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Vertical cylinders of bubble-enriched, chemically evolved volcanic rock are found in many inflated
pahoehoe lava flows. We provide a putative theoretical explanation for their formation, based on a
description of a crystallising three-phase (liquid, solid, gas) crystal pile in which the water-saturated
silicate melt exsolves steam and becomes more silica-rich as it crystallises anhydrous minerals. These
cylinders resemble pipes that form in solidifying binary alloys as a result of sufficiently vigorous
porous medium convection within the mush. A convection model with the addition of gas bubbles that
provide the buoyancy source indicates that the effective Rayleigh number is too low for convection to
occur in the mush of a basalt lava flow. However, the formation of gas bubbles during crystallisation
means that the base state includes fluid migration up through the crystal mush even without convection.
Stability considerations suggest that it is plausible to form a positive feedback where increased local
porosity causes increased upwards fluid flow, which brings more silicic melt up and lowers the liquidus
temperature, promoting locally higher porosity. Numerical solutions show that there are steady solutions
in which cylinders form, and we conclude that this model provides a viable explanation for vesicular
cylinder formation in inflated basalt lava flows.

Keywords: Pahoehoe; Vesicular columns; Convection in lava; Three-phase flow

1. Introduction

Channelled flows occur in a wide variety of geophysical contexts, and in many of these, the
channels are formed through the erosion by the fluid of the substrate through which it flows.
Familiar examples are internal conduit flow in karstic cave systems (Groves and Howard 1994)
and geysers (Dowden et al. 1991), both due to dissolution of host rock by groundwater. Other
examples include subaerial river channels formed through the erosion of sediment by water
(Smith and Bretherton 1972), subglacial channels formed through the melting of ice by water
(Röthlisberger 1972) and brine channels in sea ice formed by the dissolution of ice by saline
sea water (Wettlaufer et al. 1997) in a process analogous to the formation of freckles in alloys
(Flemings 1974). It has also been suggested that similar channels form in the asthenosphere
through the melting of rock by reactive flow of melt through it (Kelemen et al. 1997). Our
concern in this paper is with the vertical features that form in pahoehoe lava flows that appear
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2 A. C. Fowler et al.

similar to brine channels or alloy freckles, and we will advance the idea that they form in
similar ways, though as we shall see, the detailed process appears more complicated than the
examples mentioned above.

Pahoehoe lava flows thicken by the injection of hot magma below a cooler crust (Hon et al.
1994, Self et al. 1998). This process known as inflation is thermally efficient and is important
for the development of large flood basalt flow fields as well as small flow toes. Sections through
completely cooled inflated basalt flows that are now solid rocks can show a remarkable range of
bubbly features including layers of vesicular (i.e. bubbly) basalt in the upper crust, horizontal
sheets and vertical cylinders of vesicular evolved rock within the relatively low porosity core of
the flow, and elongate bubbles called “pipe vesicles” in the lower crust. Both bubble buoyancy
and expansion are thought to be important in generating these features, which are diagnostic
of inflated flows. The focus of this paper is the origin of the vertical vesicular cylinders in the
core of many inflated pahoehoe flows; these are usually called “vesicle cylinders” (e.g. Goff
1996), but “vesicular cylinders” is more apt as they consist of melt with numerous bubbles,
and this term is clearly distinct from “pipe vesicle”, which refers to a single elongate bubble
near the base of a pahoehoe lava flow. There are also much rarer vertical cylindrical features in
non-inflated basalt lava with vesicularity and chemistry distinct from vesicular cylinders that
Kontak and Dostal (2010) term “segregation pipes”; these seem to have a different origin and
are not considered here.

The upper and lower crusts of outcrops of solidified inflated lava flows are recognised by
their higher vesicularity (i.e. greater bubble content) and lower crystallinity (i.e. greater glass
content) than the core of the flow. The final thickness of the upper crust is almost always
40–60% of the lava flow and has been directly related to the duration of inflation (Hon et al.
1994), whereas the lower crust is 20–100 cm thick regardless of the overall lava flow thickness
(Self et al. 1998). The paradigm is that the very top and bottom of the lava cool quickly
enough that bubbles are quenched in place but bubbles rise easily through the hot interior and
collect below the upper crust. As the upper crust continues to cool and thicken, it preserves
layers of vesicular basalt. Each of these bubbly layers is thought to correspond to a pulse of
pressure change and/or injection of fresh magma that introduced new bubbles into the lava
(Hon et al. 1994, Cashman and Kauahikaua 1997). The rise of bubbles leaves a non-vesicular
core. However, as the base cools and crystallises, incompatible elements including water
concentrate in the residual silicate melt, and new bubbles form in the mush making the
interstitial fluid (melt and bubbles) buoyant. Obstructed by crystals, the bubbles do not rise
freely; rather their growth causes segregation by pushing residual melt and bubbles out between
the crystals (Anderson et al. 1984). The bubbly residuum somehow rises through the lava in
vertical cylinders and then seems to spread laterally into vesicular sheets.

In a given lava flow, the diameter of the vesicular cylinders and the spacing between them
are fairly constant, typically centimetres in diameter and tens of centimetres (e.g. figure 1)
to a metre apart. The cylinders often begin within 0.25 m of the lava flow base and can be
up to several meters in height (Goff 1996). The vesicularity (i.e. gas volume fraction) of
the cylinders is typically 10–30% (Goff 1996, Rogan et al. 1996), which is about 2–5 times
greater than the vesicularity of the basalt that hosts them (Rogan et al. 1996). In the flows
studied by Rogan et al. (1996), Stephenson et al. (2000), Hartley and Thardarson (2009) and
Sigmarsson et al. (2009), the chemical composition of the segregated material which makes up
the vesicular cylinders corresponds to the residual melt from 36–50%, 43–47%, 30–40% and
50–60% crystallisation of the host basalt, respectively. The boundaries between the host basalt
and the more silicic vesicular cylinders and sheets are sharp, in contrast to the gradational
boundaries of the vesicular basalt layers in the upper crust.
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Vesicular cylinders 3

Figure 1. Vesicular cylinders at Blackhead on the Antrim coast, Northern Ireland. The upper picture shows the
vertical cylinders, as marked with arrows. Although there is clearly some jointing (fractures in rock), most of the
dark vertical stripes represent bubble-rich flow pipes. The lower picture shows a sub-horizontal transverse section.
Numerous cylinder cross-sections are visible as round pits at the surface due to preferential weathering of the vesicular
rock in the cylinders compared to the host rock.

