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Abstract

This article deals with modelling the simultaneous uptake of water and highly buffered nutrient, such as phosphate, by root

branching structures from partially saturated soil. We use the simultaneous water and nutrient uptake model to investigate the effect

that water movement has on nutrient uptake. With the aid of this model we are also able to show that the previous models by Barber

(Soil Nutrient Bioavailability. A Mechanistic Approach, Wiley-Interscience, New York) and Tinker and Nye (Solute Movement in

the Rhizosphere, Oxford University Press, Oxford) systematically underestimated the phosphate uptake, due to the oversimplified

approach in dealing with root branching structure. In this article we show how this discrepancy can be remedied and the root

branching structure included in the models of plant nutrient uptake. We will also discuss the differences in the results for continuous

and spot fertilization combined with variable rainfall.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Most fundamental questions in soil science in relation
to plant science deal with factors controlling nutrient
uptake by plant roots. In this paper we will develop a
mathematical model to estimate the rate of nutrient
uptake by a plant root system in variable soil moisture
conditions. We use the model to estimate the increase in
the rate of nutrient uptake due to fertilizer application
and fertilizer movement due to water movement. In
particular, we will deal with the nutrients that have high
buffer power in the soil, i.e. phosphate.
Substantial amounts of phosphate fertilizer are

applied in areas with highly weathered soil like the
West African Savannah, Malaya, and South Australia
(Nye, 1992). Even when the intensity of phosphate
fertilization is high, there are virtually no governmental
or international regulations on its levels in groundwater
and rivers. According to Binkley et al. (1999) this might
be because phosphate is not toxic. However, during
recent years concerns have mounted over the effect of
phosphate on aquatic ecosystems. For example, an
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increase 10 parts per billion phosphate–phosphorus in
the Kuparuk River in Alaska resulted in an immediate
increase of algal growth by 20-fold in a region 10 km
down from the phosphate placement site (Peterson et al.,
1985). Indeed, in some cases phosphate fertilizer has
been used to increase the productivity of fisheries. These
kind of practices can however adversely alter the
biodiversity of environment. Ingerpuu et al. (1998)
present the results of a 30 year fertilization study of
the wooded meadow Laelatu on the west coast of
Estonia. This site has been found to be one of the most
species rich sites1 in temperate Eurasia. Amongst the
factors Ingerpuu et al. (1998) monitored was the
response of species richness to the application of
nitrate–phosphate–potassium fertilizer. They found that
fertilization increased the coverage and decreased the
number of different vascular plants, but had the opposite
effect on byrophytes. Caldwell et al. (1985) have also
found that the phosphate levels in soil influenced greatly
the competitiveness of different grass species in respect of
It is the most species rich site on the small scale, i.e. the number of

different plant species detected on 10 m2 plot is up to 68. Overall

number of different plant species found in Laelatu is approximately

371.
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their ability to acquire phosphate from the soil. Thus,
phosphate fertilization and pollution can have huge
effects on the plant ecosystems and can make some of the
less adapted species almost extinct since their root
systems might not be well adapted to changes in the
phosphate levels in the soil (Jackson et al., 1990).
This paper will present a mathematical model that

would be useful in dealing with the problems discussed
above. In Section 2 of this paper we present a model for
water and nutrient conservation in the soil. In Section 3
the typical parameter values for phosphate transport in
silt loam soil are discussed. Using the parameter values
presented, we then non-dimensionalize the model and
point out the significance of the resulting dimensionless
parameter values for the further modelling. The main
result of non-dimensionalization is the discovery that the
phosphate and water transport in the soil occur over very
different time-scales. This enables us in Section 4 to
derive the term for phosphate uptake by the plant root
branching system and thus complete the model. The
results of numerical simulations based on the model are
presented in Section 5, where the mathematical analysis
of the model, and biological interpretation of the results
are also presented. In Section 6, the results of numerical
experiments in relation to previous models, i.e. the Nye–
Tinker–Barber model (Barber, 1984; Nye and Tinker,
1977; Tinker and Nye, 2000), are presented and the
discrepancies between those previous approaches and
ours are discussed. In this paper we are assuming that the
soil is homogeneous and we will also neglect the
horizontal variations in the soil moisture conditions and
in the nutrient levels. We believe these assumptions to be
applicable to a field crop situation where the horizontal
variation in the root length density is small. However, this
is by no means a limitation of the model since extension
of the model to two and three dimensions would be fairly
simple if the experimental situation requires it.
S
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Fig. 1. Soil water ‘‘diffusivity’’ DðSÞ and conductivity kðSÞ; given by

Eqs. (2.2) and (2.3), as a function of soil water saturation for typical

loam soil.
2. Model for water and nutrient conservation in the soil

2.1. Water conservation equation

In this article we use the model for water movement in
the soil and uptake by the root branching structure first
developed by Roose and Fowler (2004). This model
considers the equation for conservation of water in the
soil and couples it with Darcy’s law for flow in porous
media resulting in the Richards equation for water
flow in the soil. Thus, after Roose and Fowler (2004),
the relative water saturation S ¼ fl=f; where fl is the
volumetric water content and f is the porosity of the
soil, the Richards equation will be given by

f
@S

@t
¼ r � ½D0DðSÞrS � KskðSÞ #k� � FwðS; z; tÞ; ð2:1Þ
where D0 and Ks are the parameters for water diffusivity
and conductivity, respectively, DðSÞ and kðSÞ character-
ize reduction in water diffusivity and conductivity in
response to the relative water saturation decrease, #k

is the vector pointing vertically downwards from the
surface of the soil and Fw is the rate of water uptake by
plant roots per unit volume of soil at a given position
(see Roose and Fowler (2004) for discussion). The
functional forms of DðSÞ and kðSÞ for partially saturated
soil are given by (van Genuchten, 1980)

