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Abstract Analytical approximations have generated many insights into the dynamics
of epidemics, but there is only one well-known approximation which describes the
dynamics of the whole epidemic. In addition, most of the well-known approximations
for different aspects of the dynamics are for the classic susceptible–infected–recovered
model, in which the infectious period is exponentially distributed.Whilst this assump-
tion is useful, it is somewhat unrealistic. Equally reasonable assumptions are that the
infectious period is finite and fixed or that there is a distribution of infectious periods
centred round a nonzero mean.We investigate the effect of these different assumptions
on the dynamics of the epidemic by deriving approximations to the whole epidemic
curve. We show how the well-known sech-squared approximation for the infective
population in ‘weak’ epidemics (where the basic reproduction rate R0 ≈ 1) can be
extended to the case of an arbitrary distribution of infectious periods having finite sec-
ond moment, including as examples fixed and gamma-distributed infectious periods.
Further, we show how to approximate the time course of a ‘strong’ epidemic, where
R0 � 1, demonstrating the importance of estimating the infectious period distribution
early in an epidemic.
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1 Introduction

The dynamics of the classic susceptible–infected–recovered (SIR) infectious disease
transmission model framework, as first outlined by Kermack andMcKendrick (1927),
underlies much of our understanding of infectious disease epidemiology (Anderson
and May 1991; Diekmann and Heesterbeek 2000; Keeling and Rohani 2007). Impor-
tant insights from this model framework include the threshold properties of the basic
reproductive number, R0 (Kermack and McKendrick 1927), the critical vaccination
proportion (Smith 1964) and the relationship between the epidemic growth rate, rg ,
the generation time, Tg , and R0. Within their classic paper Kermack and McKendrick
(1927) not only derived R0 but also derived an approximation to the epidemic curve for
R0 close to 1 (a ‘weak’ epidemic). Understanding of these various quantities, although
they apply only to relatively simple homogeneous models, has proved very useful in
developing our understanding of the characteristics of an epidemic.

The classic SIR model was derived as a special case of a more general formulation
with infectiousness varying over the course of the time since infection, or across the
population (Kermack and McKendrick 1927; Diekmann and Heesterbeek 2000). This
form of epidemic model in slightly different forms is also known as the ‘Lotka–Euler’
formulation (Wallinga and Lipsitch 2007) or ‘renewal equation’ (Fraser 2007). Within
this framework, the classic SIR model emerges under the assumption that infectious
periods are exponentially distributed across the population. This is, of course, unlikely
to be the case in reality. Arguably, the most parsimonious representation of a more
realistic infectious period is to assume that the infectious period is limited and is
the same across all individuals [the Soper model, Soper (1929)]. The assumption of
different distributions of infectious periods is known to affect the relationship between
the exponential growth rate and the generation time distribution, and estimates of
the reproductive number from the epidemic growth rate (Fraser 2007; Wallinga and
Lipsitch 2007; Wearing et al. 2005; Lloyd 2001a; Hethcote and Tudor 1980), a crucial
estimate in the early stages of a new outbreak.

Despite the impact of different infectious period distributions on the dynamics of
the early stages of an epidemic, the ‘final epidemic size’ or the total number of infec-
tives over the course of an epidemic has been shown to be invariant under different
assumptions on the distribution of infectious periods and disease course within indi-
viduals (Kermack and McKendrick 1927; Bailey 1975; Anderson and Watson 1980;
Anderson and May 1991; Andersson and Britton 2000; Diekmann and Heesterbeek
2000), provided there is homogeneous mixing (Ma and Earn 2006; Anderson andMay
1991; Diekmann and Heesterbeek 2000; Andreasen 2011).

In the declining stages of an epidemic, or during the decline of a seasonally forced
epidemic, the distribution of infectious periods has been shown to destabilise the
dynamics (Lloyd 2001a) and to change dependence of persistence on the population
size (Lloyd 2001b), results which were first derived for a model in which the infec-
tious period was exponentially distributed (Keeling and Grenfell 1997). Keeling and
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Grenfell and Lloyd came to opposite conclusions concerning persistence, but their
results were reconciled by Conlan et al. (2010).

