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The derivation of the quasi-geostrophic potential vorticity equation of mathematical
meteorology is usually done using fairly sophisticated techniques of perturbation theory, but
stops short of deriving self-consistently the stratification parameter of the mean atmospheric
state. In this note we suggest how this should be done within the confines of the theory, and as a
consequence we raise the possibility that the atmosphere could become globally unstable, with
dramatic consequences.

Keywords: Quasi-geostrophic potential vorticity equation; Day after tomorrow

1. Introduction

One of Raymond Hide’s key contributions in meteorological science was his
introduction of the rotating annulus experiment (Hide 1958, Hide and Mason 1975).
In these experiments, he drew a laboratory analogue of the mechanism of baroclinic
instability, which provides a vehicle for the formation of atmospheric planetary waves
in mid-latitudes (Eady 1949). Hide’s intriguing observations of vacillations in the flow
led to a whole host of further experimental work (Buzyna et al. 1991, Read et al. 1992,
Castrejón-Pita and Read 2007), as well as to numerous dynamical system studies of
simple models which could explain the observations (e.g. Lorenz 1963, Pedlosky 1970,
1971, Pedlosky and Frenzen 1980, Hart 1973, 1981, Gibbon and McGuinness 1981,
Moroz and Brindley 1981).

At the heart of this laboratory analogy of the Earth’s weather system, and the
associated theoretical studies of these experiments, is the quasi-geostrophic potential
vorticity (QG) equation, which was the first serious attempt to describe weather in a
quantitative way; indeed, it was used as a predictive model in the early days of
numerical weather forecasting.

The basis of this approximation is that rotation is large, or equivalently the Rossby
number is small, and in addition the troposphere is shallow, in the sense that its depth is
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much less than the synoptic scale length of planetary wave systems. These two facts,
together with the fact that the temperature is nearly adiabatic, lead to the assertion that at
leading order, the wind velocity is given by the geostrophic approximation, which relates
the horizontal wind velocity to the horizontal gradient of the pressure field. The quasi-
geostrophic approximation finds a prescription for the horizontal variation of the
pressure, and thus the wind velocity, by proceeding to next order in an asymptotic
expansion in powers of the Rossby number. This theory is described in most books on
meteorology, e.g. those of Gill (1982), Holton (2004), Vallis (2006) and Pedlosky (1987);
the last of these gives the most mathematically detailed account, and inspires our
discussion here.

Pedlosky’s derivation consumes some 20 pages, and it is not our intention to trawl
through this again; the bones of the derivation are described in the following section.
Further detail will be given in my forthcoming book, Mathematical Geoscience, to be
published by Springer. The main point of this note is the following. Although Pedlosky
starts with a complete set of equations and boundary conditions, he is left towards the
end of his analysis with a quantity S, which is called the stratification parameter. This is
given in terms of the basic rest state of the atmosphere, and is proportional to the square
of the Brunt–Väisälä frequencyN, which describes the frequency of small oscillations in a
stably-stratified atmosphere. Evidently, S is necessarily positive, but in Pedlosky’s
derivation, it is prescribed rather than derived. In a self-contained perturbation theory of
a complete set of governing equations, this appears anomalous. Our aim here is to show
how the stratification parameter can be derived from the model itself.

At the outset, it must be pointed out that in pedagogical texts such as those cited
above, the derivation of the QG equation is inevitably based on a model of the Earth’s
atmosphere which makes numerous simplifying assumptions for the sole purpose of
analytic tractability. Most obviously, the detail of radiative transfer is ignored, as is any
description of moisture transport. The purpose of the derived equation is thus not that
of specific prediction, but rather to provide an understanding of the way in which
planetary waves are formed, for example. Our aim here is correspondingly didactic, and
not prognostic.

