tarnocai & Zoltai 1978, Williams & Smith 
1989) and which are often thought to occur due to a 
mechanism of differential frost heave (van Vliet-
Lanoë 1991), although other mechanisms have been 
proposed (e.g. Krantz et al.1988). Differential frost 
heave refers to a spatial instability which occurs 
when freezing of the active layer occurs, and which 
consequently leads to the formation of a pattern con-
sisting of a regular array of hummocks. It is the pre-
diction of this instability which forms the subject of 
this paper. In order to form a theory of differential 
frost heave, it is necessary to couple a model of the 
frost heaving process with a rheological model for 
the deformation of frozen soil. On the long time 
scales which are appropriate to frost heave, I con-
sider that a viscous model for the deformation is ap-
propriate. The principal difficulty, however, is that 
realistic models of frost heaving are notoriously 
complicated.  
 The most realistic and most physically based 
model of frost heave is that due to Miller (1972, 
1978). This model was solved numerically by 
O’Neill & Miller (1982, 1985). The ability to con-
struct a model of differential frost heave relies on the 

simplifications of the Miller model derived by Fow-
ler & Krantz (1994), following earlier work by Piper 
et al. (1988). The resulting simplified model can be 
easily solved for spatially uniform frost heave 
(Fowler & Noon 1993), and it provides an accurate 
but accessible model for studying differential frost 
heave (Noon 1996). 

2 THE SIMPLIFIED MILLER MODEL 

When soil is frozen at the surface, a freezing front 
propagates downwards at a rate determined by the 
surface cooling. At the same time, the capillary ef-
fect due to the surface energy of the ice-water inter-
face causes an upwards flow of groundwater, which 
freezes on to the growing frozen soil, causing frost 
heave to occur. Commonly this freezing on occurs as 
a sequence of thin ice lenses, and it is thought that 
these are formed within a partially frozen fringe, in 
which ice and water coexist in the pore space. The 
mathematical model of frost heave solved by 
O’Neill & Miller (1985) is able to explain in a very 
satisfactory way this sequence of events. Their 
model assumes soil to be saturated and incompressi-
ble, and it also assumes that ice can move rigidly 
past soil particles by means of regelation. As ex-
plained by Fowler & Krantz (1994), this assumption 
of rigid ice is untenable in differential frost heave, 



and it is more realistic to use a model of thermally 
induced regelation based on work by Romkens & 
Miller (1973) and Gilpin (1979), in which the ice ve-
locity in the fringe is taken as proportional to tem-
perature gradient. In order to simplify the model, 
three (accurate) approximations are made, as fol-
lows. Firstly, the advection of sensible and latent 
heat is small; consequently the soil is thermally 
equilibrated, and its temperature is given by the so-
lution of Laplace’s equation. Secondly, the fringe is 
thin; this is due to the small variation of freezing 
temperature due to the Gibbs-Thomson effect within 
the frozen fringe. Typical inferred thicknesses are of 
the order of millimetres. The implication of this is 
that the dynamics of the model variables within the 
fringe may be encapsulated by means of jump condi-
tions across the fringe, so that in the simplified 
model, one deduces that the fringe may be treated as 
an effective interface. Thirdly, the hydraulic conduc-
tivity varies strongly with pore water fraction within 
the fringe. This allows the pore water pressure pro-
file within the fringe to be solved asymptotically, 
and allows us to deduce explicit forms for the jump 
conditions of mass and energy across the fringe.  

With these assumptions, one-dimensional frost 
heave is easily studied, and the problem is easily 
solved since the temperature profiles are constant. In 
fact the solution can be given in closed form, as was 
shown by Fowler & Krantz (1994), and illustrated 
by Fowler & Noon (1993). 

Unlike one-dimensional heave, differential frost 
heave requires a rheological description of the fro-
zen soil. The rheology of frozen soil has been dis-
cussed by Sayles (1988) and Fish (1994); over the 
long time scales involved here, frozen soil will 
creep, and for simplicity we assume that it has a 
constant viscosity ηf. 

This viscous flow problem was studied by Noon 
(1996) and Fowler & Noon (1997). They assumed 
that the unfrozen soil beneath the frozen soil was 
rigid by comparison with the frozen soil. At first 
sight this seems unlikely because surely the unfrozen 
soil would be softer. However, it is a necessary as-
sumption in the context of the Miller model which 
assumes rigid (unfrozen) soil in its description. An 
extension of the model to allow for deformation be-
low the freezing front also requires extension of the 
Miller model to deal with this, and this is beyond the 
scope of the present paper. Therefore we follow 
Fowler & Noon’s (1997) assumption. Their study 
was largely concerned with the effect on stability in 
the model of a surface snow cover, while here I wish 
to examine the parameter dependence of regions of 
instability in the basic model. Fowler & Noon 
(1997) alluded to the possibility of instability, but 
their choice of parameters was unphysical (W.B. 
Krantz, personal communication). 

