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Abstract We discuss a recently proposed model for the sawtooth oscillations of atmospheric
carbon observed in ice age cores. The model at its simplest arises from a single reaction
involving just two species, oceanic biomass and nutrient, and bears similarity to models
which have been proposed to explain oscillations in glycolysis. We show that the sawtooth
behaviour, and associated spiking of one of the constituents, is associated with the existence
of a conservative nonlinear oscillator with an asymmetric potential at high values of the
energy, and we give asymptotic descriptions of the solutions. We extend the analysis to a
more complicated model which includes competition between planktonic species.

Keywords Sawtooth oscillation · Ice ages · Carbon · Ocean biomass

Mathematics Subject Classification 86A10 · 86A40

1 Introduction

One of the most striking features of the climate of the last several million years is the
occurrence of a regular sequence of ice ages, occurring over the last half million years with
an approximate period of 100 ka (100,000 years), and with the interglacial periods between
ice ages lasting roughly 10 ka. Since the last ice age terminated some 10 ka ago, we might
be considered due for another one, except that the anthropogenic input of CO2 into the
atmosphere has altered the climatic prognosis dramatically.

The dramatic rôle of carbon in determining the Earth’s mean temperature is highlighted in
the time series shown in Fig. 1. The top graph represents variation of oxygen isotope ratio in
benthic (deep ocean) sediments as a function of age (i. e., time goes from right to left) [11],
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2 A. C. Fowler

Fig. 1 Proxy temperature measurements from deep sea sediments (top), Antarctic ice core (bottom), and the
CO2 variation derived from the same Antarctic ice core

while the lower two curves show variation of CO2 (middle) and deuterium ratio (lowest),
taken from an Antarctic ice core [14]. The top and bottom curves are proxy measurements
of temperature, and exhibit the sharp asymmetry of the ice age oscillations, while the middle
curve shows that CO2 follows the oscillations in temperature very closely. There has been
some debate and interest in whether temperature leads CO2 or vice versa [19], but for the
present purpose, the important observation is that they are closely tied. Most obviously,
temperature responds to CO2 through the greenhouse effect, but also it is possible that CO2

may respond to temperature via a number of mechanisms, the most obvious of which is the
increased solubility of CO2 in sea water at low temperatures.

From the mathematical point of view, there are at least two interesting features of the data
shown in Fig. 1. The first is the synchronisation of carbon with temperature; the other is the
asymmetrical saw-tooth nature of the oscillation, and it is with this that the present paper is
concerned.

A popular view is that the cause of ice ages is due to the seasonal variation of the received
summer insolation in northern latitudes. This is known as the Milanković theory, and was
promoted by Croll [1,2] and Milanković [12]. The theory received strong support from the
finding by Hays et al. [9] that the spectral signature of proxy data such as those in Fig. 1 was
consistent with the various periods in the solar insolation curves, where frequencies of about
19, 23, 41 and 100 ka occur.

However, while it seems that the Milanković variations have an important influence on
the ice age signal, data such as those in Fig. 2 suggests that the connection is far from
obvious. In fact, Fig. 2 suggests that a more likely hypothesis is that the ice age oscillations
represent those of a nonlinear oscillatory system driven by a quasi-periodic forcing. To this
end, a number of authors have endeavoured to explain ice ages by means of relatively simple
models which describe the interaction of the ice sheets with other components of the climate
system.
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Note on a paper by Omta et al. 3

Fig. 2 Benthic oxygen isotopes [11] and an insolation curve for 65◦ north on June 21st [10] for the last 450 ka

Foremost amongst such models is the work by Saltzman [16–18]. The book by Saltzman
[15] gives a voluminous summary of the efforts to build simple but realistic climate models
which exhibit sawtooth oscillations, but the conclusion is not entirely satisfactory.

More recently, Fowler et al. [7] have developed an elaborate, but conceptually simple
model, which is able to provide self-sustained sawtooth oscillations which simultaneously
allow carbon to follow the temperature. Their model is constructed in a logical manner in
order to fit the dynamical constraints imposed by Figs. 1 and 2. The essence of the matter
is the sawtooth oscillation, and they are led to propose an active rôle for oceanic carbon,
oceanic biomass and proglacial lakes. The last provide the vehicle for rapid deglaciation due
to the rapid ice sheet wastage rates which are consequent on proglacial lake formation.