A number of authors have considered the issue of how to determine the stratification
of the troposphere. One can of course simply measure it. To provide a theoretical
description, Stone (1972, 1973) and Stone and Carlson (1979) consider a radiative-
convective model, which is based on an approximate form of the energy equation
involving large-scale eddy transport, together with a number of ad hoc assumptions.
Thuburn and Craig (1997) and Barry et al. (2000) consider a more elaborate
mechanism, based on the concept of baroclinic adjustment: the atmosphere adjusts its
state (through baroclinic eddies) so that its mean profile is neutrally stable to further
baroclinic disturbance. The last two studies are based on numerical simulations, as is
the more recent study of Schneider and O’Gorman (2008). Our purpose in this article is
similarly motivated, but is couched in the formal framework of matched asymptotic
expansions of the governing equations.

2. The quasi-geostrophic potential vorticity equation

Pedlosky (1987) begins with the equations of mass, momentum and energy for a
compressible fluid on the surface of a sphere. There are eddy viscous and conductive
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(or radiative) terms, but these are small (though important), and the equations are in
essence hyperbolic. To deal with mid-latitude motions, we use spherical coordinates
r (radius), ! (azimuthal longitude) and latitude "¼ (#/2)" $ ($ being the polar angle);
then, because we are concerned with synoptic scale motions with horizontal length
scales l# 1000 km$ r0% 6370 km, where r0 is the Earth’s radius, we take local (near a
particular latitude "¼ "0) orthogonal coordinates (x, y, z), which are almost Cartesian,
and in which x is eastwards, y is northwards and z is radially outwards from the Earth’s
geopotential surface. We omit detail of the mass and momentum equations, but write
the energy equation explicitly as

%cp
DT

Dt
"Dp

Dt
¼ ; & ð !k;T Þ þ %LC, ð1Þ

where T is the absolute temperature, % is the air density, cp is the specific heat at
constant pressure, p is the pressure, !k is an effective thermal conductivity, L is the latent
heat and C is the condensation rate. One could also include a term representing
absorption of short wave radiation, but this is small and is neglected here.

We conceive of the atmospheric motion largely occurring in the troposphere of
typical depth h% 10 km, and that the horizontal motions occur on the synoptic scale of
length l% 1000 km. We then define two geometric parameters,

& ¼ h

l
, " ¼ l

r0
: ð2Þ

The parameter & is small, of order 0.01, and represents the fact that the flow is shallow,
while the parameter "% 0.16 is also relatively small, and represents the degree of
sphericity. Where it appears, it is multiplied either by the aspect ratio & or by the (small)
Rossby number, and is thus genuinely negligible.

The horizontal velocities are scaled with a typical value U, and then the vertical
velocity is scaled with &U; the time scale is the advective time scale l/U, and the density,
pressure and temperature are scaled with typical values %0, p0 and T0, related by

p0 ¼
%0RT0

Ma
¼ %0gh: ð3Þ

The extra scale can be taken to be the temperature scale T0 determined by radiation
balance. The surface pressure p0 is determined by the mass of the atmosphere, so that
(3) determines the scale height h.

It is usual in scaling equations that all the undetermined scales can be chosen by
suitable internal balances. In the present case, the undetermined scales are U and l, and
we determine these below. Although unrealistic for the Earth, it is common pedagogical
practice (e.g. Houghton 2002) to assume a radiatively grey atmosphere, and if, in
addition, we take the optical density to be large, the non-local radiative transfer
equation can be approximately solved to determine an effective radiative thermal
conductivity

kR ¼ 16'T3

3(%
, ð4Þ

where ' is Stefan’s constant, T is the absolute temperature and ( is the absorption
coefficient. In addition, we can define a (vertical) eddy thermal conductivity kT as

kT ¼ %cp"V, ð5Þ
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where we may estimate "V# 0.1&Uh (Pedlosky 1987). Estimates give kR# kT#
105Wm"1K"1, and so we suppose that the effective conductivity !k in (1) is of order
k0# 2* 105Wm"1K"1, and then we put