DðSÞ ¼S1=2�1=m½ð1� S1=mÞ�m þ ð1� S1=mÞm � 2�

¼m2S1=2þ1=m þ m2S1=2þ2=m þ? ð2:2Þ

and

kðSÞ ¼S1=2½1� ð1� S1=mÞm�2

¼m2S1=2þ2=m � m2 2
3
� m

� �
S1=2þ3=m þ?: ð2:3Þ

The above functional forms for DðSÞ and kðSÞ imply
that the water mobility in the partially saturated soil is
nonlinearly dependent on the level of saturation in the
soil, i.e. at lower levels of saturation the water is less
mobile in the soil than at higher levels of saturation (see
also Fig. 1).
The water uptake term FwðS; z; tÞ for a typical maize

plant is given, after Roose and Fowler (2004), by

FwðS; z; tÞ ¼
2pakr þ f2pakrkz;1g

1=2c1ðzÞ

pða0 þ L1 cos bÞ
2

½pðSÞ � pr�;

ð2:4Þ

where 2pakr is the axial conductivity of the maize roots
kz;1 is the axial conductivity of the first order lateral
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branches, a0 is the radius of zero order root, L1 is the
maximum length of first order lateral branches, b is the
branching angle between first and zero order roots, c1ðzÞ
is the distribution of first order root branch points on a
zero order root, i.e. number of branch points per unit
length of zero order root. The soil suction characteristic
parametrizing the dependence of the soil water pressure
on relative water saturation is given by

pðSÞ ¼ �pc ðS�1=m � 1Þ1=m ð2:5Þ

with pc being experimentally determined for each soil
type (van Genuchten, 1980). The pressure inside the zero
order root xylem vessels, pr; is described by the
following equation that considers the balance between
the axial water movement inside the zero order root and
the radial water uptake by zero order roots in addition
to the water flowing into zero order root xylem vessels
from the first order lateral branches, i.e. after Roose and
Fowler (2004)

½2pakr þ f2pakrkz;1g
1=2c1ðzÞ�ðpðSÞ � prÞ ¼ �kz;0

@2pr

@z2

ð2:6Þ

with boundary conditions representing an impermeable
root tip, z ¼ L; and a constant root internal pressure,
P; at the base of the zero order root, z ¼ 0; i.e. the
boundary conditions are given by

pr ¼ P at z ¼ 0 and
@pr

@z
¼ 0 at z ¼ L: ð2:7Þ

2.2. Nutrient conservation equation

The equation for nutrient conservation in the soil,
assuming that there is an instantaneous equilibrium
between nutrients bound to the solid surfaces in the
soil and nutrients in the soil pore water, is given
(after Barber, 1984; Tinker and Nye, 2000; Roose et al.,
2001) by

@

@t
½ðb þ fSÞc� þ r � ½cu�

¼ r � ½Df f
dþ1Sdþ1rc� � F ðc;S; tÞ; ð2:8Þ

where b is the buffer power of the soil. We have also
taken the diffusivity of nutrient in the partially saturated
soil to be given by Dnut ¼ Df f ¼ Df f

dSd with Df being
the nutrient diffusivity in free water and the impedance
factor, f ; for nutrient diffusion in the partially saturated
soil is given by the following power law f ¼ fdSd in
terms of soil water content. The value for the impedance
factor parameter d is, according to Barber (1984) and
Nye and Tinker (1977), in the range 1=2pdp2: The
term F ðc;S; tÞ describes the rate of nutrient uptake by
the root branching structure. We will discuss the
functional form of this term in a later section of this
article after having non-dimensionalized the above
equations for water and nutrient conservation.
In this article we will assume that the buffer power of

the soil does not change when the moisture conditions of
the soil change. This is supported by experimental
measurements conducted by Kuchenbuch et al. (1986).
They found that the buffer power variation with soil
moisture conditions is negligible in comparison to the
changes in the impedance factor for nutrient diffusion.
This is expected, since all soil particles will retain a water
film over them even in very dry soils. This film is where
the exchange between the two nutrient phases occurs
(see Barber, 1984; Tinker and Nye, 2000). Thus we take
the change in the nutrient ion mobility due to the
changes in the soil moisture conditions to occur only due
to the diffusion limitation, i.e. the impedance factor
f ðSÞ ¼ fdSd :
In the above nutrient movement equation the speed of

water movement u in the soil will be given by Darcy’s
law written in terms of relative water saturation
using the van Genuchten suction characteristic (van
Genuchten, 1980), i.e.

u ¼ �D0DðSÞrS þ KskðSÞ #k: ð2:9Þ

Thus the equation for nutrient conservation, written in
terms of relative water saturation S and nutrient
concentration c; is

@

@t
½ðb þ fSÞc� ¼r � fDf f

dþ1Sdþ1rc

þ c½D0DðSÞrS

� KskðSÞ #k�g � F ðc;S; tÞ; ð2:10Þ

where #k is the unit vector pointing vertically downwards
into the soil.