Several researchers have considered the origins of vesicular cylinders. Goff (1977) proposed
that bubbly residual fluid collects on the top of mush near the bottom of the flow and that
the vesicular cylinders develop from this layer of buoyant fluid because of Rayleigh–Taylor
instabilities. Goff (1996) later dismissed Rayleigh–Taylor instabilities citing issues with the
fluid viscosities and the lack of field evidence that a suitable bubbly layer once existed in the
flow. Manga and Stone (1994) suggested that cylinders develop from instabilities of bubble
concentration; however, this model is inconsistent with the fact that the cylinders comprise
liquid of more evolved (i.e. more silicic) chemical composition than the magma that surrounds
them. Others (e.g. Caroff et al. 2000) considered vesicular cylinders to be solidified elongated
diapirs, but did not focus on diapir formation itself. Costa et al. (2006) returned to the Rayleigh–
Taylor instability model. Based on the spacing of cylinders and theory of Lister and Kerr
(1989), they found that a layer of bubbly residuum accumulating on top of the lower mush
became unstable when about 2 cm thick. If the instabilities grew up into a liquid lava flow
core, then inflation would have had to have ceased; otherwise lateral magma flow would have
disturbed the vertical path of the rising finger of vesicular melt. Furthermore, to preserve
cylinders generated by Rayleigh–Taylor instabilities, the growing lower mush would have to
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4 A. C. Fowler et al.

keep supplying segregated bubbly fluid at a rate sufficient to prevent blobs of bubbly fluid
from detaching.

Recent work has included case studies of specific inflated lava flows, constraining qualitative
models of cylinder formation from geological field observations, petrology and chemistry. In
separate studies of the Levering lava flow, USA, and Surtsey lavas, Iceland, Hartley and
Thardarson (2009) and Sigmarsson et al. (2009) conclude that the segregated material in
the vesicular cylinders (and vesicular sheets) originated from mush near the base of the flow;
Hartley and Thardarson (2009) emphasise that the vesicular cylinders in the Levering flow were
fed by pipe vesicles preserved in the lower crust. In contrast, in a study of the Kutsugata lava
flow in Japan, Kuritani et al. (2010) propose that the head of the growing vesicular cylinder was
fed laterally by flow of residuum from the nearby host lava into the cylinder. Also in contrast
to previous studies of other lava flows, Kuritani et al. (2010) conclude that the vesicular
cylinders and the vesicular sheets above them in the Kutsugata lava flow are not genetically
related. Vesicular cylinders and other segregation features in basalt lava flows have continued
to attract attention both because they are common features and because understanding their
origin may provide insights into the role of vesiculation in driving magma segregation in
other contexts that are less accessible to field study than lava flow deposits. However, physical
interpretations of their origin are still largely conceptual.

An alternative explanation for vesicular cylinders that we consider here is so called “mushy
convection” (Worster 1997). In essence, flow within a stationary crystallising mush is driven
by gradients in liquid density that are generated because some components are preferentially
incorporated into the crystals leaving a buoyant residual liquid. Because crystallisation is
incongruent, flow of liquid through the crystal pile locally changes the bulk (liquid+crystal)
composition, and thus changes the liquidus temperature leading to changes in the volume
fraction of crystals and the permeability of the mush. One possible consequence of natural
convection in mushy layers is the focussing of the flow to produce “chimneys” which are
narrow, vertical channels devoid of crystals. These chimneys are observed in solidifying
aqueous salt solutions (Tait et al. 1992), sea ice mushes and castings of metallic alloys
(Worster 1997). It has been suggested that mushy convection could occur in the Earth’s core
and could explain chimney structures in the Bushveld ultramafic complex (Tait and Jaupart
1992). However, mushy convection does not seem to have attracted attention in the basalt
lava flow literature. A significant difference between classic mushy convection and the lava
flow application is that in the latter, the growth of steam bubbles as the mush crystallises
induces pore fluid flow up through the permeable crystal pile even if there is no convective
instability. This bubble growth-driven upward flow suggests another potential explanation for
vesicular cylinders: unidirectional flow can lead to channelisation if there is a suitable feedback
between velocity and permeability, analogous to the formation of melt channels in the mantle
(e.g. Hewitt and Fowler 2009).

It is not tractable to include a complete phase diagram for the magma in theoretical models of
mushy convection and melt channelisation. As a molten basalt cools, it forms various crystals
such as olivine, plagioclase and pyroxene, each of which is a solid solution with changes in
their chemistry as crystallisation of the magma proceeds. Basalt is about 50 weight % silica
(SiO2) and the residual melt becomes more silicic (along with other chemical changes) as the
basalt crystallises. Here, we consider migration and re-equilibration of the melt (and suspended
steam bubbles) through the porous crystal pile which means that the local bulk composition
will vary spatially, and a phase diagram for a bulk composition of basalt is insufficient to
model these processes. We, therefore, employ a highly simplified phase diagram (figure 2) as
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Vesicular cylinders 5

Figure 2. Diagram showing what phases exist for a bulk composition c and temperature T, where s refers to solid
crystals and l to liquid silicate melt. The system is water saturated, and so there are also steam bubbles present in all
fields. The average composition of the modelled mush is in the shaded region which is bounded above by the liquidus,
which is the line from (0, T0) to the eutectic at (cE , TE ). For the point marked with a star, the crystal composition,
cs , and the liquid composition, cl , are indicated as an example.

described below to assess the feasibility of generating vesicular cylinders in basalt lava flows
by mushy convection and melt channelisation.

2. Convection in a crystal pile

In the model which we now describe, a good deal of nomenclature arises, and a listing of all
this is given in the appendix. We consider a crystal pile, as shown in figure 3, with porosity
φ, containing a pore fluid composed of liquid silicate melt and exsolved bubbles of water
vapour. The relative (to the porosity) volume fraction of the gas is denoted as α and so the
bulk vesicularity is αφ. For simplicity, we suppose that, in addition to water which is always
present as steam bubbles and dissolved in the silicate liquid melt, the magma is composed of
two anhydrous components. One has an abundance (measured as volume fraction of liquid) of
c and the other 1 − c, where 0 ≤ c ≤ 1. Although not entirely geologically accurate, we refer
to c as the silica composition of the magma with the silica composition of the liquid being cl ,
and that of the solid crystals being cs ; as the magma cools and crystallises cl increases as does
the true silica content of the melt. The dissolved water concentration is denoted cH2O, and is
assumed constant (at saturation). The Darcy flux through the crystal pile is denoted by u, and
the pressure in the liquid phase is denoted as p. The model below assumes that the pore liquid
and gas move homogeneously through the pore space, and also that the pressure in the liquid
and gas phases is equal. While there is a pressure difference due to surface tension, this is not
relevant since the bubbles are isolated.