!k ¼ k0k
+: ð6Þ

The consequent definition of the (reduced) Péclet number is

Pe ¼ Uh2

(0l
, ð7Þ

where

(0 ¼
k0
%0cp

ð8Þ

is the effective thermal diffusivity scale.
To estimate the condensation term C, we assume that the atmosphere is saturated, so

that the vapour pressure is the saturation vapour pressure, given by the Clapeyron
equation. Approximately, C%"Dm/Dt, where m¼ %v/% is the mixing ratio (%v is the
vapour density), and using the perfect gas law and the Clapeyron equation, m can be
obtained as a function of temperature and pressure. When written in terms of the
dimensionless variables, we arrive, after some algebra, at the dimensionless energy
equation in the form

p

$
1þ )#aM

T 2

! "
D$

Dt
¼ " )#Mð*a" T Þ

T 2

Dp

Dt
þ 1

Pe

@

@z
k+
@T

@z

# $! "
, ð9Þ

where potential temperature $ and moisture M are defined by

$ ¼ T

p*
, M ¼ 1

p
exp a 1" 1

T

# $! "
, ð10Þ

and

) ¼
Mvp0SV
Map0

, # ¼ L

cpT0
, a ¼ MvL

RT0
, * ¼ R

Macp
; ð11Þ

Mv and Ma are molecular weights of vapour and air, respectively, p0SV is a reference
saturation vapour pressure (at temperature T0) and R is the gas constant. The terms on
the right-hand side of the energy equation (9) give explicit form to the general internal
heating term Q used by Pedlosky (1987). Typical values of the parameters are )% 0.01,
#% 8.7, a% 18.8 and *% 0.29.

If we anticipate that U# 20m s"1, l# 103 km, then we find that Pe# 10, and the
conductive term is small, and in fact comparable to the Rossby number. If we neglect
the conductive term, then we can define a basic state from (9), given by solving

dpw
dz

¼ " p1"*
w

$w
, ð12aÞ

d$w
dz

¼ )#ða*" $wp*wÞM
½$2wp2*w þ )#aM- p*w

, ð12bÞ

Quasi-geostrophic potential vorticity equation 343

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
i
n
f
o
r
m
a
 
i
n
t
e
r
n
a
l
 
u
s
e
r
s
]
 
A
t
:
 
1
0
:
1
0
 
2
4
 
M
a
r
c
h
 
2
0
1
1



with pw¼ $w¼ 1 at z¼ 0. Figure 1 shows numerically computed profiles for the pressure
and potential temperature thus defined. Note that the potential temperature varies by
about 0.1 over the troposphere, so that the temperature profile is close to adiabatic
(but the variation is significant, see (25) below, in that the Richardson number, defined
by Ri¼ (1/F2$)@$/@z is large, of order 1/"2, cf. (13) (Charney 1963)).

In scaling the momentum equation, we also find dimensionless Froude and Rossby
numbers, defined respectively by

F ¼ Uffiffiffiffiffi
gh

p , " ¼ U

fl
, ð13Þ

where f is the Coriolis parameter

f ¼ 2$ sin "0: ð14Þ

The whole basis of the quasi-geostrophic approximation is the notion that the Rossby
number and heating terms are small, and the consequent balance of scales can be used
to choose velocity and length scales. Specifically, we choose

F2

"
¼ *

Pe
¼ "2, ð15Þ

and this leads to

U ¼ *(0g

fh

# $1=2

, l ¼ U
h2

*(0 f 2

# $1=3

, ð16Þ

and calculation of these using values given previously leads to U% 26m s"1,
l% 1290 km.