2.3. Boundary conditions

2.3.1. Soil surface boundary condition

We assume that there is a flux of water due to rainfall
at the surface of the soil, i.e.

�D0DðSÞ
@S

@z
þ KskðSÞ ¼ Wdim at z ¼ 0; ð2:11Þ

where Wdim (cm s�1) is the volume flux of water per unit
soil surface area in unit time. This boundary equation
implies that we will be neglecting the effects of surface
water ponding due to very high rainfall. However, it
would not be very difficult to modify the model to
include the effects of surface ponding since in the case of
surface ponding the effective boundary condition at the
soil surface becomes S ¼ 1 at z ¼ 0; i.e. fully saturated
soil surface, and the flow of water into the soil will be
driven by changes in water pressure via Darcy’s law.
If the rate of fertilizer application at the root surface

is Rdim (mmol cm�2 s�1), then the nutrient soil surface
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Table 1

Soil and nutrient uptake parameters used in numerical simulations

Param. Description Value Unit

Ks Soil saturated hydraulic conductivity 5 cm day�1

m Non-saturated water flow parameter in Eqs. (2.2) and (2.3) 1=2 —

D0 ‘‘Diffusivity’’ of water in non-saturated soil 103 cm2 day�1

b Nutrient buffer power in soil (for phosphate) 239 —

f Soil porosity 0.4 —

Df Nutrient diffusivity in water (for phosphate) 10�5 cm2 day�1

d Parameter for nutrient diffusivity impedance in soil 2 —

K0 Max. length of maize zero order root 50 cm

Km Nutrient Michaelis–Menten parameter (for phosphate) 5:8� 10�3 mmol cm�3

Fm Max. rate of nutrient uptake (for phosphate) 3:26� 10�6 mmol cm�2 s�1

T. Roose, A.C. Fowler / Journal of Theoretical Biology 228 (2004) 173–184176
boundary condition will be given by

�Df f
1þdS1þd @c

@z
þ Wdimc ¼ Rdim at z ¼ 0: ð2:12Þ

2.3.2. Boundary condition at the ‘‘bottom’’ of the soil

To calculate the movement of fertilizer into the
groundwater and from there to the lakes and rivers,
the boundary condition at the groundwater level would
need to be derived from a model for large-scale
groundwater movement. However, for the purposes of
simplicity we will prescribe a zero flux boundary
condition at a given level in the soil. This will
correspond to the situation when the soil is overlaying
an aquitarol and also to pot experiments where the pot
has an impermeable bottom. The zero flux boundary
condition at a given level lw for water and nutrient is
thus at leading order given by

�D0DðSÞ
@S

@z
þ KskðSÞ ¼ 0 at z ¼ lw; ð2:13Þ

�Df f
1þdS1þd @c

@z
¼ 0 at z ¼ lw: ð2:14Þ

3. Non-dimensionalization of the model and values of

dimensionless parameters

We non-dimensionalize the above equations using the
following scaling: zBK0; tBbK2

0=D0 and cBKm; where
K0 is the maximum length of the zero order root, Km is
the nutrient uptake Michaelis–Menten parameter (after
Roose et al., 2001), b is the buffer power of the soil, and
D0 is the soil water ‘‘diffusivity’’ parameter (see Barber,
1984; Tinker and Nye, 2000; Roose et al., 2001). The
dimensionless model is thus given by

d
@S

@t
¼

@

@z
DðSÞ

@S

@z
� ekðSÞ

� �
� Fw; ð3:1Þ
ð1þ dSÞ
@c

@t
� DðSÞ

@S

@z
� ekðSÞ

� �
@c

@z

¼ De
@

@z
S1þd @c

@z

� �
� F þ Fwc; ð3:2Þ

where three dimensionless parameters are d ¼ f=b; e ¼
KsK0=D0 and De ¼ Df f

1þd=D0:
The dimensionless boundary conditions are given by

�DðSÞ
@S

@z
þ ekðSÞ ¼ W at z ¼ 0; ð3:3Þ

Wc � DeS
1þd @c

@z
¼ R at z ¼ 0; ð3:4Þ

�DðSÞ
@S

@z
þ ekðSÞ ¼ 0 at z ¼ lw; ð3:5Þ

@c

@z
¼ 0 at z ¼ lw; ð3:6Þ

where the dimensionless rate of rainfall is given by W ¼
WdimK0=D0 and the dimensionless rate of fertilization is
given by R ¼ RdimK0=ðD0KmÞ:
The values for dimensional parameters are shown in

Table 1. The values of the dimensionless parameters for
typical loam soil (data from van Genuchten, 1980) are:
DeB10�5; eB0:2: The average seasonal rainfall is in
England of order 1 m yr�1 thus 0pWp10�2; and the
average rate of phosphate fertilization in England is
30 kg h�1; i.e. approximately 10�7 mmol cm�2 s�1; thus
RB0:1 (Dawson, 1998). We can see that as expected, the
nutrient diffusion in the soil pore water on the chosen
root system length scale is negligible in comparison to
the nutrient movement due to the water movement, i.e.
De51 and De5e:
4. Two time-scales and nutrient uptake