3 STABILITY ANALYSIS 

Suppose the vertical coordinate is taken to be z, and 
that zs

0(t) and zf
0(t) denote respectively the soil sur-

face and the freezing front in the one-dimensional 
solution.  We consider three-dimensional perturba-
tions of the one-dimensional heave solutions by 
writing: 
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and linearising on the basis that ζ, η << 1. Selecting 

a perturbation of wave number k, thus  
(2)                                       e)(    ,e)( ii kxkx tfts == ηζ

and writing the variables in terms of a suitable 
length scale d and associated heaving time scale 

(Fowler & Krantz 1994), we eventually find that: 
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where h(t) is the (dimensionless) depth of the frozen 
soil. In deriving Equation (3) we assume (for sim-
plicity) that gravitational effects are negligible and 
that the unfrozen soil is isothermal.  The components 
of the matrix M are complicated functions which de-
pend on the dimensionless variable K = kh, and on 
two critical parameters:  B, the heave parameter, and 
μ, the differential heave parameter.  These are de-
fined by:  
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and:  

(5)                                                             2 2 Bk ′Σ=μ
   In Equation (4), φ is porosity and Wl is the pore 
water fraction at the top of the frozen fringe; it is a 
monotone decreasing function of the effective load 
N; β also depends on load, and is given by:  
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In this equation, γ is the exponent in the permeability 
dependence on pore water fraction W, ρi is ice den-
sity, L is latent heat, g is gravity, kl is the thermal 
conductivity when W = Wl , T0 is the ambient freez-
ing temperature, δ (≈ 0.1) is the buoyancy ratio be-
tween ice and water, Kl is the hydraulic conductivity 
evaluated at Wl ; fl is the suction characteristic 
evaluated at Wl  , and f'l is its derivative with respect 
to pore water fraction, also evaluated at Wl  : further 
details can be found in Fowler & Krantz (1994). 
Evidently  B  is  between  zero and one, with smaller    



values for clay, and O(1) values for silts.  In Equa-
tion (5), B' is the derivative of B with respect to the 
effective pressure N. It is mostly positive, but nega-
tive near saturation (when the effective load is 
small). The parameter Σ is given by:  

 
where ΔT is the applied surface cooling and σ is a 
measure of the capillary suction; ηf is the frozen soil 
viscosity, ki is the thermal conductivity of frozen 
soil, ρw is the density of water, and d is the depth 
scale; typical values of Σ are ≥ O(1); thus μ is sig-
nificant, but it can be either positive or negative. 

4 DISCUSSION 

Equation (3) is a linear evolution equation for the 
perturbation amplitudes s and f of the top surface 
and freezing front.  The coefficients of the matrix 
depend on kh, and the parameters B and μ, which 
thus control whether the perturbations grow.  An in-
dication of stability follows from calculating the ei-
genvalues of the matrix M in Equation (3), and this 
is tantamount to a frozen time analysis (Robinson 
1976). Growth occurs if either eigenvalue has posi-
tive real part.  Here I simply calculate the eigenval-
ues to indicate stability or instability.  More gener-
ally, the presence of the coefficient φh2 ∝ t in 
Equation (3) indicates that unstable modes will grow 
algebraically in time rather than exponentially, but 
in addition, the dependence of the eigenvalues on K 
= kh means that as t and thus h increases, the eigen-
values themselves will change with time. 
 

Figure 1.  Maximum growth rate as a function of K = kh when 
μ = 0, B = 0.1. 

 
Figure 1 shows a typical plot of the maximum 

eigenvalue λ+ of the matrix M in Equation (3) as a 
function of K, when the heaving parameter B is as-
sumed independent of the effective load N, i. e., B' = 

0 and thus μ = 0. In this situation both eigenvalues 
are negative and the heave is stable. 

If we allow B to depend on N, however, the 
situation is different, as was also found by Noon 
(1996). The principal conclusion is that instability is 
promoted by positive values of μ. Figure 2 shows a 
mild instability when μ = 2 and B = 0.1, which is 
greatest at zero wave number, suggesting a long 
wavelength instability. 

(7)                                                          
2 Ld

Tk

w

if

ρσ
η Δ

=Σ

 
 

 
Figure 2.  Mild long wavelength instability when μ = 2, B = 
0.1. 

 
A dramatic feature of the instability is that at slightly 
higher values of μ, the growth rate increases dra-
matically at certain wave numbers.  This is shown in 
Figure 3, where there is infinite growth rate at K ≈ 2. 
Such rapid growth rate represents a degeneracy in 
the model.  Similar kinds of instability occur in cer-
tain biological models (Murray 1993). 

Figure 3. Violent instability when : = 3.111, B = 0.1. 
 