The quasi-geostrophic approximation is based on the formal limit "$ 1, and in
particular, we assume the distinguished limits

)# # " # ", & # "2: ð17Þ
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Figure 1. Basic dimensionless pressure and potential temperature profiles obtained by solving (12a)
and (12b).
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The mass and momentum equations then lead, as described by Pedlosky (1987) to the
geostrophic wind at leading order, while the energy equation is approximately

p

$
1þ )#aM

T2

! "
D$

Dt
¼ " "sMð*a" T Þ

T2

Dp

Dt
þ "2 @

@z

k+

*

@T

@z

# $! "
, ð18Þ

where we have written

)# ¼ "s ð19Þ

to delineate the smallness of )# (but noting that )#a% 1.64 is O(1)).
Following Pedlosky (1987), and as suggested by (12), we define the perturbed

potential temperature % by

$ ¼ !$ðzÞ þ "2%; ð20Þ

evidently !$ðzÞ is the time and space-horizontal average of $ correct to O("2), and we can
in fact define it to be the exact such average of $, without loss of generality. In addition,
the vertical velocity w is scaled as

w ¼ "W; ð21Þ

the energy equation then takes the form

D%

Dt
¼ H"WS, ð22Þ

where D/Dt is the horizontal material derivative

D
Dt

¼ @

@t
þ u

@

@x
þ v

@

@y
% @

@t
" @ 
@y

@

@x
þ @ 
@x

@

@y
, ð23Þ

in which  is the geostrophic stream function. The heating term is

H ¼ @

@z

k+

*

@ !T

@z

# $&
!p
!$
1þ )#aMð !T, !pÞ

!T 2

! "' (
ð24Þ

(note that H¼H(z)), and we define the stratification function S(z) by

SðzÞ ¼ 1

"

d !$

dz
" d$w

dz

! "
, ð25Þ

and note that by observation (and assumption) it is positive and O(1).
Thus far the presentation exactly parallels that of Pedlosky (1987), with the exception

that the assumption of a grey, opaque, saturated atmosphere allows us to specify the
internal heating term, and by construction the horizontal average of % is zero.

Expansion of the hydrostatic component of the momentum equation shows that

% ¼ @ 

@z
, ð26Þ

and manipulation of the mass and momentum equations yields the vorticity equation

D
Dt

+ þ ,y½ - ¼ 1

!%

@ð !%WÞ
@z

, ð27Þ
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where

+ ¼ r2 ð28Þ

is the vorticity, !% is the density profile corresponding to a hydrostatic atmosphere with
potential temperature !$ðzÞ and the term in , arises from the variation of sin " with
latitude; , is defined by

, ¼ " cot "0
"

, ð29Þ

and we take ,¼O(1).
In summary, we have the two separate equations for  and %¼ @ /@z (27) and (22),

from which W and S(z) must also be determined, the latter by averaging the equations,
so that !% ¼ 0 (an overbar denoting the horizontal space and time average).

By an application of Green’s theorem in the plane, we have that
ZZ

A

D&

Dt
dS ¼ @

@t

ZZ

A
& dS"

I

@A
& d , ð30Þ

where A is any horizontal area at fixed z and & is any continuously differentiable scalar
field. In particular, if A is a closed region on the boundaries of which  is constant in
space, i.e. there is no flow through @A, then the boundary integral is zero.y With an
overbar denoting a time and horizontal space average over A (assuming solutions are
stationary, i.e., with long term mean of zero), we apply this to (22) and (27) to find

H ¼ WS, !%W ¼ W0, ð31Þ

where W0 is the surface value of W at z¼ 0 (since !%ð0Þ ¼ 1).
Near the Earth’s surface, the value of W0 is determined by an analysis of the Ekman

boundary layer, which occurs due to the presence of the small eddy diffusive friction
terms (ignored thus far). When this is done, we find that

W0 ¼ E + !+0, ð32Þ

where !+0 is the space averaged vorticity at the surface (assuming flat topography), and

E + ¼
ffiffiffiffiffiffiffi
E

2"2

r
, ð33Þ

with the Ekman number being defined as

E ¼ "V
fh2

: ð34Þ

Practical estimates are "% 0.2, E% 10"2, and thus E +% 0.35.
The two equations in (31) define S and W, and in particular we find that

!%

S
¼ E ++0

H
: ð35Þ

yWe have in mind that A is the region of zonal mid-latitude flow, bounded to the north by the polar front,
and to the south by the tropical front. We can allow A to be a periodic strip on the sphere also.
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This equation thus defines the stratification function S(z) for a stationary (but not
necessarily steady) atmosphere. Evidently, the wet adiabatic profile (S¼ 0) is obtained
(in stationary conditions) only if the heating rate H is zero.