Omta et al. [13] propose a related, but simpler mechanism, which provides a mechanism
for sawtooth oscillations. While they are motivated by the sawtooth oscillations in Fig. 1, their
model does not explicitly include a description of ice sheet growth and decay. Its application
to the observation is therefore worthy of further scrutiny. Crucifix [3] provides a thorough
discussion of a number of other simple models of paleoclimate and their dynamical system
structure.

The purpose of the present paper is not principally that of examining the scientific credi-
bility of Omta et al.’s hypothesis, but rather to study their model with a view to explaining the
origin of the sawtooth oscillations which they obtain. The point is, that sawtooth oscillations
are not so easy to produce. The simplest relaxation oscillations of a second order pair of
ordinary differential equations involve two rapid switches. It seems that the most obvious
ingredients to produce a sawtooth oscillation (with a single rapid switch) would involve a
three variable system, in which two slow variables migrate round a cusp catastrophe surface,
with the other fast variable enabling the rapid transition. However, Omta et al.’s model is, in
its essence, a two-dimensional model; it is this which drives our curiosity.

In this paper we show how the simplest version of the Omta model can be analysed,
and we show how the sawtooth oscillations arise. In so doing, we also demonstrate that the
oscillations are not sustained. The analysis is then extended to a four variable competition
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4 A. C. Fowler

Table 1 Values assumed for the
simple model (2.3)

The unit eq (equivalent) is
essentially the same as the mole

Symbol Meaning Typical value

I Alkalinity input 0.8 × 10−3 eq m−3 ka−1

k Reaction rate constant 50 m3 eq−1 ka−1

S Burial rate 102 ka−1

Y Yield coefficient O(1) mol eq−1

model, which forms the centrepiece of Omta et al.’s analysis, but we show that it can be
analysed in the same way. In the conclusion we offer some comments on the applicability of
Omta et al.’s results to the practical problem of paleoclimate explanation.

2 A simple model

Omta et al. [13] are motivated by the sawtooth oscillator of the ice ages, and the fact that
carbon follows the same pattern. The simplest explanation for this is that in fact the ice ages
are driven by oscillations in carbon, and to this end they analyse a model for carbon dynamics
in the ocean, which is the principal controller for atmospheric carbon on time scales longer
than a century [7].

The essence of the dynamics of carbon in the ocean is that it is is supplied by riverine
input as bicarbonate, following weathering of silicate rocks. In the ocean, carbon is taken
up by biomass such as coccolithophores which form calcium carbonate shells, and these are
subsequently buried in benthic sediments, and thus removed from the system.

In the simplest form, Omta et al.’s model describes the interaction between ocean carbon,
represented by the carbonate alkalinity

A = [
HCO−

3

] + 2
[
CO2−

3

]
(2.1)

and the calcifying biomass P , based on the simple first order reaction

I→ A + P
k′
→ r P

S→ . (2.2)

The input I represents the supply of alkalinity by weathering, and the plankton are removed by
burial, with rate coefficient S. This model assumes autocatalytic production of the planktonic
population, and is similar to models proposed to explain oscillatory behaviour in glycolysis
[8], which exhibit sawtooth and spiking behaviour.

In a well-stirred medium, the reaction (2.2) can be modelled by the pair of ordinary
differential equations

Ȧ = I − k

Y
AP,

Ṗ = k AP − S P, (2.3)

where we define r = 1 + Y and k = k′Y . Omta et al use values similar to those given in
Table 1 and show that A has sawtooth oscillations, while P has spiking behaviour, as shown
in Fig. 3. Our interest is to explain the nature of these oscillations.
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Note on a paper by Omta et al. 5

Fig. 3 Solution of (2.3) using
the parameters in Table 1 (and
Y = 1 eq mol−1), so that A0 = 2
eq m−3, P0 = 0.8 × 10−5 mol
m−3 and t ′0 = 5 ka. The time axis

is in ka, that for A in eq m−3, and
that for P in 10−4 mol m−3. The
initial values were taken as a = 0
and p = 15, corresponding to
A = 2 eq m−3 and
P = 1.2 × 10−4 mol m−3
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Table 2 Values of the scales and
the dimensionless parameter δ in
(2.4), (2.5) and (2.9)