Given these insights, it is surprising that there has not beenmore investigation of the
impact of the infectious period distribution on the peak and decline of the SIR-type
models. Here we formulate a general approximation to the epidemic curve for any
infectious period distribution within a unified framework. We derive approximations
to the time course for R0 close to 1 (‘weak’ epidemics) and, innovatively, for larger
R0 (‘strong’ epidemics). Using these novel approximations, we are able to charac-
terise the impact of infectious period distribution on the time course of the epidemic,
including the time to and magnitude of peak prevalence. Despite the simplicity of
obtaining numerical solutions of these models, analytic approximations such as those
highlighted above are a useful way of characterising the impact of different assump-
tions on epidemic dynamics, as we demonstrate below.

2 The Generalised Infectious Period Model

We first formulate the general transmission model in which individuals are either
susceptible, S, infectious, I or recovered, R for a general infectious period distribution;
the epidemic is assumed to occur on a fast timescale, so that births and deaths are not
modelled. This type of model formulation has been described and analysed several
times, most notably by Kermack and McKendrick (1927).

To proceed, we denote by i(a, t) the number density of the infected cohort having
had the disease for a period a. Then

I =
∫ ∞

0
i da (1)

is the total number of infectives, assuming that recovery or removal is inevitable (i. e.,
i → 0 as a → ∞). As with age-dependent population models, or time since infection
models, i satisfies the partial differential equation

∂i

∂t
+ ∂i

∂a
= −r(a)i, (2)

where r(a) is the recovery rate, and is taken to be a function of the time since infection.
Suitable initial conditions are

i = 0 at t = 0,

i = i0(t) at a = 0, (3)

where the ‘recruitment’ or incidence rate is

i0(t) = −Ṡ = kSI, (4)
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1542 A. C. Fowler, T. Déirdre Hollingsworth

just as in the classic SIR model (Kermack and McKendrick 1927). Integration of (2)
leads to

İ = i0(t) −
∫ ∞

0
r(a)i da. (5)

We solve (2) using the method of characteristics. In t < a, we have i = 0, whilst
for t > a, we find

i = i0(t − a) exp

[
−

∫ a

0
r(a′) da′

]
. (6)

Putting i0 = −Ṡ in this, we find, after integrating by parts, that I is given by

I = S0F(t) − S +
∫ t

0
K (a)S(t − a) da, (7)

wherewe candefine S0 to be the total (pre-infection) population of susceptibles.Weuse
the following notation with respect to the recovery, or infectious, period distribution:

F(a) = exp

[
−

∫ a

0
r(a′) da′

]
, K (a) = −F ′(a) = r(a) exp

[
−

∫ a

0
r(a′) da′

]
.

(8)
Note that K (a) is the infection time probability density, and that [from (8)]

∫ ∞

0
K (a) da = 1. (9)

Using (4), we thus have the generalised Soper model, following the early work by
Soper (1929), and its exposition byWilson andBurke (1942) andWilson andWorcester
(1944),

Ṡ = −kSI, I = S0F(t) − S +
∫ t

0
K (a)S(t − a) da. (10)

The pre-infection state S = S0, I = 0 for t < 0 is also described by (10), providing
we take K (a) = 0 and thus F(a) = 1 for a < 0. The onset of the epidemic is enabled
by initial conditions

I = I0, S = S0 − I0 at t = 0+, (11)

and typically we suppose I0 � S0.

2.1 Infectious Period Distributions

Different assumptions regarding the infectious period distributions can be represented
by different functional forms of K (a). In these formulations we set the functions to
have the same mean infectious period,

T =
∫ ∞

0
aK (a) da. (12)
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We additionally define the second moment,

K2 =
∫ ∞

0
a2K (a) da, (13)

for future use.
In this formulation the classic SIR model, with its exponential decay in infectious-

ness, corresponds to a recovery rate r = 1/T which is independent of age, and a
consequent delay kernel

K = 1

T
exp

(
− a

T

)
(14)

with mean T and second moment 2T 2.
Another plausible assumption is that the infectious period is a fixed constant T .

Since F(a) is the fraction of an initial inoculate who still have the disease after period
a, we can take F = 1− H(a − T ), where H is the Heaviside step function, and thus
K is a delta function,

K = δ(a − T ). (15)

with mean T and second moment T 2.
More general kernels can be analysed in the same way, including, for example, the

gamma distribution

K = 1

T

γ γ

�(γ )

( a

T

)γ−1
exp

(
−γ a

T

)
, (16)

which has mean T and second moment T 2(γ + 1)/γ and which takes the limits (14)
and (15) when γ = 1 and γ → ∞, respectively.