In the above dimensionless equations (3.1) and (3.2)
one of the most important parameters is d ¼ f=b;
which shows the importance of relative water movement
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time-scale in comparison to the nutrient movement
time-scale. When the buffer power b is large, as it is in
the case of phosphate, potassium and calcium for
example, then d51 since the porosity fo1 anyway.
Thus, the water saturation relaxes to a fast pseudo-
steady state over a time-scale of highly buffered nutrient
movement. Similarly, the term for nutrient concentra-
tion change due to the water saturation and resulting
release of nutrient from the soil particles becomes
ð1þ dSÞ@c=@tE@c=@t for d51:
Since d51 we can at the leading order take the water

saturation at any given point in the soil to be constant in
time. Thus, we can use the analytic formula derived by
Roose et al. (2001) for the nutrient uptake by a single
root. Roose et al. (2001) derived the formulae for the
rate of nutrient uptake Fdim (mmol cm�1 s�1) by single
cylindrical root using the model originally developed
by Barber (1984) and Nye and Tinker (1977)2 and
the method of matched asymptotic expansions (Hinch,
1991). The formula they derived was valid only for the
case when the water saturation in the soil is in
equilibrium and the water saturation profile around
individual root is flat (as shown in Roose and Fowler,
2004). Thus, since in our case the water saturation is in
equilibrium we can use Roose et al.’s (2001) formula
locally for each sub-branch in the root system. The
formula Roose et al. (2001) derived gives the rate of
nutrient uptake per unit of root surface area per unit
time by

Fdim ¼
2Fmc=Km

1þ c=Km þ LðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c=Km þ ð1� c=Km þ LðtÞÞ2

q ;

ð4:1Þ

where

LðtÞ ¼
l
2
ln½aðt � t0Þ þ 1� ð4:2Þ

and the dimensionless nutrient uptake parameter l and
time parameter a ðs�1Þ are given by

l ¼
Fma

Df f
1þdS1þdKm

and a ¼ 4e�g Df f
1þdS1þd

a2bð1þ dSÞ
: ð4:3Þ

Dimensional parameters in above formulas are (see
Roose et al., 2001): Fm (mmol cm�2 s�1) is the maximum
rate of nutrient uptake, Km (mmol cm�3) is the Michae-
lis–Menten nutrient uptake parameter (it corresponds to
the nutrient concentration when the rate of nutrient
uptake by plant root is half of maximum possible), t0 (s)
is the time when the nutrient uptake at a given physical
location started, a (cm) is the radius of the root, b is the
buffer power, Df is the diffusion coefficient of nutrient
2Barber (1984) and Nye and Tinker (1977) solved the model only

numerically. This need for numerical solution of cylindrical root model

made it difficult to expand the modelling to include more realistic root

structures, i.e. root branching structures.
in a water, f is the porosity, d is the diffusion impedance
factor power, and g ¼ 0:5772y is the Euler constant
(see Table 1 for representative values for phosphate).

4.1. Root branching structure

The root systems of agricultural plants like maize,
wheat, etc. have typically 2–3 branching orders. The
roots growing out from the seed are called zero order
roots, roots branching out from those zero order roots
are called first order roots, and roots branching out
from the first order roots are called second order roots
(see Fig. 2). Each of those branches has non-branching
zones near the base of the root and near the tip. Thus,
the higher order branches can only be developed in the
so-called branching region located in a middle part of
the root system (see Fig. 2).
As discussed in Roose et al. (2001) the rate of

elongation dli=dt of a single root of order i and length li
can be taken to be

dli

dt
¼ ri 1�

li

Ki

� �
; ð4:4Þ

where ri is the initial, maximum rate of elongation of a
newly born root, Ki is the maximum possible i-th order
root length and li is the length of i-th order root at time t:
Solving the above equation gives that the length of a

root created at time t ¼ T� is given by

liðtÞ ¼ Kið1� e�riðt�T�Þ=Ki Þ: ð4:5Þ

4.1.1. Nutrient uptake by zero order roots

The zero order root, created at time t ¼ 0 at a
position z ¼ 0 and growing vertically downwards along
the positive z-axis, will reach position z in time

t0 ¼ �
K0

r0
ln 1�

z

K0

� �
: ð4:6Þ
Order 0

Fig. 2. Schematic structure of the maize root branching structure after

Pag"es et al. (1989).
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Fig. 3. Vertical root distribution.