The equations we propose to describe convection within the mush are the following. Con-
servation of the solid phase takes the form

− ρsφt = mc, (1)
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6 A. C. Fowler et al.

Figure 3. Illustration of the model set-up. The crystal pile is bounded above by its upper mush–liquid interface
z = h, whose location is determined by a Stefan condition, as is also the lower mush–solid boundary z = b. In our
model, we assume thermal conditions are such that both fronts move at speed V. The mush acts as a porous medium
of porosity φ and pore volume gas fraction α, and these are prescribed at the upper surface (as φ0 and 0, respectively),
providing the lava above is being sucked into the moving upper interface, see (20) and (21). When circulation occurs
such that there is net expulsion of gas-rich lava from the mush, the prescription of α = 0 is no longer possible.

where here and henceforward the subscript t denotes partial differentiation with respect to
time, ρs is the crystal density and mc is the rate of crystallisation (with units of mass per unit
volume per unit time). The pore fluid density is given by

ρ = ρl(1 − α) + ρgα, (2)

where ρl is the melt (liquid) density and ρg is the exsolved gas density, assumed here to be
H2O. All three densities are assumed to be constant, since their variation with composition and
temperature is dwarfed by that in (2) due to variation in α. Conservation of mass of the pore
fluid then yields the equation

(ρφ)t + ∇·(ρu) = − mc, (3)

and we suppose that the fluid flux u through the crystal pile is determined by Darcy’s law in
the form

u = − K

ηl

(∇p + ρg k̂
)
, (4)

where g is the acceleration due to gravity, K is the permeability of the crystal pile, ηl is the
viscosity of the melt and k̂ is the unit vector in the vertical direction.

Conservation of the dissolved water phase is determined by(
ρl(1 − α)φcH2O

)
t + ∇·[(ρl(1 − α)cH2O

)
u
] = − mv, (5)

while conservation of the gaseous water phase is given by(
ρgαφ

)
t + ∇·(ρgαu

) = mv, (6)

with mv being the rate of exsolution.
Conservation of the liquid silica concentration cl is given by(

ρl(1 − α)φcl
)

t + ∇·(ρl(1 − α)cl u
) = − ms, (7)
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Vesicular cylinders 7

while that of the solid silica concentration cs is(
ρs(1 − φ)cs

)
t = ms, (8)

where ms is the surface source term.
The energy equation can be written in the form(

ρs(1 − φ)cps + ρcpφ
)
Tt + ρcpu·∇T − (

pt + u·∇p
)

= kT ∇2T + Lcmc + Lvmv, (9)

where

ρcp = ρl(1 − α)cpl + ρgαcpg,

kT = φ(1 − α)kl + φαkg + (1 − φ)ks, (10)

cps , cpl and cpg are the specific heats of solid, liquid and gas, respectively, and ks , kl and kg

are the corresponding thermal conductivities; Lc and Lv are the latent heats of crystallisation
and exsolution, respectively.

Finally, the temperature T is constrained to lie on the liquidus, which we take to depend
linearly on silica composition, thus

T = TL(cl) = T0 − mLcl , (11)

and the solid composition is taken to lie on the solidus, again supposed linear, thus

cs = Λcl , (12)

where 0 ≤ Λ < 1 is the partition coefficient, i.e. the ratio of solidus to liquidus concentrations.†
The surface source term in (8) is related to the rate of crystallisation by

ms = mcΛcl . (13)

The principal variables of the model are φ, α, u, p, cl and cs , and these are described by the
equations (1), (5), (4), (3), (7) and (8). The energy equation (10) determines the crystallisation
rate mc, (6) determines the exsolution rate, mv , and T and cs are given by (11) and (12). The
model is thus closed, when sufficient boundary conditions are given. These are discussed later.

2.1. Non-dimensionalisation

For simplicity, we suppose all the specific heats cps = cpl = cpg = cp and thermal conductiv-
ities ks = kl = kg = kT are the same. The most disparate of these is the thermal conductivity
of steam in the bubbles, kg , which is substantially smaller than ks and kl . Considering the
geological evidence suggests φα < 0.3 (section 1), then kT could be up to about 30% less
than the assumed kT (10). The resulting overestimate in heat transfer by thermal conduction
through the bubbly magma is partially offset by heat transfer across the steam bubbles by
radiation and vapour convection that are not included.

†Strictly (12) only applies at the crystal interface. For conditions of slow crystallisation, it can be shown to apply
generally.
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8 A. C. Fowler et al.

We non-dimensionalise the model by scaling the variables as follows:

t ∼ d2

κT
, |u| ∼ κT

d
, |x| ∼ d, mc ∼ kT mL

Lcd2
,

ρ ∼ ρl , mv ∼ ρgκT

d2
, p + ρl gz ∼ ηlκT

K0
, (14)

where d is the magma depth,

κT = kT

ρl cp
, (15)

is the thermal diffusivity and we write the permeability in the form

K = K0Π(φ); (16)

the resulting dimensionless model takes the form, where we now also write cl = c,

ρ = 1 − α + δα, u = − Π(φ)∇ p + R(1 − δ)α k̂,

− (1 + r)St φt = mc , St
[
(ρφ)t + ∇·(ρu)

] = − mc ,

(φα)t + ∇·(αu) = mv , σ
[(

(1 − α)φ
)

t + ∇·((1 − α)u
)] = − mv ,

St
[
(1 + r)(1 − φ)cs

]
t = Λc , St

[(
(1 − α)φc

)
t + ∇·((1 − α)cu

)] = − Λc ,

[
(1 + r)(1 − φ) + ρφ

]
ct + ρu·∇c + β

R

(
∂

∂t
+ u·∇

)
(p − Rz)

= ∇2c − mc − δSvmv. (17)

The dimensionless parameters are defined by

r = ρs − ρl

ρl
, δ = ρg

ρl
, St = Lc

mLcp
,

R = ρl gd K0

ηlκT
, σ = ρl cH2O

ρg
, β = gd

mLcp
, Sv = Lv

mLcp
. (18)

Table 1. Assumed values of constants. It is assumed that the specific heats and thermal conductivities of gas, liquid
and solid are the same.