We can now use the identity

@

@z
KðzÞ D%

Dt

! "
¼ D

Dt

@

@z
KðzÞ @ 

@z

# $! "
ð36Þ

(where we use the approximating definition of D/Dt in (23) together with the thermal
wind equation (26)) to show, using (22), that

1

!%

@

@z
½ !%W- ¼ 1

!%

@

@z

!%H

S

! "
" D
Dt

1

!%

@

@z

!%

S

@ 

@z

# $! "
, ð37Þ

and therefore (27) can be written

D
Dt

r2 þ ,yþ 1

!%

@

@z

!%

S

@ 

@z

# $! "
¼ 1

!%

@

@z

!%H

S

! "
: ð38Þ

This is one form of the quasi-geostrophic potential vorticity equation for the geostrophic
stream function  (cf. Pedlosky 1987, equation (6.5.18)).

3. Discussion

Our derivation here exactly mirrors that of Pedlosky, except that we prescribe the
heating term H in (24), and we determine the stratification parameter via (35). This
indicates that the right-hand side of (38) is zero even when heating is non-zero, and the
equation can be written in the form

@

@t
" @ 
@y

@

@x
þ @ 
@x

@

@y

' (
r2 þ E +ðr2 Þ0

!%

@

@z

1

H

@ 

@z

# $" #

þ ,
@ 

@x
¼ 0: ð39Þ

This must be supplemented with suitable boundary conditions on the surface z¼ 0 and
(for example) the tropopause z¼ zT#O(1), which are not discussed further here.

Our main point is that the stratification parameter S is self-consistently determined
by the quasi-geostrophic approximation itself, via (35). There is no intrinsic necessity
for the time and space averaged vorticity r2 0 to be positive. In fact, neither is there an
intrinsic necessity for H to be positive. Therefore it seems perfectly plausible that in
solving (39), we may find that the solution develops a negative value of S.

Apart from an initial condition, natural boundary conditions for (39) are to prescribe
boundary value expressions in terms of  on all the boundaries, which carries with it the
implication that S should be non-negative in order that the model should be well-posed.
Discussions of static stability (Pedlosky 1987, Holton 2004) generally suggest that
should S become negative, then the atmosphere becomes top heavy and thus unstable.
Holton (2004, p. 53) states that ‘‘on the synoptic scale the atmosphere is always stably
stratified because any unstable regions that develop are stabilized quickly by convective
overturning’’, and indeed such ‘‘rearrangements’’ are routinely employed in numerical
codes for weather forecasting.
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It is fairly obvious that, indeed, negative S would lead to rapid overturning. What
does this mean for solutions of the QG equation? The derivation of the QG equation
involves a number of assumptions, for example that w is small and the mean potential
temperature gradient is close to that of the wet adiabat. Suppose that negative
stratification leads to local small scale convection; it seems reasonable that although
vertical velocities are then large, a locally spatially averaged velocity will have small
vertical component. With this proviso, one can still derive the QG equation, with the
modification that where S defined by (35) becomes negative, we should replace the
mean vorticity !+0 ¼ ðr2 Þ0 by, for example,

++ ¼ maxð !+0, 0Þ: ð40Þ

In our simple model, there is no distinction between continent and ocean, and the
stratification is independent of horizontal location. If we are to interpret Earth’s
weather in terms of the QG equation, we would suppose that S4 0. But it is not
inevitable that this should be the case. We have only to look at the other planets in the
solar system to realise that planetary weather can work in different ways. Because (we
suppose) weather on Earth has always been the way it is, we suppose that it will remain
so. But another possibility is that as planetary conditions change, whether through
changing continental configurations or, more recently, through anthropogenic carbon
production, the mean vorticity predicted by (39), or the heating term, may become
negative. In this case, the assumption of slowly spatially varying winds must break
down, and the Earth’s weather systems would undergo a régime change in places where
!+0 5 0, perhaps to a climate in which the atmosphere boils relentlessly, and storms fill
the sky. Such regions might occur patchily in space, or in extremes might occupy the
entire planet.