Symbol Typical value

A0 2 eq m−3

P0 0.8 × 10−5 mol m−3

t0 2.5 × 103 ka

t ′0 5 ka

δ 2 × 10−3

The numerical results provide some help in determining the scaling. We choose scales
A0, P0 and t0 for A, P and t , where

A0 = S

k
, P0 = I Y

S
, t0 = S

k I
; (2.4)

typical values of these are given in Table 2. The dimensionless equations can then be written
in the form

Ȧ = 1 − AP,

δ2 Ṗ = (A − 1)P, (2.5)
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6 A. C. Fowler

where

δ =
√

k I

S
. (2.6)

For the values in Table 1, δ = 2 × 10−3. Because δ � 1, we rescale A and t by putting

A = 1 + δa, t ∼ δ, (2.7)

and the rescaled equations take the form

ȧ = 1 − p(1 + δa),

ṗ = ap, (2.8)

where we write P = p for clarity. The time scale corresponding to this dimensionless time
is

t ′0 = 1√
k I

, (2.9)

and has the value of 5 ka. Note that the period of the oscillations in Fig. 3 is about 70 ka, i. e.,
14 in dimensionless terms.

It is now simple to provide an explanation for the spiking p and sawtooth A oscillations
shown in Fig. 3. We define

θ = ln p, (2.10)

and thus

a = θ̇ , (2.11)

and θ satisfies the damped nonlinear oscillator equation

θ̈ + V ′(θ) = −δθ̇eθ , (2.12)

where the potential is

V (θ) = eθ − θ. (2.13)

If we ignore the small damping term in δ, then there is a first integral

1
2 θ̇2 + V (θ) = E, (2.14)

and the asymmetry of the oscillations which produces the sawtooth and spiking is due to
the strong asymmetry of the potential when E is large. The value of E is determined by the
initial conditions, and in fact (2.12) shows that

Ė = −δθ̇2eθ , (2.15)

so that E relaxes to 0 (thus p → 1, a → 0 and A → 1) over the long time scale t ∼ 1

δ
,

corresponding to a time t0 = 2,500 ka.
When E is large, we can give an asymptotic description of the solution. Again we put

δ = 0. Then θ oscillates between its maximum θ+ and its minimum θ−, where V = E , and
these are given by
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Note on a paper by Omta et al. 7

θ+ = ln (E + θ+) , θ+ ≈ E ln E

E − 1
,

θ− = − [
E − eθ−

]
, θ− ≈ −E + e−E . (2.16)

The spike in p occurs near the maximum of θ , where we define

θ = θ+ + φ, t = √
ωT, ω = e−θ+ � 1, (2.17)

and φ satisfies

φT T + eφ = ω. (2.18)

Ignoring ω and taking the time origin at the maximum, the solution is

φ = −2 ln cosh

(
T√

2

)
, (2.19)

and at large T ,

φ ∼ −√
2T + 2 ln 2. (2.20)

The approximation becomes invalid at large T , when the exponential becomes negligible.
To find a suitable time scale, we define

θ = ��, T = �τ, (2.21)

where � 	 1, and thus to match to (2.19), we have

� ∼ θ+ + 2 ln 2

�
− √

2τ (2.22)

as τ → 0. To balance terms, we choose

� = 1

ω
= eθ+ , (2.23)

and then

�ττ − 1 + e�� = 0, (2.24)

and the last term is negligible since � < 0. The solution of this is then

� = (θ+ + 2 ln 2)e−θ+ − √
2τ + 1

2 τ 2, (2.25)

and this takes us all the way to the next maximum. The minimum occurs at τ = √
2, which

thus gives half the period. The period in τ is thus 2
√

2, and in terms of the original time t , it
is 2

√
2eθ+/2, and in dimensional terms, the period is

Pdim ≈ 2

[
2(E + θ+)

k I

]1/2

≈ 2

[
2(E + ln E)

k I

]1/2

. (2.26)

In summary, we have in dimensional terms, the peak of P is

Pmax = I Y eθ+

S
≈ I Y (E + ln E)

S
, (2.27)
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8 A. C. Fowler

Table 3 Values of the
parameters assumed for the four
equation model (3.1)

Symbol Typical value

FA 0.9

FN 1 mol mol−1

h1 39.98 year−1

h2 40 year−1

I 0.8 × 10−5 eq m−3 year−1

K A 0.2 eq m−3

KN 0.5 × 10−3 mM

R 1 eq mol−1

Y 1 mol mol−1

μM 200 year−1

while the minimum is

Pmin = I Y eθ−

S
≈ I Y e−E

S
; (2.28)

the amplitude of the oscillation in A about the mean value is

A0 ± A0δ	a ≈ S

k
±

√
I

k
(E + ln E), (2.29)

and the period is given in (2.26).