Symbol Meaning Typical value

cH2O Water saturation 10−3

cp Specific heat 103 J kg−1 K−1

d Magma depth 1 m
g Gravity 9.8 m s−2

K0 Permeability scale 2 × 10−10 m2

kT Thermal conductivity = ρl cpκT
Lc Latent heat of crystallisation 3 × 105 J kg−1

Lv Latent heat of exsolution 3 × 105 J kg−1

mL Liquidus slope 100 K
κT Thermal diffusivity 0.7 × 10−6 m2 s−1

ηl Melt viscosity 102 Pa s
Λ Partition coefficient 0.2
ρs Crystal density 2.7 × 103 kg m−3

ρl Melt density 2.6 × 103 kg m−3

ρg Water vapour density 1 kg m−3
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Vesicular cylinders 9

Table 2. Typical values of parameters.

Parameter Typical value Interpretation

r 0.04 Solid–liquid density difference
R 0.15 Effective Rayleigh number
St 3 Stefan number
Sv 3 Vapour Stefan number
β 10−4 Adiabatic heating
δ 0.4 × 10−3 Gas–liquid density ratio
σ 2.7 Dissolved to exsolved vapour density ratio

Using the parameter values in table 1, we calculate typical values of these parameters as shown
in table 2.

2.2. A reduced model

From table 2, we see that r , β and δ are all small. Putting these to zero, the model can be
reduced, after some manipulation, to the form

∇·u = (φα)t + ∇· (αu) = −σφt ,

u = −Π(φ)∇ p + Rα k̂,

St
[
(1 − α)

(
φct + u·∇c

) + cφt
] = − Λc,

(1 − αφ)ct + (1 − α)u·∇c = ∇2c + St φt . (19)

In addition, we will suppose that Λ = 0, as is the case in aqueous solutions.
The parameter R plays the rôle in (19) of a Rayleigh number for porous medium convection,

and we shall, henceforth, refer to it as an effective Rayleigh number. Indeed, (19) appears to
generalise the Boussinesq equations of porous medium convection (to whose form they reduce
if we take σ = 0, Π = 1, φ and α constant, and ignore the third equation via St = Λ = 0),
but no genuine simple parametric reduction to them is available.

2.3. Boundary conditions

At the upper surface of the crystal mush, we suppose that the crystal fraction is specified,

φ = φ0 at z = h, (20)

this defining where the essentially solid crystal mush undergoes the transition to a crystal-rich
fluid. We also suppose that the magma above the mush is bubble-free, thus

α = 0 if un − φVn < 0 at z = h, (21)

where Vn is the normal component of the surface velocity and un is the normal component of
the Darcy flux. This condition ensures liquid inflow to the mush; if it is not satisfied, α cannot
be prescribed, and indeed this is also the condition for channel formation (see below).

To be more specific, we conceive of the magma above the mush as a viscous fluid, cooled
from above and below. Calculation of an appropriate Rayleigh number for this fluid indicates
that thermal convection will be vigorous, but since the fluid layer is cooled from above and
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10 A. C. Fowler et al.

below, convection will be of the box-filling type; that is to say, dense plumes of fluid will
descend towards the lower unit, where they will pond, and deliver a conductive heat flux to the
underlying mush, which will decrease as the ponded layer thickens and the magma cools. It is,
therefore, appropriate to specify a conductive heat flux above the mush, and in dimensionless
terms, this can be written as

n·∇c = −γ+ at z = h, (22)

where n is the normal directed away from the mush.
The final two conditions at the surface are those of constant pressure, and an assumed

prescribed temperature at the base of the fluid, which implies a known silica concentration;
thus

p = 0, c = c0 at z = h. (23)

At the lower surface, which we take to be z = b, we form a flow boundary condition from
a pill-box argument on the mass conservation equations. There are three of these: the sums of
(1) and (3), (5) and (6) and (7) and (8). The second pair serves to determine the retained water
in the solidified lava, the third pair serves to determine the “silica” composition of the solid
(since we suppose the solid/mush interface is at the eutectic) and the first pair yields a flow
boundary condition for the pore fluid, which takes the dimensionless form

un = −φVn

[
r + (1 − δ)α

1 − (1 − δ)α

]
at z = b. (24)

In conditions where the lower boundary is slowly moving (Worster 1986), or if r and α are
small, the fluid flow is small, and for simplicity, we will take it to be zero. Additionally, the
temperature is supposed to be at the eutectic point, thus the concentration is also eutectic:
hence

un = 0, c = cE at z = b. (25)

Generally, the lower boundary b of the mush is not known, and will be determined by a Stefan
condition describing the freezing of the mush to a completely solid phase; analogously to (22),
we write

n·∇c = −γ− at z = b. (26)

2.4. Basic channel formation mechanism

The model we have described is very familiar in metallurgy, where the solidification of alloys
has been studied for a long time (Flemings 1974). It is well known in the casting of alloys that
crystallisation normally occurs through the formation of a mushy layer of mixed crystals and
liquid between the already crystallised solid and the liquid. Convection of the liquid through
the porous mush typically occurs and if this convection is sufficiently vigorous, then channels
form, and these are visible in the final casting as spots, usually called freckles.

The formation of freckles is associated with the following kinematic explanation, which
we illustrate for the case that the partition coefficient Λ is zero. At the upper crystal surface
z = h, we prescribe φ = φ0, and require that φt < 0 in order that crystallisation proceed. If
this is not the case, then redissolution occurs, which is inconsistent with the advance of the
crystallisation front. Therefore, we suppose that channels will form when

φt
∣∣
z=h > 0. (27)
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Vesicular cylinders 11

From (19)3 (with Λ = 0), this is the case if and only if

φct + u·∇c < 0 at z = h. (28)

However, c ≡ c0 at z = h, and thus

ct + V ·∇c = 0 at z = h, (29)

where V is the velocity of the upper crystal surface. Since the normal derivative n·∇c < 0,
we see that the criterion (27) for channel formation is equivalent to

un
∣∣
z=h > φVn, (30)

that is to say, the pore fluid velocity (not flux) is larger than the front advance speed.
In alloy solidification, the pore fluid velocity is caused by compositional convection. The

distinction in the present case is that the fluid velocity is induced by the exsolution of steam,
which is manifested in the model through the non-zero value of σ , which induces a pore fluid
flow out of the crystal mush.