2.2 Nondimensionalisation

We analyse (6), (7) and (10) by first rescaling the variables, thus

i = w

kT 2 , I = v

kT
, S = u

kT
, K2 = T 2κ2,

t ∼ T, a ∼ T, K ∼ 1

T
, r ∼ 1

T
. (17)

Then we have the dimensionless integrals

∫ ∞

0
K (a) da = 1,

∫ ∞

0
aK (a) da = 1,

∫ ∞

0
a2K (a) da = κ2, (18)

and the dimensionless equations for u, v andw can thus be written in the form [bearing
in mind (18)]
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u̇ = −uv,

v = R0 − u −
∫ t

0
K (a)[R0 − u(t − a)] da,

w = −u̇(t − a)F(a), v =
∫ ∞

0
w(t, a) da, (19)

where
R0 = kT S0. (20)

The initial values for u and v are, from (11),

u = R0 − v0, v = v0 = kT I0 = R0 I0
S0

. (21)

Note also that the initial value of v is assumed small and nonzero. The dimensionless
kernels for exponentially distributed, gamma-distributed and fixed infectious periods
are

K (a) = e−a, K (a) = γ γ

�(γ )
aγ−1e−γ a, K (a) = δ(a − 1), (22)

respectively. Note that the mean of each dimensionless kernel is one and the dimen-
sionless second moments are κ2 = 2, (γ + 1)/γ and 1, respectively.

2.3 Initial Growth

We can find the initial growth rate of the epidemic for general infectious period dis-
tributions. We first put u = R0 − v0eλt , and expanding (19) for small v0 and large t ,
we find

λ = R0

[
1 −

∫ ∞

0
K (a)e−λa da

]
, (23)

which has a unique positive root if R0 > 1; we thus identify R0 as the basic reproduc-
tion rate of the epidemic for the general infectious period distribution.

For the gamma-distributed infectious period kernel in (22), the dimensionless epi-
demic growth rate satisfies

λ = R0

[
1 −

(
γ

γ + λ

)γ ]
, (24)

and for the particular cases γ = 1 (SIR model) and γ = ∞ (Soper model), we find

λSIR = R0 − 1, γ = 1,

λSoper = R0
(
1 − e−λ

)
, γ = ∞. (25)

Whilst these approximations to the early epidemic growth rate are useful, they do
not tell us about the dynamics of the whole epidemic. We now present approximations
to the whole epidemic curve firstly for epidemics for which R0 is close to one (“weak”
epidemics), and then for large R0 (“strong” epidemics).
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3 Weak Epidemics

For the casewhere R0 ≈ 1, Kermack andMcKendrick derived a classic approximation
to the epidemic curve for the model with exponentially distributed infectious periods.
Soper derived a similar expression for the model with fixed infectious periods. We
rederive these expressions by showing that this approximation can be generalised for
any infectious period distribution with finite second moment.

We first define
R0 = 1 + ε, (26)

and take ε � 1. We then rescale the variables by writing

t = τ

ε
, u = 1 − εU (τ ), v = ε2V . (27)

Substituting these changes into (19), using (18), we obtain

U̇ = (1 − εU )V,

V = 1

ε

[
U −

∫ ∞

0
K (a)U (τ − εa) da

]
, (28)

where the overdot denotes differentiation with respect to τ , and we have replaced the
upper limit on the integral by ∞ on the basis that we have

u(t) ≡ R0, v(t) ≡ 0 for t < 0 (29)

in (19) (the epidemic is initiated at t = 0). The initial conditions are, from (21),

U ≈ −1, V = v0

ε2
at t = 0, (30)

and we assume that v0 � ε2.
We now expand U (τ − εa) in the integral in a Taylor series, and, using (18), this

leads to
V = U̇ − 1

2εκ2Ü + · · · ; (31)

substituting this into (28)1, using the boundary conditions

U ≈ −1, U̇ ≈ 0 at τ = 0 (32)

[the latter from (31)] then leads to the leading order equation

U̇ ≈ (1 −U 2)

κ2
, (33)

providing the secondmomentκ2 exists, essentially equivalent to requiring that K (a) �
1

a3
for large a. For a heavy-tailed distribution with unbounded secondmoment, a more
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elaborate procedure would be necessary. We do not pursue this here, but note that the
breakdown of the method is associated with the nonuniform convergence of the Taylor
expansion of U (τ − εa) for large a, because of (29). The correct procedure can be
obtained by replacing the upper limit in the integral in (28)2 by τ/ε.