3The first order roots branch out from the zero order root making

an angle b between them (see Fig. 3). Thus, if the zero order root is in

direction of z axis, then the first order root length in the z direction

translates into the length dz=cos b along each first order root.
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Therefore, the rate of nutrient uptake as a function of z

and t by this zero order root of radius a0 and unit length
dz is

F0ðz; tÞ dz

¼ 2pa0 dz

�
2Fmc=Km

1þ c=Km þ L0ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c=Km þ ð1� c=Km þ L0ðtÞÞ

2
q ;

ð4:7Þ

where

L0ðtÞ ¼
l0
2
ln a0t þ a0

K0

r0
ln 1�

z

K0

� �
þ 1

� �
ð4:8Þ

with

l0 ¼
Fma0

Df f
1þdS1þdKm

and a0 ¼ 4e�g Df f
1þdS1þd

a20bð1þ dSÞ
:

ð4:9Þ

4.1.2. Nutrient uptake by first order lateral branches

For the first order roots we need to take into account
the time tðz0Þ after they are created at z0 before they start
taking up nutrients. Thus, the first order root created at
the branch point position z0 has a length

l1ðz0; tÞ ¼ K1ð1� e�r1ðt�tðz0ÞÞ=K1 Þ: ð4:10Þ

The time-delay t can be calculated from Eq. (4.5) since
the zero order root will develop first order lateral
branches at position z0 only if the overall length of zero
order root is larger than z0 by the amount equal to the
apical non-branching zone la;0 (see Roose et al. (2001)
for discussion on root branching). Thus, the time of
creation of first order branch at z0 is given by

tðz0Þ ¼ �
K0

r0
ln 1�

z0 þ la;0

K0

� �
ð4:11Þ

and therefore the length of first order root is given by

l1ðz0; tÞ ¼

K1 1� e�r1t=K1
	
� 1�

z0 þ la;0

K0

� ��
r1K0

r0K1

3
5 for tXtðz0Þ;

0 for totðz0Þ:

8>>>>><
>>>>>:

ð4:12Þ

Thus, the time in which the first order root branching
out from z0 reaches position z is given by

t1ðz; z0Þ ¼ �
K0

r0
ln 1�

z0 þ la;0

K0

� �

�
K1

r1
ln 1�

z � z0

K1 cos b

� �
; ð4:13Þ

where b is the angle between the zero order root and first
order branch (see Fig. 3).
The first order root with radius a1 and length in z

direction3 dz; branching out from the branch point
at z0 is therefore taking up nutrients from the interval
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½z0; z0 þ l1ðz0; tÞ cos b� at a rate

f1ðz0; z; tÞ dz

¼ 2pa1
dz

cos b

�
2Fmc=Km

1þ c=Km þ L1ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c=Km þ ð1� c=Km þ L1ðtÞÞ

2
q ;

ð4:14Þ

where

L1ðtÞ ¼
l1
2
ln a1t þ a1

K0

r0
ln 1�

z

K0

� ��

þ a1
K1

r1
ln 1�

z � z0

K1 cos b

� �
þ 1

�
ð4:15Þ

with

l1 ¼
Fma1

Df f
1þdS1þdKm

and a1 ¼ 4e�g Df f
1þdS1þd

a21bð1þ dSÞ
:

ð4:16Þ

However, at any given point z there is more than one
first order root taking up nutrients since roots from
more than one branch point reach this position. In order
to determine the branching interval on the zero order
root from where the roots can reach position z we have
to do a back calculation, i.e. the first order roots
branching out from the interval ð#z; zÞ reach z; where #z is
defined as a solution to

z ¼ #z þ K1 cos b 1� e�r1t=K1 1�
#z þ la;0

K0

� ��r1K0=r0K1

" #

for tXtð#zÞ: ð4:17Þ

If the branch point distribution is given by cðzÞ;
i.e. there are cðzÞ dz branching points in the interval
ðz; z þ dzÞ; then the cumulative rate of uptake per unit
depth by all first order branches reaching the position z

is given by

F1ðz; tÞ ¼
Z z

#z

cðz0Þf1ðz0; z; tÞ dz0: ð4:18Þ

4.1.3. Rate of nutrient uptake per unit volume of soil

We have described above the rate of nutrient uptake
by zero and first order roots. We will limit ourselves to
including these two orders, since Roose et al. (2001)
found that the second order roots do not take up
substantial amounts of nutrient if inter-root branch
competition is neglected. This is due to the very small
length and radius of second order branches. In fact,
interbranch competition is going to decrease the uptake
even further. Thus, for the purposes of simplicity and
clarity we will neglect the nutrient uptake by second
order branches. This approach is also supported by the
observations of Varney et al. (1991) who studied the
branching structure of soil grown maize plants and
noted that there were not very many second order
branches present. Clearly, if the second order roots were
to be found important for a particular plant, their effect
in the model can be incorporated in a similar manner to
first order branch uptake presented in this paper.
Considering the representative soil volume element to

be of thickness dz and radius a0 þ K1 cos b; i.e. the first
order branches of parallel zero order roots do not
overlap (see Fig. 3), we write the uptake of nutrients by
the root system per unit volume of soil to be given by
(using the averaging of Eqs. (4.7) and (4.18) with
dV ¼ pða0 þ K1 cos bÞ

2 dz)

F ðc; z; tÞ ¼
F0 þ F1

pða0 þ K1 cos bÞ
2
: ð4:19Þ

4.1.4. Dimensionless nutrient uptake per unit volume

of soil

Using the non-dimensional scaling presented above in
Section 3 with the nutrient scale given by cBKm; the
Michaelis–Menten nutrient uptake parameter (Roose
et al., 2001), the dimensionless nutrient uptake that
appears in Eq. (3.2) is given by Eq. (4.19), i.e.