2.5. One-dimensional model

In one space dimension, the mush occupies the region b(t) < z < h(t), the pore pressure is
uncoupled and the model (19) reduces (with Λ = 0) to the form

wz = −σφt = (φα)t + (αw)z,

(1 − α)(φct + wcz) + cφt = 0,

(1 − αφ)ct + (1 − α)wcz = czz + St φt , (31)

where the subscript z denotes partial differentiation with respect to z (and the subscript t is still
a time derivative), together with the boundary conditions

α = 0 , φ = φ0 , c = c0 on z = h ,

w = 0 , c = cE on z = b . (32)

Determination of the upper and lower surfaces is effected through the flux conditions

cz = − γ+ on z = h,

cz = − γ− on z = b. (33)

where, as we shall see, we would then require γ− > γ+.

2.6. Travelling wave solution

After a long time, we might expect the solution of (31) and (32) to tend to a travelling wave
solution, at least if the boundary fluxes γ± are constant. We, therefore, seek a solution in which
the variables are functions of

ξ = h − z, h = V t, b = V t − ξb, (34)

so that w, φ, α and c satisfy the equations

− w′ = −σ V φ′ = V (φα)′ − (αw)′,
(1 − α)

(
V φc′ − wc′) + V cφ′ = 0,

(1 − αφ)V c′ − (1 − α)wc′ = c′′ + St V φ′, (35)
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12 A. C. Fowler et al.

where the primes denote differentiation with respect to ξ , together with the boundary conditions

α = 0 , φ = φ0 , c = c0 , c′ = γ+ on ξ = 0 ,

w = 0 , c = cE , c′ = γ− on ξ = ξb . (36)

The model is of fourth order, and the extra flux boundary conditions must be used to determine
the unknown propagation speed V and depth ξb.

The equations (35) permit four first integrals. We can use three of these to find expressions
for w, α and φ in terms of c, and after some manipulations, the solutions can be written in the
following form. It is convenient to define

X (c) = c/c0 ≥ 1, (37)

together with its value at the base,
X E = cE/c0. (38)

We then have

w = σ V (φ − φb), α = σ(φ0 − φ)

(1 − σ)φ + σφb
, φ = φ0 + σ(1 − X)(φb − φ0)

X
, (39)

where the basal porosity is

φb = φ0
[
σ X E + (1 − σ)

]
(1 + σ)X E − σ

. (40)

φ is a monotonically decreasing function of c. Eliminating φb from these expressions, we find

φ = φ0
[
X E + σ(X E − 1)X

]
X

[
X E + σ(X E − 1)

] , w = σ V φ0(X E − X)

X
[
X E + σ(X E − 1)

] , α = σ(X − 1)

1 + σ(X − 1)
.

(41)
It is easy to see that

w
∣∣
ξ=0

φ0V
= σ(X E − 1)

X E + σ(X E − 1)
< 1, (42)

and thus the channel-forming criterion (30) is never satisfied. This suggests that, if (30) is
indeed the correct criterion for channel formation, some form of instability must occur. This
is discussed further later.

The solution is completed by solving the first-order equation for c which follows from the
last of the first integrals constructed from (35), and with some algebra, can be written in the
form

c′ = V f (c) + γ+, (43)

where
f (c) = (1 − φ0) (c − c0) + (St + c) [φ0 − φ(c)] . (44)

We solve this with the initial condition c = c0 at ξ = 0, where the wave speed is determined
by

V = γ− − γ+
f (cE )

, (45)

and the depth ξb follows from the quadrature

ξb =
∫ cE

c0

dc

γ+ + V f (c)
. (46)

Assuming γ− > γ+, then V is positive; f is a positive convex function, so that c increases
monotonically with depth ξ , and φ decreases monotonically with depth.
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Vesicular cylinders 13

Figure 4. Solution of (43) for c, using parameter values γ+ ≈ 0.113, V = 1, φ0 = 0.3, St = 3, σ = 2.7, c0 = 0.3,
cE = 0.6 and corresponding plots of φ, α and w as given in (41). Note that ξ is dimensionless depth below the
mush–liquid interface. The value of γ+ is adaptively chosen in order to obtain c = cE at ξ = 1.

Note that this solution can equally be obtained by prescribing V and ξb. γ− is then determined
via

γ− = γ+ + V f (cE ) , (47)

and γ+ is determined by

ξb =
∫ cE

c0

dc

γ+ + V f (c)
. (48)

One can choose V = ξb = 1 without loss of generality. To see this, note that the integral in
(48) decreases monotonically as a function of γ+, and the integral is (logarithmically) infinite
at c = c0, hence there is a (unique) solution for γ+. For numerical purposes, it is convenient
to solve the time-dependent problem in a frame moving at speed V = 1, with a fixed domain
0 < ξ < 1, and ignore the flux boundary conditions, although it is also easy to use a numerical
shooting method by adjusting γ+. Figure 4 shows the profiles for c, φ, α and w obtained in
this way.

3. Instability

There are two types of instability which seem possible. The first is convective instability,
based on a sufficiently high value of the effective Rayleigh number for porous medium
convection in the mush. In this view, which is analogous to what happens in alloy solidification
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14 A. C. Fowler et al.

(Worster 1997), compositional convection is initiated at supercritical values of the effective
Rayleigh number, and as R increases, the pore velocity increases, and at some point, the criterion
(30) will be passed, and channels are initialised, analogously to the chimneys found in crystallis-
ing ammonium chloride solution. While this is an attractive possibility, the estimated value in
table 2 is about two orders of magnitude less than that necessary for ordinary convection in
an open porous medium (with conductive boundaries: impermeable below and liquid above),
which is about 27 (Lapwood 1948).

The greatest uncertainty in the calculation of this effective Rayleigh number is the mush
permeability at the relevant porosities (φ > 0.3). There is one experimental datum from
Philpotts and Carroll (1996) who measured K = 3 × 10−10 m2 for a partially molten basalt
lava flow sample with φ = 0.66. We expect the relevant K will be smaller because the chemical
composition of vesicular cylinders corresponds to the residual melt of the host lava that has
crystallised to a lower φ (section 1). To constrain permeability of basalt for 0.3 < φ < 0.8,
Hersum et al. (2005) determined permeability of natural and simulated partially molten basalt
microstructures (the former determined by X-ray computed tomography of natural basalt) and
concluded that the porosity–permeability relationship can be described by Rumpf–Gupte or
Carman–Kozeny relations. For the Carman–Kozeny relation, K0 = D2/180, where D is the
mean length of crystals in meters. Consequently, to increase the effective Rayleigh number
sufficiently for convective instability by increasing K0 to order 10−8 m2 requires D � 1 mm,
which is considerably greater than D for the groundmass of basalts that host vesicular cylinders
(e.g. Kuritani et al. 2010). Although there may be exceptional circumstances where the crystal
sizes and shapes mean that the lava permeability is order 10−8 m2 at the crystallinity for which
the mush has sufficient strength to act as a porous medium, the onset of convection prior to
channel formation is unlikely, and does not seem to be a general explanation for vesicular
cylinders.