Having found instability and consequent differen-

tial frost heave when μ > 0, there remains the issue 
of whether this is physically realistic.  The parameter 
μ is defined in Equation (5), and is given by μ = 
2k2ΣB'. Values of Σ can be reasonably large, 
whereas 0 < B < 1, with clays having small values.  



Insofar as larger values of B are associated with silts, 
they would appear to be more prone to differential 
heave.  The primary issue is then the sign of μ, since 
positive values appear to be associated with instabil-
ity.  

The sign of B' depends on the derivative of   
β(φ -Wl), see Equation (4); β in turn is given by 
Equation (6). As Wl increases from zero, Kl (which 
is the hydraulic conductivity in the fringe, and 
∝ Wl

γ) (and hence β and also B) increases rapidly, 
because of the high exponent γ. However, clearly B 
→ 0 as Wl → φ. Thus B will be a concave function 
of Wl, with dB/dWl < 0 for values of Wl near satura-
tion.  Since Wl is a decreasing function of N, we see 
that μ > 0 for small N, and thus for small effective 
pressure, or high pore water pressure.  Since heave 
rate is largest when β is large, which is also when Wl 
is large, or N is small, it appears that differential 
frost heave is promoted in conditions under which 
heave is significant. 

REFERENCES 

 
Fish, A. M. 1994. Creep and strength of frozen soil under triax-

ial compression.  CRREL Spec. Rep. 94–32. Hanover, NH:  
CRREL. 

Fowler, A. C. & Krantz, W. B. 1994. A generalized secondary 
frost heave model.  SIAM J. Appl. Math. 54:  1650–1675. 

Fowler, A. C. & Noon, C. G. 1993. A simplified numerical so-
lution of the Miller model of secondary frost heave.  Cold 
Reg. Sci. Tech. 21:  327–336. 

Fowler, A. C. & Noon, C. G. 1997. Differential frost heave in 
seasonally frozen soils.  In I. K. Iskandar, E. A. Wright, J. K. 
Radke, B. S. Sharratt, P. H. Groenevelt & L. D. Hinzman 
(eds), International symposium on physics, chemistry and 
ecology of seasonally frozen soils, CRREL Spec. Rep. 97–
10:  247–252. Hanover, NH:  CRREL.  

Gilpin, R. R. 1979. A model of the ‘liquid like’ layer between 
ice and a substrate with applications to wire regelation and 
particle migration.  J. Colloid Interface Sci. 68:  235–251. 

Krantz, W. B., Gleason, K. J. & Caine, N. 1988. Patterned 
ground. Scientific American 259:  44–50. 

Miller, R. D. 1972. Freezing and heaving of saturated and un-
saturated soils.  Highway Res. Rec. 393:  1–11. 

Miller, R. D. 1978. Frost heaving in non-colloidal soils. Proc. 
Third Int. Conf. Permafrost:  708–713. 

Murray, J. D. 1993. Mathematical biology, 2nd ed. Berlin:  
Springer-Verlag. 

Noon, C. G. 1996. Secondary frost heave in freezing soils. D. 
Phil. thesis.  Oxford:  Oxford University. 

O’Neill, K. & Miller, R. D. 1982. Numerical solutions for a 
rigid ice model of secondary frost heave.  Technical report, 
CRREL Rep.  82–13. Hanover, NH:  CRREL. 

O’Neill, K. & Miller, R. D. 1985. Exploration of a rigid ice 
model of frost heave.  Water Resour. Res. 21:  281–296. 

Piper, D., Holden, J. T. & Jones, R. H. 1988. A mathematical 
model of frost heave in granular materials.  Proc. Fifth Int. 
Conf. Permafrost:  370–376. 

Robinson, J. L. 1976. Theoretical analysis of convective insta-
bility of a growing horizontal thermal boundary layer.  
Phys. Fluids 19:  778–791. 

Romkens, M. J. M. & Miller, R. D. 1973. Migration of mineral 
particles in ice with a temperature gradient.  J. Colloid In-
terface Sci.42:  103–111. 

Sayles, F. H. 1988. State of the art:  Mechanical properties of 
frozen soil.  Fifth Int. Symp. Ground Freezing:  143–159. 

Tarnocai, C. & S. C. Zoltai 1978. Earth hummocks of the Ca-
nadian Arctic and Subarctic.  Arct. Alp. Res. 10:  581–594. 

Van Vliet-Lanoë, B. 1991. Differential frost heave, load cast-
ing and convection:  Converging mechanisms; a discussion 
of the origin of cryoturbations.  Permafr. Periglac. Proc. 2:  
123–139. 

Williams, P. J. & Smith, M. W. 1989. The Frozen Earth.  Fun-
damentals of Geocryology. Cambridge:  Cambridge Uni-
versity Press. 

 


	1 INTRODUCTION 
	2 THE SIMPLIFIED MILLER MODEL 
	3 STABILITY ANALYSIS 
	4 DISCUSSION 