4. The day after tomorrow

The popular film The day after tomorrow portrayed an apocalyptic climate catastrophe,
in which ice shelf collapse induced ocean circulation changes, which produced global
storms of enormous severity. The film is commonly denigrated, partly on the basis that
the time scale of the events is entirely unrealistic.

But the film might have a hidden grain of truth. We now know that ice shelves do
indeed collapse suddenly (Rott et al. 1996), and indeed both the Antarctic and
Greenland ice sheets are currently undergoing rapid change in a way that could not
have been imagined 20 years ago (Joughin et al. 2004, Wingham et al. 2009). In
addition, the retrieval of ice cores from Antarctica and Greenland has shown that
during the last ice age, there were many sudden shifts of climate (Dansgaard-Oeschger
events) (Johnsen et al. 1992), whose origin is thought to lie in the alteration of North
Atlantic circulation following injection of fresh water fluxes (Ganopolski and
Rahmstorf 2001).

So we have learned that ice sheets can behave more rapidly than their convective time
scale of thousands of years would suggest, and we have also learned that ocean
circulation can possibly change rapidly, on time scales of decades. What we have not
contemplated, however, is the possibility that the atmosphere could also alter its
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fundamental style of behaviour. Ice sheets and oceans have shown their capacity for
rapid change; could the atmosphere behave similarly?

There is a potentially interesting analogy to be drawn with two-phase flows of, for
example, air and water in a pipe. Two-phase flows occur in a number of régimes
(e.g. Brennen 2005), but it is not known what determines the transition between these.
One suggestion for the bubbly to slug transition is that bubbly flow becomes unstable to
kinematic waves as the bubble volume (void) fraction increases (Matuszkiewicz et al.
1987). A common feature of two-phase flow models is that they can be ill-posedy in
certain circumstances (e.g. Drew and Passman 1999), and one can show that in a bubbly
flow, the onset of instability is a harbinger for ill-posedness, but instability occurs
before ill-posedness (Prosperetti and Satrape 1990, Robinson et al. 2008). It is as if the
system organises its régime in order to avoid ill-posedness, and it does this by
engineering a transition by means of instability. One can equivalently show that in the
primitive equations of atmosphere dynamics, negative values of S lead to an ill-
posedness: the atmosphere is unstable at arbitrarily small wavelengths; further, a purely
zonal flow (e.g. with uniform vertical shear) becomes baroclinically unstable for
sufficiently small positive (prescribed) S, thus producing the cyclonic depressions whose
positive vorticity may enable S to remain positive. But, perhaps the atmosphere is
susceptible to the same kind of régime transition which one sees in two-phase flows.
What might we expect to see if this was the case? Increasing fluctuations and
storminess, presumably; for example, an increase in the frequency of tropical cyclones
(Emanuel 2005).

While the atmosphere in the present day appears to behave in a classical quasi-
geostrophic manner, we suggest here that, for one particular realisable set of
assumptions (a grey, saturated, opaque atmosphere), the stability of the (model)
atmosphere is determined by its own dynamics, and that in different climatic
circumstances, it is at least possible that the atmosphere could become globally
unstable, and as a consequence undergo a transition to a state in which stability is
maintained by widespread convective overturning. We cannot say whether such a thing
will occur for the QG equation (39) without further study; but if it would, then the
prospect of similar behaviour for the Earth’s atmosphere could not be discounted, and
it would be prudent to be aware of this possibility. If the atmosphere were to undergo
such a régime transition, we can be assured that, as in the film, it would be rapid. The
governing convective time scale of synoptic scale motions is a bare 14 h.
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