F ¼ F�
0 þ F�

1 ; ð4:20Þ

where dimensionless zero order nutrient uptake is given
by

F�
0 ¼

2L0c

1þ c þ L0ðz; tÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c þ ð1� c þ L0ðz; tÞÞ

2
q ð4:21Þ

with

L0ðz; tÞ ¼
l0

2Sdþ1 ln ða0t þ a00 lnð1� zÞÞ
Sdþ1

1þ dS
þ 1

� �
;

ð4:22Þ

l0 ¼
Fma0

Df f
dþ1Km

; a0 ¼ 4e�g Df f
dþ1½t�

a20b
;

a00 ¼ 4e�g Df f
dþ1

a20b

K0

r0
; ð4:23Þ

L0 ¼
2a0FmK2

0

ða0 þ K1 cos bÞ
2KmD0

: ð4:24Þ

The dimensionless nutrient uptake by first order roots
is given by

F�
1 ¼

Z z

#z

2L1ccðz0Þ dz0

1þ c þ L1ðz; t; z0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c þ ð1� c þ L1ðz; t; z0ÞÞ2

q
ð4:25Þ
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with

L1ðz; t; z0Þ ¼
l1

2S1þd
ln a1t þ a11 lnð1� ðz0 þ la;0ÞÞ

��

þ a111 ln 1�
z � z0

K1 cos b

� ��
Sdþ1

1þ dS
þ 1

�
;

ð4:26Þ

a1 ¼ 4e�g Df f
dþ1½t�

a21b
; a11 ¼ 4e�g Df f

dþ1

a21b

K0

r0
;

a111 ¼ 4e�g Df f
dþ1

a21b

K1

r1
; ð4:27Þ

L1 ¼
2a1FmK3

0

cos bða0 þ K1 cos bÞ
2D0Kmln;0

;

l1 ¼
Fma1

Df f
dþ1Km

: ð4:28Þ
Table 2

Dimensionless nutrient uptake parameters for phosphate and potassium in S

L0 L1 l0 l1 a0 a00

P 0.733 4.335 43 17 111 5.1

K 2.532 16.55 167 67 198 32

Fig. 4. Numerical solution for phosphate uptake with initial water saturation

cN ¼ 0:66 at t ¼ 0: Calculations are for constant rate of rainfall W ¼ 0:05 a
initial conditions, others lines present the numerical solution after equal time

the fertilizer movement near the soil surface; (b) change in phosphate concen

zero order tip); (c) the water saturation profile in the soil; (d) the total amo
The values of dimensionless parameters presented above
are shown in Table 2.
5. Results of numerical simulations and simple analysis of

the model

We solved the model described above using the
implicit finite difference scheme for the diffusion terms
and the upwind scheme for the convection terms
(Morton and Myers, 1994). The results of numerical
simulations are presented in Figs. 4 and 5. For those
figures the results are calculated using a constant rate of
rainfall W ¼ 0:05 and constant rate of fertilization R ¼
0:1: We can see from Fig. 4 (a) that the value of
phosphate concentration at the soil surface is approxi-
mately 2. This can be explained by considering the
boundary condition at the soil surface and neglecting
ilt loam G.E.3 soil

a1 a11 a111 n ½t� (days)

96 694 34.5 1.6 21.4 505.5

675 199 10 3.4 82.5

profile SN ¼ 0:75: Corresponding initial condition for SNcN ¼ 0:5 is
nd rate of fertilizer application R ¼ 0:1: Flat lines on (a)–(d) show the

intervals of 12 days. (a) the change in phosphate concentration due to

tration on the larger spatial scale (� shows the successive positions of

unt of soluble phosphate in the soil.
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5Estimating the distance between the curves numerically at c ¼ 1 in
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the small De term, i.e.

Wc � R ¼ DeS
dþ1 @c

@z
51 thus cE

R
W

at z ¼ 0: ð5:1Þ

For W ¼ 0:05 and R ¼ 0:1 we thus get that cð0; tÞE2:
We also see that the fertilizer moves relatively slowly

into the main rooting region (see Fig. 4(a)). The speed of
this movement can be determined from the nutrient
movement equation (3.2). Neglecting the small OðDeÞ
diffusion term, we find that the leading order nutrient
equation is the following hyperbolic partial differential
equation:

ð1þ dSÞ
@c

@t
� DðSÞ

@S

@z
� ekðSÞ

� �
@c

@z
¼ �F þ Fwc; ð5:2Þ

which has characteristic nutrient movement speed4

given by

dz

dt
¼ � DðSÞ

@S

@z
� ekðSÞ

� �
1

1þ dS
: ð5:3Þ

We also notice that the water saturation has relaxed into
pseudo-steady state giving rise to wet and dry regions in
the soil, as first reported by Roose and Fowler (2004).
4See Ockendon et al. (1999) for the method of characteristics for

solving hyperbolic equations.
At this water pseudo-steady state Sðz; tÞ ¼ S�ðzÞ: Since
in this case, near the soil surface, zE0; we have
�DðSÞ@S=@z þ ekðSÞEW ; expression (5.3) for the char-
acteristic speed of nutrient movement simplifies to