3 A competition model

Omta et al. [13] also study an enhanced version of that discussed above, in which two species
of plankton (calcifiers and non-calcifiers) compete for rate-limiting nutrient N , and they show
that it has the same sawtooth oscillations. We now analyse a simple version of their model
using the guidelines established for the two species model.

The Omta four-dimensional model is in effect the following:

Ȧ = I − R(μ1 − FAh1)P1,

Ṗ1 = (μ1 − h1)P1,

Ṗ2 = (μ2 − h2)P2,

Ṅ =
(
−μ1

Y
+ FN h1

)
P1 +

(
−μ2

Y
+ FN h2

)
P2, (3.1)

and the coefficients μi are given by

μ1 = μM

1 + KN
N + K A

A − 1
N

K N
+ A

K A

, μ2 = μM

1 + KN
N

. (3.2)

This form of the model was used in Omta et al.’s original submitted paper. In the revised
version, the model is elaborated by replacing carbonate alkalinity A in the definition of μ1

with the carbonate ion concentration
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Note on a paper by Omta et al. 9

Fig. 4 Numerical solution of the
four equation model (3.1) for the
parameter values shown in Table
3, and with the constant K in
(3.8) being K = 2.16. As
explained in the text, N is almost
constant after an initial transient.
Here we have taken the initial
value of N to be N0 (N = 1
dimensionlessly), thus
eliminating this transient. The
units are 104 year for t , eq m−3

for A, and μM for P1
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S =
[
CO2−

3

]
, (3.3)

which is then related algebraically to A. In addition, they allow for different ocean compart-
ments. We will proceed with (3.1) and (3.2) as they stand, since the difference is irrelevant
to our central point, which is that (3.1) and (3.2) can be analysed in an essentially similar
way to the simpler model (2.3).

We use the parameter values given in Table 3, for which a numerical solution is shown
in Fig. 4. We see that A and P1 have essentially the same behaviour, while P2 resembles
a constant minus P1, and the nutrient N is virtually constant. Using these estimates for the
solution, we can examine the sizes of the terms in μi , and this leads us to a choice of scaling
analogous to that of the simple model which also determines the size of the scales. The
procedure is a bit convoluted, so we simply give the resulting recipe.
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10 A. C. Fowler

Table 4 Values of the scales and
dimensionless parameters for the
four equation model (3.1)

Symbols Typical value

A0 2 eq m−3

N0 0.125 × 10−3 mM

P0 2 × 10−6 mM

t0 2.5 × 105 year

δ 10−2

ε 0.5 × 10−3

κ 0.2

ν 10−7

σ 1.6 × 10−2

ω 1.6 × 10−7

We define two dimensionless parameters

κ = h2

μM
, ε = h2 − h1

h2
, (3.4)

and then we choose scales A0, P0, N0 and t0 for A, Pi , N and t , where

N0 = κKN

1 − κ
, t0 = A0

I
, P0 = I

Rh2(1 − FA)
, A0 = K A

(
N0κ

KN ε

)1/2

, (3.5)

and these have the typical values shown in Table 4.
The resulting non-dimensional form of the Eq. (3.1) is then

Ȧ = 1 − [λ1 − (1 − ε)FA]P1

1 − FA
,

ν Ṗ1 = {λ1 − (1 − ε)}P1,

ν Ṗ2 = (λ2 − 1)P2, (3.6)

where

λ1 = N

1 − κ(1 − N ) + εN 2

A2
{

1+√
ε

1−κ
N
A

}
,

λ2 = N

1 − κ(1 − N )
, (3.7)

and N is determined from the conservation law

N + σ(P1 + P2) = K , (3.8)

where the constant K is determined from the initial conditions. The additional parameters
are defined by
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Note on a paper by Omta et al. 11

σ = P0

N0
, ν = I

A0h2
; (3.9)

typical values of the dimensionless parameters are given in Table 4.
Summing the equations for P1 and P2 and ignoring the terms in ε � 1, we see that (using

3.8)

ν Ṅ ≈ (1 − κ)(N − 1)(N − K )