An alternate mechanism of direct instability finds its analogue in the processes of stream
formation and melt channel formation in the Earth’s asthenospheric mantle. Each of these
situations allows direct channel formation from a unidirectional flow without the necessity to
have a prior convective instability. Melt is transported slowly upwards in the asthenosphere by
liquid buoyancy. One mechanism for channel formation lies in the positive feedback afforded
by the following sequence (Hewitt and Fowler 2009): a local increase of melt velocity leads
to a raised temperature (because the temperature is on the Clapeyron curve) which causes
melting, and thus increased permeability, and thus further increase of the velocity. A similar
feedback leads to rill formation in overland flow (Smith and Bretherton 1972, Fowler et al.
2007). A locally increased flow depth causes increased flow rate, which causes increased

erosion, and thus further increase in flow depth as the soil surface is lowered. In this case,
the instability mechanism is through the occurrence of a negative diffusion coefficient, whose
consequent ill-posedness is regularised by the small mismatch between water surface slope
and soil surface slope (Loewenherz 1991, Loewenherz-Lawrence 1994); for further detail on
both these models, see Fowler (2011).

The putative way this instability would be heralded in the set of equations making up the
reduced model (19) is as follows: a local increase in fluid velocity in the lava mush allows
for upwards flux of higher concentration c from below. The higher concentration lowers the
liquidus temperature, thus allowing dissolution of crystals and hence higher permeability,
which promotes higher velocity. This seems identical to the proposed mechanism for astheno-
sphere magma channels, which does indeed produce channels in that case.
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Vesicular cylinders 15

Based on the description above, we suppose a travelling mush with dimensionless speed V
and dimensionless depth one, and we write the governing equations (19) in the form

∇·u = σ (V φZ − φt ) ,

(φα)t − V (φα)Z = ∇·((1 − α)u
)
,

u = −Π(φ)∇p,

(1 − α)
(
φct − V φcZ + u·∇c

) + c
(
φt − V φZ

) = 0,

(1 − φ)
(
ct − V cZ

) = ∇2c + (c + St)
(
φt − V φZ

)
, (49)

where the travelling wave coordinate is

Z = z − V t, (50)

the subscript Z denotes partial differentiation with respect to Z, and the last equation in (49)
is formed from a combination of the last two in (19); we have put R = 0 on the basis that it is
small. The boundary conditions for (49) are

α = 0 , c = c0 , φ = φ0 , p = 0 on Z = 1 ,

c = cE , un = 0 on Z = 0 . (51)

In principle, the upper and lower boundaries are free boundaries, but we will ignore that
complication in our discussion.

Although the equations (49) are coupled, we think of the first and third as determining u and
p, the second as determining α, the fourth as determining φ and the fifth as determining c. The
essence of the instability discussed above lies in the porosity equation for φ, and specifically

cφt = − (1 − α)u·∇c + · · · = (1 − α)
(∇ p·∇c

)
Π(φ) + · · · , (52)

which promotes instability because Π ′(φ) > 0.
A model very similar to this has been studied by Chiareli and Worster (1995). Their concern

was a possible instability in a mush formed from an alloy when a volume change took place.
Their model was essentially equivalent to (49), except that they had α = 0, and the rôle of our
parameter σ is played by the term 1 − rCW in the Chiareli and Worster model, where rCW =
ρs/ρl was the density ratio between the phases. They found that the basic one-dimensional
state was stable if rCW > 1 (shrinking on solidification, corresponding in our model to σ < 0),
but could be unstable for rCW < 1 (expansion on solidification, corresponding to σ > 0) for
sufficiently large values of the stability parameter

P = φΠ ′(φ)

Π(φ)
, (53)

which we may, for example, take at the reference value φ = φ0. The critical value of P for
instability was a decreasing function of σ , but still very large for σ < 1; however, their results
suggest that in practice, instability may realistically occur in our model for P ∼ 1 if σ > 1.
The following considerations suggest that this may be true. Note that, here, we do not conduct
a complete stability analysis, since our present purpose is to proceed to the computation of
pipes (vesicular cylinders) themselves.

More precisely, figure 5 shows the stability curve of Chiareli and Worster, together with an
algebraic fit, described below. The question of interest is whether the decrease in P is sufficient
to make P ∼ O(1) for our value of σ ∼ 2.7.
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16 A. C. Fowler et al.

Figure 5. The critical value of the stability parameter P as a function of σ , redrawn from Chiareli and Worster
(1995), figure 5a. Also shown is a fitted dashed curve (red online), which is the curve that extends to σ = 1, and given
by (60).

To assess this, we linearise (49), and will ignore variations in α. First, we note that the basic
state described by the steady travelling wave in section 2.5 has

φ′ > 0, p′ < 0, c′ < 0, (54)

where the primes denote derivatives with respect to Z, not ξ . The linearised equations are
denoting the steady state variables (u = (u, w), φ, c, p) with small letters and the perturbed
quantities with capitals,

Ux + WZ = σ
(
V ΦZ − Φt

)
,

U = −Π Px , W = −Π PZ − Π ′ p′Φ,

(1 − α)
[
φ
(
Ct − V CZ

) + c′W + wCZ
] = c

(
Φt − V ΦZ

) + V φ′C,

(1 − φ)
(
Ct − V CZ

) + V c′Φ = ∇2C + (c + St)
(
Φt − V ΦZ

) − V φ′C, (55)

where Π ′ = Π ′(φ). Now, we take all the unperturbed quantities w, c′, etc. to be constant (we
do not expect this to be a significant quantitative assumption), and we look for normal mode
solutions ∝ exp[λt + ik1x + ik3z]. Some algebra then leads us to a quadratic equation for λ,
and if we assume, as did Chiareli and Worster, that instability occurs directly, when λ = 0, we
are then led to an expression for the corresponding critical value of Π ′, which takes the form

(1 − α)|c′|
[

Π ′w
Π

+ σ V k2
3

k2

]
= F, (56)

where

F = V
[
φ′V F1 + k2

3(1 − α)(w − φV )F2
]

(
k2 + V φ′)2 + k2

3 V 2(1 − φ)2
,

F1 = |c′|(k2 + V φ′) + k2
3 V (1 − φ)(c + St),

F2 = (c + St)
(
k2 + V φ′) − |c′|V (1 − φ), (57)

and
k2 = k2

1 + k2
3 . (58)

This is the real part of the quadratic equation with λ = 0; the imaginary part determines the
corresponding horizontal wavenumber k1, while the boundary conditions provide the vertical
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Vesicular cylinders 17

wavenumber k3. Solutions C ∝ sin π Z , for example, would imply k3 = π , which we suppose
is typical, but we do not carry out the full calculation.