The solution to the Eq. (33) is

U = tanh

(
τ − τp

κ2

)
. (34)

Therefore

u = 1 − ε tanh

(
τ − τp

κ2

)
(35)

and

v = ε2

κ2
sech 2

(
τ − τp

κ2

)
. (36)

This shows that the approximation to the epidemic curve for low R0 by Kermack and
McKendrick (1927) for the exponential distribution andWilson andWorcester (1944)
for fixed infectious periods is generalisable to any infectious period distribution with
a finite second moment.

If we first compare the result of this approximation for the SIR model and the
constant infectious period (Soper) model, the approximations are

vSIR ≈ (R0 − 1)2

2
sech 2 { 1

2 (R0 − 1)
(
t − tp

)}
,

vSoper ≈ (R0 − 1)2 sech 2 {
(R0 − 1)

(
t − tp

)}
. (37)

Of note here is the factor of two, which means that the epidemic with a constant
infectious period will grow (and therefore decay) more rapidly than that with an expo-
nentially distributed infectious period. It also means that the approximate maximum
prevalence for the constant infectious period model, (R0 − 1)2, is twice as big as for
the SIR model. This effect of a constant infectious period on shortening the ‘genera-
tion time’ (time from infection to onward transmission) has been previously noted by,
amongst others, Diekmann and Heesterbeek (2000) andWallinga and Lipsitch (2007),
but its effect on peak prevalence has not been previously approximated.

For gamma-distributed infectious periods, the epidemic curve is approximated by

v ≈ γ (R0 − 1)2

γ + 1
sech 2

{
γ (R0 − 1) (t − tp)

(γ + 1)

}
, (38)

and the bigger the shape parameter, γ (resulting in smaller variance in infectious
periods) the higher the peak prevalence and the shorter is the duration of the outbreak.
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3.1 Peak Prevalence and Time to Peak

From (36), (17), (20) and (26), the peak prevalence P , defined as the ratio of the
maximum infected number Imax to the total population S0 is, for a weak epidemic,

P = Imax

S0
= (R0 − 1)2

R0κ2
. (39)

If the initial infected population consists of I0 individuals, then the initial value
of v is given by (21), and since by assumption this is very small, we can suppose v

reaches its maximum when τ is large, in which case we can use the approximation
sech (−θ) ≈ 2e−θ , and the dimensionless time to peak prevalence (scaled with T ), is
then found from (36) to be

tp = κ2

2(R0 − 1)
ln

[
4(R0 − 1)2S0

κ2R0 I0

]
. (40)

4 Strong Epidemics

Nowwe consider the case R0 � 1, for which we devise an asymptotic method similar
to that used by Fowler (1982). First we rescale the variables as follows:

u = R0U, v = R0V, (41)

so that

δU̇ = −UV,

V = 1 −U −
∫ t

0
K (a) [1 −U (t − a)] da, (42)

where

δ = 1

R0
� 1. (43)

There is an initial phase where U ≈ 1, and we have

U ≈ 1 − I0
S0

eλt , (44)

where λ is given by (23), using also the fact that u + v = R0 at t = 0, and v0 is given
by (21). Since R0 � 1, the application of Laplace’s method to (23) shows that

λ ≈ R0. (45)
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Note that (44) can thus be written in the form

U = 1 − exp

(
t − t0

δ

)
, (46)

where

t0 = 1

R0
ln

(
S0
I0

)
. (47)

The approximation becomes invalid when t ≈ t0, and the appropriate rescaling of
(42) is done by choosing

t = t0 + δτ. (48)