dz

dt
¼

W

1þ dS�
; ð5:4Þ

where S� is the pseudo-steady state water saturation
profile. For W ¼ 0:05; d ¼ 1:67� 10�3 we find that near
the soil surface S�E0:6; and thus the distance between
the curves plotted in Fig. 4(a) should be of order dz ¼
0:05� dt ¼ 10�3 for dimensionless time interval dt ¼
12ðdaysÞ=505ðdaysÞ; which is what one observes also
numerically.5 Thus, in dimensional terms, the phosphate
fertilizer moves into the soil at approximate speed of
4� 10�3 cm day�1; i.e. during the full 4 month long
growing season fertilizer would move only to 0:5 cm
depth in the soil. Thus, any effect of phosphate fertilizer
on groundwater will occur on a long time-scale.
However, because of its accumulation at the soil surface,
we envisage the risk of phosphate pollution to be mainly
due to its runoff from the soil surface.
The small-scale changes in the phosphate concentra-

tion profile due to the simultaneous water and nutrient
uptake in the rooting region are presented in Fig. 4(b).
As we see, the resulting concentration profiles are quite
complex, however, they can be explained by the effective
nutrient sink/source term in Eq. (3.2). The effective sink/
source term for nutrient in that equation is given as a
balance between the nutrient uptake and rise in nutrient
concentration in the soil pore water due to the water
uptake, i.e. by �F þ c Fw in Eq. (3.2). Thus, if the water
uptake is large enough, then the nutrient concentration
will increase, however, if it is small then the nutrient
concentration will decrease due to the nutrient uptake.
The characteristic step profile observed in the region
0ozo0:1 develops because the initially uniform uptake
of nutrients in this region is over balanced by the non-
uniform water uptake.6 We also observe the effect of the
apical non-branching zone in the region 0:5ozo1 where
initially due to the water uptake the concentration
increases but once the pseudo-steady state in the water
saturation has developed and thus the water uptake in
that ‘‘dry region’’ stops (see also Fig. 4(c) for water
saturation profile), the nutrient uptake by the roots will
start decreasing the nutrient concentration.
The total amount of phosphate available for plant

uptake in the soil pore water is shown in Fig. 4(d). We
observe that the total amount of phosphate available to
the plant increases as the water saturation increases and
vice versa. This is due to the fast equilibration between
phosphate in solid and liquid fractions.
Fig. 4(a) we find that it varies between 1:1� 10�3 and 7:6� 10�4:
6We are modelling the simultaneous water flow inside the root

system and outside in the soil as described in Roose and Fowler (2004).



ARTICLE IN PRESS

1.510.50

0.01

0.03

0.04

z

c(z,t)

*
*

*
*

*
*

*
*

0.67 0.680.660.65
0

0.2

0.4

0.6

0.8

1

c(z,t)

z

µ(  
 m

ol
 d

ay
   

 )
−1

1208040

F

0.3

0.2

0.1

0

total
first order
zero order

1208040

W

0.1

0.08

0.06

0.04

0.02

0

t day t day

(a) (b)

(c) (d)

Fig. 6. Numerical solution for phosphate uptake for uniformly distributed random rainfall with average #W ¼ 0:05 and single fertilization event in the
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phosphate concentration levels in the main rooting region (� shows the position of the zero order root tip); (c) the rate of phosphate uptake

(mmol day�1) by the plant root system as a function of time (days); (d) the rainfall pattern W ðtÞ:
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The rate of phosphate uptake is shown in Fig. 5. The
rate of phosphate uptake by first order lateral sub-
branches is at least twice as much as the rate of uptake
by zero order roots. We also see that maximum rate of
uptake occurs during the main growing season on about
the 40th day from planting.
In Fig. 6 we can see the results of numerical

experiments with spot fertilization, i.e. duration of
fertilization is 1 day and the dimensionless rate of
fertilization R ¼ 12 so that overall amount of fertilizer
applied to the soil is equal to the continuous 4 month
fertilization shown in Figs. 4 and 5. In Fig. 6 we have
also taken the rate of rainfall to be varying in time, i.e.
the average rate of rainfall is #W ¼ 0:05 as in Fig. 4, but
at any given time the rate of rainfall is a random number
drawn from uniform distribution in the interval
0oWo0:1: As we see due to the single fertilization
event, the phosphate concentration at the soil surface
rises initially quite high. However, at later times, when
there is no fertilization, the phosphate concentration at
the soil surface falls to a low level due to the removal of
it by the plant roots and due to the vertical infiltration of
water. As we see, the influence of fertilizer does not
reach out into the deeper layers in the soil (Figs. 6(a) and
(b)). In this situation the rate of phosphate uptake by
plant roots is strongly dependent on the rate of rainfall.
The interesting feature to note here is that in compar-
ison to zero order root phosphate uptake, the uptake by
first order lateral branches is much more sensitive to the
changes in rainfall. However, the first order lateral
branches still take up most of the phosphate.
6. Comparison of this model with previous models