We are particularly interested in the dependence of P on σ . We use (42) and (53) to write
(56) in the form

σ

[(
X E − 1

X E + σ(X E − 1)

)
P + k2

3

k2

]
= F

(1 − α)|c′|V . (59)

There is little further we can do with this. Clearly F depends on σ , since also φ, c and k1 will.
The fit used in figure 5 takes

P = 6.2

σ + 0.03
+ 26 − 18σ, (60)

which is essentially equivalent to choosing a quadratic for F, and we suppose the large
coefficients are due to the presence of k2

3 ∼ 10. While there is nothing optimal about this
fit, it is noticeable in seeking it that the data seem to demand a linearly decreasing trend at
larger σ ; and for the particular choice in figure 5, P = 0 when σ = 1.65. These considerations
suggest to us that the steady state is likely to be unstable for values of P ∼ O(1) when σ = 2.7,
and this prompts us to seek numerical solutions which represent channelled flow.

4. Numerical results

In order to solve the problem numerically, we adopt a modified form of (49):

∇·u = σ
(
V φZ − φt

)
,

(φα)t − V (φα)Z = ∇·((1 − α)u
) + ε∇2α,

u = −Π(φ)∇ p + Rαk,

(1 − α)
(
φct − V φcZ + u·∇c

) + c
(
φt − V φZ

) = 0,

(1 − αφ)
(
ct − V cZ

) + (1 − α)u·∇c = ∇2c + St
(
φt − V φZ

)
, (61)

and we use the (dimensionless) Carman–Kozeny law

Π = φ3

(1 − φ)2
. (62)

The boundary conditions for (61) are initially taken to be

α = 0, c = c0, φ = φ0, p = 0 on Z = 1,

αZ = 0, c = cE , un = 0 on Z = 0. (63)

These equations are the same as those in (49), with the exception of the term ∝ ε in (61)2. The
point is that we can only prescribe α = 0 on the top surface if un < φVn there (cf. (21)). This
would be numerically awkward, but is alleviated by including the diffusive term. If ε � 1,
then the actual equation for α provides the sub-characteristics for (61)2, and the solutions for
the two systems will be the same, except for a thin boundary layer at the top surface where
un > φVn . The prescription of zero gradient at the base precludes the formation of a serious
boundary layer there. We do not show the resulting simulations (which use the parameters in
figure 4, and additionally ε = 0.001), because the steady solutions in figure 4 exactly overlay
the numerically computed solutions of (61).
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18 A. C. Fowler et al.

Figure 6. Simulation of a steady channel by solving (61) and (63), except that φ is given at the surface by (64).
The colour scale gives the value of the porosity φ. As described in the text, the domain is of dimensionless height
1 (0 < Z < 1) and width 2 (−1 < x < 1), while the elevated porosity at the surface is applied over a width 0.1
(−0.05 < x < 0.05). The parameter values are as in figure 4, and additionally a = 0.05, φv = 0.9 ε = 0.001.

Disappointingly, no instability or channel-like solutions are in evidence. The issue is clouded,
however, by the observation that if vesicular channels were to form, then there is upflow in
them relative to the upper surface, and it is no longer appropriate to prescribe φ = φ0 at the
surface where a channel exits. More precisely, if channels exist in which φ > φ0, then in fact
the mush surface is not flat, since it bends downwards along the channel walls. The implication
is that the prescription of constant φ at the top surface precludes the formation of channels.

In a second simulation, we prescribe a top hat profile for φ at the surface:

φ = φv on Z = 1, |x | < a,

φ = φ0 on Z = 1, a < |x | < 1, (64)

and we choose a to be small and φv close to one. The following argument suggests that vesicular
channels may form in this case. If they do not, then φ must decrease rapidly below the surface,†
presumably attaining the steady solutions of figure 4. In that case φ̇ = φt − V φZ is large and
negative, so that (49)1 implies ∇·u is large and positive. It seems unlikely that this will be
taken up by ux , so that we would take (in a steady state)

wZ ≈ σ V φZ , (65)

so that the excess upwards velocity at the hole is approximately σ V (1 − φ0). Using (42), it
follows after some algebra that w|Z=1 > V at the hole if

σ >

[
(1 − φ0)

2 + 4(1 − φ0)X E (X E − 1)
]1/2 − (1 − φ0)

2(X E − 1)(1 − φ0)
, (66)

and this is our approximate channel-forming criterion.

†Alternatively, the change in φ could radiate diffusely away from the surface source at x ≈ 0. In this case, ∇·u > 0
over a broad region, and presumably the fluid is sucked towards the central “hole”, where we would expect the exit
velocity to be large and ill-posedness to ensue.
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Vesicular cylinders 19

Figure 6 shows the result of a simulation in which the top hat profile in (64) has been applied.
For the values used in the figure, the channel-forming criterion (66) is σ > 1.23, so that we
expect a channel to form, and indeed this is what the figure shows. Indeed, this simulation
supports our theoretical discussion above. The calculations were done using the finite element-
based software, Comsol Multiphysics, and are limited to a steady state calculation. All field
equations were discretised using second-order quadrilateral elements on a mapped uniform
mesh having 2500 (50 × 50) elements, corresponding to around 41,300 degrees of freedom.

5. Conclusions

We have provided a consistent, physically based explanation for vesicular cylinders in crys-
tallising basaltic lavas. Our explanation is based on the apparent resemblance of these vertical
cylinders to similar channels or pipes which form in solidifying binary alloys, and our initial
efforts to explain them hypothesised that a similar explanation would suffice. Specifically,
release of light fluid in crystallising mushes of, for example, ammonium chloride drives
porous medium convection within the mush. If this is sufficiently vigorous (if the upwards
fluid velocity exceeds the solidification rate), then channels form and are observable in the
cast because of the colour difference associated with late-stage crystallisation. In this way,
“freckles” are formed in, for example, lead-tin alloys.