1 − κ(1 − N )
. (3.10)

Because κ < 1 and since initially N < K , we see from this that N → 1 on a time scale
O(ν), essentially instantly. Let us anticipate that thereafter N = 1 + o(ε); we then have

λ1 ≈ 1 − ε

A2 , (3.11)

so that approximately,

Ȧ = 1 −
[

1 + ε

1 − FA

(
FA − 1

A2

)]
P1,

ν Ṗ1 = ε

[
1 − 1

A2

]
P1. (3.12)

This essentially takes us back to the two equation model. We regain it by writing

A = 1 + δa, P1 = p, t ∼ δ, (3.13)

where we choose

δ =
√

ν

2ε
� 1; (3.14)

ignoring the small terms which remain, we regain the sawtooth model in the form

ȧ = 1 − p,

ṗ = ap. (3.15)

As before, we have ignored a small damping term of O(δε) in the a equation, thus the
oscillations of the model will eventually die away.

It remains to enquire what befalls P2 and N . We previously assumed N = 1 + o(ε). Let
us write

N = 1 + ωn, (3.16)

where we must determine ω � ε. From (3.6), (3.7) and (3.8), we have (also rescaling t via
3.13)

− ωṅ − ṗ = (1 − κ)n

1 + κωn
[K − 1 − σωn − σ p], (3.17)

providing we choose

ω = σν

δ
, (3.18)
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12 A. C. Fowler

which is indeed � ε as assumed. Approximately,

n = − ṗ

(1 − κ)(K − 1)
. (3.19)

Note that since

P2 ≈ K − 1

σ
− p, (3.20)

there is an upper bound to the maximum value of p, and thus the energy E = 1
2 a2 + p − ln p

for (3.15) cannot be larger than (K − 1)/σ , and when the spikes in p cause a drop in P2,

as in Fig. 4, one can say that indeed E ∼ 1

σ
. For Fig. 4, we specifically have E ≈ 32.7.

The dimensionless maximum of p is 36.25, while (K − 1)/σ = 72.5 for K = 2.16 and
σ = 1.6 × 10−2, which is why P2 drops by a half in the P1 spikes in Fig. 4.

4 Discussion

The stimulus for this work was the observation of spiking behaviour in the simple alkalinity-
calcifier model, and its elaboration to the competition model by [13]. Similar spiking behav-
iour occurs in other oscillatory and chaotic systems (cf. [4–6]), and it is of mathematical
interest to understand how such behaviour can occur in an essentially second order system.

The answer we have found is that the model can be represented in its simplest form as
a conservative nonlinear oscillator with an asymmetric potential, and it is this asymmetry
which promotes sawtooth oscillations and spiking, when the associated conserved energy is
large.

However, the oscillations are not sustained, due to a weak damping, but it is clear that a
weak forcing can maintain the oscillations. As an illustration, the forced system

θ̈ + V ′(θ) = δ
[

f (t) − θ̇eθ
]

(4.1)

(cf. 2.12) satisfies the energy equation (cf. 2.15)

Ė = δ
[

f (t)θ̇ − θ̇2eθ
]
, (4.2)

and thus periodic solutions can be maintained if the average of f θ̇ is non-zero, i. e., if the
forcing resonates with the natural frequency of the oscillation. This is essentially the situation
appropriate in the ice age problem, because the Milanković forcing provides a weak signal
at the resonant period of 100 ka. Omta et al. [13] conclude that the oscillations in CO2 which
are observed may thus be due to the carbonate-calcifier oscillation in the ocean. The resulting
oscillations cause oscillations in dissolved CO2, which leads to oscillations in atmospheric
CO2, and it is these which drive the ice ages.

This is an attractive scenario, but it may not be realistic. Fowler et al. [7] also studied a
model in which ice sheet growth was controlled by a climate whose temperature was also
linked to carbon in the ocean. Apart from the carbon species, they also included ocean calcium,
phosphorus, calcium carbonate as biomass and acidity. In contrast to Omta et al., they found
that the ocean carbon system was stable in practice, although the same autocatalysis was
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Note on a paper by Omta et al. 13

embedded in their model. A further comparison of the two approaches would be worthwhile.
However, our principal result has been the identification of the asymptotic nature of the
mechanism which causes spiking and sawtooth oscillations in the carbonate-calcifier model.
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