The most interesting result of the phosphate uptake
calculation is found by comparing the cumulative
uptake in the absence of water movement to that when
water movement is included (see Fig. 7). We observe
that the nutrient uptake in the latter case is lower than in
the former case. This is because water uptake leads to
the reduction in relative water saturation in the soil and
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thus a reduction in the phosphate available for uptake.
As we will now discuss, this suggests an explanation for
why the Barber model only agrees with some of the
experimental measurements and not others.
In the article by Roose et al. (2001) it has been shown

that the classical Barber volume averaged and exponen-
tially growing7 (Barber, 1984; Schenk and Barber,
1979a, b) phosphate uptake model will typically under-
estimate the phosphate uptake when there are low levels
of phosphate in the soil. However, the Barber calcula-
tion has often been found to agree with the experimental
measurements in situations when there is a high level of
phosphate in the soil. Barber explains this discrepancy
between the measured and predicted uptake of phos-
phate at low soil phosphate values by the absence of
root hair and mychorrizae influence in his model and
because he neglects ‘‘additional chemical effects’’.8

However, there are reasons to doubt each of these three
explanations. Firstly, the discrepancy between measured
and predicted uptake cannot be due to the neglect of
root hairs, since the plant root nutrient uptake para-
meters were measured using roots that do have root
hairs. Thus the effect of the root hairs has been
‘‘absorbed’’ into the experimentally measured values of
Michaelis–Menten nutrient uptake coefficients Fm and
Km: Secondly, Barber often heated the soil for 6 days at
7Barber neglects the root branching structure and water movement

in his models, however, he constantly tops up the nutrient levels in the

soil.
8He probably means that these ‘‘additional chemical effects’’ are

linked to the root exudates that are present on the root surface.
70�C in order to ‘‘stabilize’’ the phosphate conditions.
However, because of this procedure it is unlikely that
substantial quantities of fungi and their spores survived
in this soil. Thus in the beginning of the experiment the
probability that there was any fungi left in the soil is
low, however it cannot be ruled out completely. One
way of verifying the hypothesis that the mycorrhizae are
important would be to quantify the amount of mycor-
rhizae in the soil during these experiments. Thirdly, the
additional chemical effect of root exudates on nutrient
uptake is quite controversial and all the phenomena
observed are qualitative and not quantitative. We think
that the differences between Barber’s measured and
predicted phosphate uptake can be explained by the
failure of Barber’s model to take into account the root
branching structure and effects of water uptake.
The results on cumulative uptake of phosphate by a

root branching structure are presented in Fig. 7. We see
that the Barber calculation clearly underestimates the
uptake of phosphate from the soil. Inclusion of the
branching structure and root competition to the classical
cylindrical root model will indeed correct the estimate of
phosphate uptake ‘‘upwards’’. However, the inclusion
of water movement in the model corrects the estimate of
phosphate uptake ‘‘downwards’’.
We now need to discuss why Barber’s model agrees so

well with experimental measurements at high phosphate
values, but underestimates the uptake at low phosphate
values. Barber found in his experiments on root
morphology and nutrient uptake Schenk and Barber
(1979a, b) that the overall mass of roots in the case of
high phosphate content was much higher than in the
case of low phosphate content. When the root mass is
higher then the water uptake is higher and therefore the
water movement correction ‘‘downwards’’ in compar-
ison to the branching correction ‘‘upwards’’ might well
be such that it causes the Barber calculation to agree
with the measured uptake. However, if the root mass is
lower, as it is in the case of low phosphate soil, the water
uptake ‘‘downward’’ correction is smaller and thus the
Barber calculation does not agree with the experimental
measurements, instead it underestimates it.
7. Conclusions

In this paper we presented a model for simultaneous
water and nutrient uptake by plant root systems. We
found that phosphate, due to its large buffer power,
remains relatively immobile in the soil despite large-scale
water movement. The risk of surface runoff due to the
phosphate fertilizer application was found to be
considerable since due to the continuous fertilizer
application, nutrient started accumulating on the sur-
face of the soil. However, when the continuous fertilizer
application was replaced by the spot fertilization, the
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risk of surface runoff was reduced. We also saw that
groundwater pollution with phosphate is strongly
dependent on water movement and the soil’s ability to
resupply phosphate from the solid fraction, i.e. buffer
power. Thus, if there is a substantial increase in the soil
moisture, then more phosphate is released from the
solid fraction and carried to the deeper layers in the
soil. The future avenues of mathematical modelling
work should clearly take into account the higher
dimensional variation in the nutrient uptake. Although
the results presented in this paper were calculated in one
dimension (vertical in soil depth), the extensions of this
model to two and three dimension are possible and
could be carried out if the experimental conditions
require it.
Using the model presented in this paper we were also

able to give new insight into the discrepancies and
inaccuracies present in previous models. However, in
order to clarify and verify this, more accurate simulta-
neous measurements of nutrient and water uptake
together with root branching structure development
should be carried out. In order to get conclusive
experimental verification of different mechanisms that
control plant nutrient uptake this consistent experi-
mental effort has to be made in order to determine if the
error rises from inaccuracies in the single root model
(i.e. Nye–Tinker–Barber model), as argued by Barber
and coworkers, or from neglecting water movement and
not treating the root branching structure adequately.
With this article we have developed a consistent
systematic way for calculating highly buffered nutrient
uptake by the root branching structures, thus enabling
the results of such consistent experiments to be analysed
in an easily interpretable manner.
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