In the present situation, we also have a crystallising mush, in which the buoyancy source is
due to gas bubble formation, and the mathematical model we develop is similar to (but more
general than) the alloy solidification model, but the effective Rayleigh number we determined
is more than two orders of magnitude too low for convection to occur in the basalt lava
flow mush. However, the model was sufficiently rich that convection was not necessary;
all that the channel-forming mechanism requires is a differential fluid velocity, and this is
afforded by the expansion parameter σ . Proceeding on this basis, we identified a plausible
instability mechanism, which is that outlined in 3: increased local porosity causes increased
upwards fluid flow, which brings more silicic melt up. The higher up liquid, being more
silicic, has a lower liquidus temperature, which promotes, if not melt-back, at least a decreased
rate of crystallisation, and thus a relative further growth of porosity. We then showed, in a
rough stability analysis, that this positive feedback mechanism does provide for the growth of
vertically oriented patterns.

Finally, we provided numerical computations which show that there are steady solutions in
which cylinders are formed, and we thus consider that this model provides a viable explanation
for vesicular cylinder formation in inflated basalt lava flows. Similar processes could aid
segregation of evolved melts from crystallising volatile-saturated magma intrusions. Just
as in the simpler models describing alloy solidification, however, the story is by no means
over. Our theory has adopted numerous simplifications in order to approach our goal of
demonstrating the viability of channel formation, and in the context of freckle formation in
alloy solidification, the work of Worster and his co-workers over the last 30 years shows that a
thorough analysis of the problem requires a good deal more investigation than is presented here
(e.g. Schulze and Worster 1999, 2005, Chung and Worster 2002). The principal limitation in our
discussion of the model is the short-circuiting of the complexity associated with the upper free
boundary condition. In addition, although our numerical simulation in figure 6 is suggestive
of channel formation, we have no independent way to compare the computed channel width
with observations such as those in figure 1, since in figure 6, we simply prescribe the channel
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width. In future work, it will be essential to include a description of the upper surface as a free
surface, something which is not attempted in the present paper.

From a theoretical perspective, our study suggests that convection is not a necessary pre-
requisite for channel formation, so long as density change-induced fluid (silicate melt with
suspended bubbles) velocities are sufficiently rapid. The geological record indicates that
vesicular cylinders are common in inflated pahoehoe lava flows, and do not form in other types
of basalt lava flows such as ’a’a, which is characterised by shear-induced tearing (e.g. Goff
1996, Self et al. 1998). The association with inflation indicates that vesicular cylinders form in
lava flows emplaced with relatively low crystallinity and on nearly flat ground; however,
the specific conditions for their formation have not been well constrained empirically or
theoretically. In the context of our proposed model, there are a number of factors that could
affect the presence or absence of vesicular cylinders in an inflated lava flow, such as the
initial magma bubble and crystal content or the shape and size distribution of crystals, which
in turn would affect both the mush permeability and the threshold crystallinity at which the
crystal network in a magma mush acts as a porous medium. A key component of our channel-
forming model is the isolation of the bubbles, and the vesicular cylinders would not grow
if the vesicularity of the mush was so high that H2O exsolution could be accommodated by
gas flow through a connected gas pathway rather than pushing liquid melt up through the
crystal mush. Although cylinders and other segregation features in lava flows are not in and of
themselves important, these features, found around the world in readily accessible outcrops,
provide insights into the role of bubbles in the segregation of crystalline magmas which may
be important for understanding the evolution of magma reservoirs beneath volcanoes and the
triggering of volcanic eruptions.
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Appendix

The following two tables (Latin and Latin/Greek, respectively) list all the mathematical
symbols used in the text, and the (nearest) equation or figure where they are introduced.

Table A.1. Mathematical symbols (Latin).

Symbol Meaning Location

a Dimensionless channel width (64)
b Mush–solid interface Figure 3
c Magma composition Figure 2
cE Eutectic composition Figure 2
cH2O Water saturation (5)
cl Liquid composition Figure 2
cp Average specific heat (9)
cpg Gas specific heat (10)
cpl Liquid specific heat (10)
cps Solid specific heat (9)
cs Crystal composition Figure 2
C Perturbation of c (55)
d Magma depth (14)
D Crystal size Before (49)
F, F1, F2 Stability coefficients (57)
g Gravity (4)
h Mush–liquid interface Figure 3
k̂ Unit vertical vector (4)
K Permeability (4)
K0 Permeability scale (16)
k Vertical wave number (58)
kg Wavenumber (10)
kl Liquid thermal conductivity (10)
ks Solid thermal conductivity (10)
kT Thermal conductivity (9)
k1 Horizontal wave number After (55)
k3 Vertical wave number After (55)
Lc Latent heat of crystallisation (9)
Lv Latent heat of exsolution (9)
mc Rate of crystallisation (1)
mL Liquidus slope (11)
mv Rate of exsolution (6)
ms Surface source term (7)
p Melt pressure (4)
P Perturbation of p (55)
P Permeability sensitivity (53)
r Solid–liquid density difference parameter (18)
rCW Chiareli–Worster parameter Before (53)
R Effective Rayleigh number (18)
St Stefan number (18)
Sv Vapour Stefan number (18)
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Vesicular cylinders 23

Table A.2. Mathematical symbols (Latin), continued, and Greek.

Symbol Meaning Location

t Time (1)
T Temperature Figure 2
TE Eutectic temperature Figure 2
TL Liquidus temperature (11)
T0 Pure liquid melting temperature Figure 2
u Fluid flux (3)
un Normal component of fluif flux (21)
U Horizontal component of u (55)
V Travelling wave speed (34)
V Surface velocity (29)
Vn Normal component of surface velocity (21)
w Vertical component of u (31)
W Perturbation of w (55)
X Dimensionless concentration (37)
X E Dimensionless eutectic concentration (38)
z Vertical spatial coordinate Figure 3
Z Travelling wave coordinate (50)

α Gas volume fraction Figure 3
β Adiabatic heating parameter (18)
γ+ Upper dimensionless heat flux (22)
γ− Lower dimensionless heat flux (26)
δ Gas–liquid density ratio (18)
ηl Melt viscosity (4)
κT Thermal diffusivity (15)
λ Growth rate After (55)
Λ Partition coefficient (12)
ξ Travelling wave variable (34)
ξb Dimensionless mush depth (34)
Π Dimensionless permeability (16)
ρ Pore fluid density (2)
ρs Crystal density (1)
ρl Melt density (2)
ρg Water vapour density (2)
σ Dissolved to exsolved vapour density ratio (18)
φ Mush porosity Figure 3
φ0 Mush surface porosity Figure 3
φb Basal porosity (40)
φv Pipe surface porosity (64)
Φ Perturbation of φ (55)D
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