The equation (42) become

U ′ = −UV,

V = 1 −U −
∫ t0+δτ

0
K (a) [1 −U (t0 + δτ − a)] da, (49)

where the prime denotes differentiation with respect to τ .
For small δ, (46) implies thatU (t) ≈ 1 for t < t0, and this implies that the integral

in (49) is small, so that V can be approximated by

V ≈ 1 −U, (50)

and therefore
U ′ ≈ −U (1 −U ) . (51)

Note that (46) implies
U = 1 − eτ (52)

for τ < 0, and the solution of (51) which matches to this as τ → −∞ is

U ≈ 1

1 + eτ
, V ≈ eτ

1 + eτ
. (53)

The solution in (53) is a monotonic solution in which the number of infectives
rapidly increases to a peak at V ≈ 1, i. e., v ≈ R0, whilst U decreases towards zero:
everybody gets infected! However, the approximation (50) and therefore (51) clearly
break down when τ ∼ 1/δ, and a further rescaling is then necessary.

As τ becomes large, we rescale back to the original time scale t = t0 + δτ . Note
that then U ∼ e−τ = e−(t−t0)/δ , and this suggests we write

U = exp

(
−φ

δ

)
, t > t0, (54)

with
φ ∼ t − t0 as t → t0; (55)

then (42) becomes
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φ̇ = V,

V = 1 − exp

[
−φ

δ

]
−

∫ t

0
K (a) [1 −U (t − a)] da, (56)

together with the matching condition (55).
In the integral, we may take U (t − a) ≈ 1 for t − a < t0, whilst U (t − a) =

exp

[
−φ(t − a)

δ

]
for t−a > t0. The exponential terms are small and can be neglected,

and therefore

φ̇ = V ≈ 1 −
∫ t−t0

0
K (a) da =

∫ ∞

t−t0
K (a) da, (57)

with φ ∼ t − t0 as t → t0, and thus, interchanging the order of integration in the
quadrature for φ,

φ =
∫ ∞

0
min(a, t − t0)K (a) da, t > t0, (58)

and φ → 1 as t → ∞. ThusU reaches equilibrium and V declines to zero; no further
approximations are necessary.

Because the approximation has two distinct phases, it is less easy to extract such
quantities as peak prevalence and time to peak. To do this, we can write a uniformly
asymptotic approximation. We write the small and large time approximations in terms
of t , thus

u = R0

1 + eR0(t−t0)
, v = R0

1 + e−R0(t−t0)
, t � t0,

u = R0 exp

[
−R0

∫ ∞

0
min(a, t − t0)K (a) da

]
, v = R0

∫ ∞

t−t0
K (a) da, t > t0.

(59)

A uniform approximation is essentially obtained by adding the two approximations
and subtracting the common part; for details see Dyke (1975). In the present case we
can write a uniform approximation by inspection. This is

u ≈ R0

1 + exp
[
R0

∫ ∞
0 min(a, t − t0)K (a) da

] , v = R0

1 + e−R0(t−t0)

∫ ∞

t−t0
K (a) da,

(60)
providing we extend the definition of K so that K (a) = 0 for a < 0; it is clear that
these expressions reduce to both approximations in (59) in the appropriate time range.

4.1 Peak Prevalence and Time to Peak

The peak time is approximately t0 given by (47), but the peak value is not well con-
strained. To find this, we use the uniform approximation for v to find the time where
it is maximum; this is the peak time tp. It is given implicitly by
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1550 A. C. Fowler, T. Déirdre Hollingsworth

tp = t0 + t ′, t ′ = 1

R0
ln

[
R0F(t ′) − K (t ′)

K (t ′)

]
, (61)

thus

tp ≈ 1

R0
ln

[
S0(R0F − K )

I0K

]
. (62)

Evidently t ′ is small, so that F ≈ 1, but the precise expression for t ′ depends critically
on the behaviour of the distribution kernel K (a)neara = 0. For the gammadistribution
(22), we have

K (a) ≈ γ γ cγ−1

�(γ )Rγ−1
0

for a = c

R0
� 1, (63)

and in that case

t ′ ≈ c

R0
, c = ln

[
Rγ
0 �(γ )

γ γ cγ−1

]
, (64)

so that

t ′ ≈ γ ln R0

R0
, tp ≈ 1 − 1

R0
ln

[
S0R

γ
0

I0

]
. (65)

From (60), the maximum of v is approximately R0F − K , so that the peak infected
population is to leading order the whole population. More accurately, the peak preva-
lence

P = Imax

S0
= vmax

R0
= F − K

R0
≈ 1 − (γ c)γ−1(c + γ )

�(γ )Rγ
0

, (66)

this last expression being for the gamma distribution. For the SIR problem for which
γ = 1, and F(a) = K (a) = e−a , we have more directly from (62) that

tp ≈ 1

R0
ln

[
(R0 − 1)S0

I0

]
, (67)

and using this directly in (60) yields the peak prevalence as

P ≈ (R0 − 1)(R0−1)/R0

R0
. (68)

The limit in which γ → ∞ corresponds to the Soper problem where K (a) =
δ(a − 1), and (61) is irrelevant. Direct inspection of (60) shows that in this case v

rapidly rises, reaches a maximum ≈ R0(1− e−R0) at t = t0 + 1, and is then instantly
extinguished. This last result (from (60)) is not quite right, as it ignores the corrective
terms in (56). More precisely, we have from (42), with K (a) = δ(a − 1) and taking
t > 1,

V = U (t − 1) −U (t), (69)
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and we can use (53) throughout, since although it is inaccurate for t > t0, U is in any
case very small then. Thus the uniform approximate solution for the Soper case is

v = R0

1 + e−R0(t−t0)

[
1 − e−R0

1 + eR0(t−t0−1)

]
, (70)

and the term in square brackets provides the correction to the step function in (60).
From this we find the time to peak is

tp = t0 + 1
2 , (71)

and the peak prevalence is given by

P = vmax

R0
= 1 − e−R0

(
1 + e− 1

2 R0
)2 . (72)

4.2 Accuracy of the Approximations

Figure 1 compares numerical simulations of the model with the weak approximation
we have given for the case R0 = 1.5. The shapes of the curves and the time to peak are
surprisingly well represented, despite the fact that ε = 0.5 is not that small, though
the peak values are overestimated.

For large R0 � 1 the difference between the dynamics for the two extremes of
the infectious period distribution is striking (Fig. 2). The assumption of a constant
infectious period results in a much faster decline of the epidemic following peak
prevalence than for an exponentially distributed infectious period. The approximation
to the epidemic curve is almost exact for large R0 and constant infectious period. In
particular, it captures both peak prevalence and the time at which it occurs very well
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Fig. 1 Comparison between numerical simulations of the model (solid (red) lines) and approximations
to the epidemic curve for P = I/S0 for the weak approximation (dashed (blue) lines), using a value of
R0 = 1.5 and a mean recovery time of 2days. The left hand figure is for the SIR model, and the right hand
one is for the Soper model. The initial fraction of infectives I0/S0 = 10−3. Notice the different scales on
the axes (Color figure online)
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Fig. 2 Comparison between numerical simulations of the model (solid (red) lines) and approximations to
the epidemic curve for P = I/S0 for the strong approximation (dashed (blue or green) lines), using a value
of R0 = 10 for the SIR model (left) and R0 = 5 for the Soper model (right); the mean recovery time is
2days. The initial fraction of infectives I0/S0 = 10−3. Note that the Soper approximation is almost exact
(Color figure online)
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Fig. 3 Comparison of time to peak tp approximations given by (40) (with κ2 = 2) and (67) with direct
numerical simulations for the SIR model (left figure), and the equivalent approximations to the peak preva-
lence P = vmax/R0 given by (39) (with κ2 = 2) and (68) together with the direct numerical simulation.
The solid (red) curves are the numerical solution, dashed (blue) curves are the weak approximations, and
the dotted (mauve) curves are the strong approximation. Note that the times to peak here are dimensionless
(Color figure online)

once R0 is larger than about 3. This is shown in Fig. 3, where we plot the time to peak
and peak prevalence for both numerical and asymptotic results as a function of R0.

These figures provide a gloss on the examples shown in Figs. 1 and 2. It can be seen
in Fig. 3 that the weak approximation gives a uniformly excellent approximation to
tp for the SIR model. In fact it deviates at smaller R0 (!), due to the fact that for fixed
I0, the initial value of V in (30) increases as ε is reduced. This is more clearly visible
in Fig. 4 for the Soper model. The strong approximation (for the SIR model), on the
other hand, is only reasonably accurate for R0 � 5. The peak prevalence is not well
approximated in either limit: the weak approximation is useful for R0 � 0.4, and the
strong approximation only becomes useful for R0 � 10, as also illustrated by Fig. 2.

For the Soper model, and more generally when there is a peaked infection time
distribution, the weak and strong approximations cope better between them. The peak
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Fig. 4 Comparison of time to peak tp approximations given by (40) (with κ2 = 1) and (71) with direct
numerical simulations for the Soper model (left figure), and the equivalent approximations to the peak
prevalence P = vmax/R0 givenby (39) (withκ2 = 1) and (72) togetherwith thedirect numerical simulation.
The solid (red) curves are the numerical solution, dashed (blue) curves are the weak approximations, and
the dotted (mauve) curves are the strong approximation. Note that the times to peak here are dimensionless
(Color figure online)

time tp is well served by one or other approximation either side of R0 = 2; the
peak prevalence is less well captured, but still fares much better than the exponential
distribution of the SIR model.

5 Conclusions

Wehavederived analytical approximations to the epidemic curve for small and large R0
for general infectious period distributions. The weak epidemic limit is well known,
but not in its application to such distributions, and particularly, its inadmissibility
for heavy-tailed distributions provides a new insight. The extreme version of such a
distribution corresponds to an immune carrier which can thus act as a reservoir for the
infection. The strong epidemic limit has not, to our knowledge, been studied before.

Approximations to the epidemic curve are not only useful for developing our under-
standing of the dynamics, but may also be used in situations where large numbers of
simulations are required, e. g., for parameter estimation or identifying optimal control
strategies for a given set of parameters. The approximations presented here capture
the general shape of the epidemic, as characterised by the peak prevalence, the time
at which the peak occurs, and the rate of increase and decline of the epidemic. In the
case of the constant infectious period and large R0, the approximation is almost exact.

These analytical expressions extend previous observations on the effect of assump-
tions regarding the infectious period on the dynamics of the epidemic. For an infection
with a given R0 and mean infectious period, the distribution of this infectious period
has an impact on all aspects of the epidemic curve. The differences in the shape of
the epidemic curves due to different infectious period distributions is most notable for
large R0, where the epidemic curve for the SIR model is asymmetric. For R0 ≈ 1,
the epidemic shape is symmetric due to the slow epidemic growth smoothing out the
effect of different infectious period distributions. However, different distributions do
affect the height and width of this symmetric curve.
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The assumption of an exponentially distributed infectious period results in a broad
distribution in times from one infection to another (the generation time) meaning that
some individuals infect susceptibles much later than others. This serves to smooth out
the profile, resulting in a less intense epidemic than one in which the infectious period
is fixed. For low R0, the shapes are qualitatively similar, but both peak prevalence
and the time to peak are approximately half that of an epidemic with a constant
infectious period. An exponential distribution of infectious periods results not only
in a slower epidemic with a lower peak prevalence but it lengthens the tail of the
epidemic, giving a more gradual decline in prevalence following saturation than a
fixed infectious period. This effect of different infectious periods on the generation
time and exponential growth rate has been discussed before (Fraser 2007; Wallinga
and Lipsitch 2007; Wearing et al. 2005; Lloyd 2001a; Hethcote and Tudor 1980), but
the impact on the second half of the epidemic has not. These extreme differences in the
tail of an epidemic demonstrate the importance of quantifying this distribution during
a novel outbreak in order to estimate peak prevalence and the timescale of the decline
of the epidemic.

There are, of course, limitations to the application of an SIR-type approach, whether
with constant or exponentially distributed periods, since more detailed biological
effects, such as a period prior to infectivity represented in SEIR models, will affect
the dynamics (Wearing et al. 2005). Further, homogeneous models of epidemic spread
necessarily make a number of unrealistic assumptions about contact patterns, which
have been previously been shown to affect the final size of the epidemic (Ma and Earn
2006; Anderson and May 1991; Diekmann and Heesterbeek 2000; Andreasen 2011),
and will therefore affect the dynamics during the epidemic. However, the insights
about the timing and magnitudes of peak prevalence and the rate of decline of the
epidemic are useful for understanding and validating the dynamics of more complex
models.
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