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We study the model of Keller & Rubinow (Keller &
Rubinow 1981 J. Chem. Phys 74, 5000–5007. (doi:
10.1063/1.441752)) describing the formation of
Liesegang rings due to Ostwald’s supersaturation
mechanism. Keller and Rubinow provided an
approximate solution both for the growth and
equilibration of the first band, and also for the
formation of secondary bands, based on a presumed
asymptotic limit. However, they did not provide a
parametric basis for the assumptions in their solution,
nor did they provide any numerical corroboration,
particularly of the secondary band formation. Here,
we provide a different asymptotic solution, based
on a specific parametric limit, and we show that the
growth and subsequent cessation of the first band can
be explained. We also show that the model is unable to
explain the formation of finite width secondary bands,
and we confirm this result by numerical computation.
We conclude that the model is not fully posed, lacking
a transition variable which can describe the hysteretic
switch across the nucleation threshold.

1. Introduction
Liesegang rings are a series of banded precipitates which
form in a number of chemical reactions. Their name is
associated with their discovery by Liesegang [1], who
described them in the context of the precipitation of silver
dichromate as a consequence of the reaction of silver
nitrate with potassium dichromate:

2AgNO3 + K2Cr2O7 → Ag2Cr2O7 + 2KNO3. (1.1)

A typical experimental situation is shown in figure 1.
A gel is formed of a weak solution of potassium
dichromate, and a thin layer of silver nitrate is then
put on the surface. Over a period of a few days,
a series of bands is formed as shown. If the gel is

2017 The Author(s) Published by the Royal Society. All rights reserved.
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...................................................Figure 1. Formation of Liesegang bands in test tubes. Image courtesy of Richard Katz. (Online version in colour.)

placed in a Petri dish, with a drop of silver nitrate at the centre, a series of concentric rings
is formed.

The basic mechanism for the formation of the bands was identified by Ostwald [2,3], and
studied by a number of early workers, among them Morse & Peirce [4], Wagner [5] and Prager [6];
a useful survey of some of this historical work is given in the short book by Henisch [7]. There are
a number of scaling laws which have been found to apply in these experiments. The ‘spacing
law’ was described by Jablczynski [8]: if xn marks the distance of formation of the nth band
from the initial interface of the dichromate with the silver nitrate, then the ratio xn+1/xn is a
constant; normally, greater than one as in figure 1, but occasionally less than one (the so-called
revert patterning). Second, there is the ‘time law’ [4], which states that xn ∝ √

t, indicating the
diffusional nature of the phenomenon. There is also a width law, which states that the successive
band widths wn also form a geometric progression, although it seems this is less reliable than the
other two laws.

Early theories of Liesegang patterning are described by Stern [9], who concluded that
Ostwald’s supersaturation theory appeared adequate for most purposes. In particular, the space
and time laws indicate a self-similarity due to the diffusive nature of the dynamics, and these
form the basis of the discussions of Prager [6] and Wagner [5]. However, it is not until the paper
of Keller & Rubinow [10] that a more sophisticated degree of modelling and analysis was applied.
As do their predecessors, Keller and Rubinow describe the reaction (1.1) as the schematic

2A + B
k+�
k−

C
p−→ D, (1.2)

in which A denotes Ag+, B denotes Cr2O2−
7 , C denotes Ag2Cr2OL

7 (i.e. dissolved) and D
denotes Ag2Cr2OS

7 (i.e. precipitated). Various forms of the theory which is then developed are
distinguished, depending on what is assumed about the precipitation rate p. Keller and Rubinow
adopt the simple assumption concerning supersaturated nucleation:

p =
{

q[c − cs]+ if c ≥ cn > cs or d> 0,

0 if c< cn and d = 0,
(1.3)
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where [x]+ = max(x, 0), cs is the saturation concentration of C and cn is the required
supersaturation for nucleation: d is the concentration of D, all of these being measured in moles
l−1 (M). Equation (1.3) states that if no crystal is present, then nucleation and subsequent crystal
growth does not commence until the concentration c reaches the supersaturated value cn, whereas
once a crystal is present, it continues to grow for any concentration above the saturation value cs.

A different version of the theory is called ‘post-nucleation theory’ (e.g. [11,12]), and is based
on a number of experimental results [13], such as those of Kai et al. [14], who inferred that
nucleation occurred homogeneously in space, but that then precipitation bands formed through
the process of Ostwald ripening, in which larger particles grow at the expense of smaller ones. A
particular experiment of note in this context is that of Volford et al. [15]. In this case, one can posit
a precipitation rate given by Mimura et al. [16], Venzl & Ross [17] and Falkowitz & Keller [18]

p = 4πqR2Rt

and RRt = k(c − ca),

}
(1.4)

where R is the mean crystal radius, a subscript t denotes a partial time derivative and ca is given
in terms of the Gibbs–Thomson relation by

ca = G
R

, G = 2γTM

ρsmLL
, (1.5)

where γ is surface energy, TM is (crystallization) temperature, ρs is crystal density, mL is the
liquidus slope and L is the latent heat. More generally, there is a distribution of grain sizes
described by nucleation/growth kinetics [19]. For smaller particles, ca is larger, and thus Rt and
thus also R is smaller, and in fact (1.4) indicates bistability, with either R → 0 or complete solid
crystal precipitation being indicated.

There have been a number of models developed, either for the Ostwald supersaturation
mechanism, or for various versions of the post-nucleation theory [20,21]. In particular, many
such simulations have been produced by Lagzi and co-workers [22–24]. Although all the various
models are based around the same basic reaction and precipitation, their implementation varies
as to whether Ostwald supersaturation or Ostwald ripening is considered, and in either case short
wave stabilization may be included through a Cahn–Hilliard fourth derivative term [18,24].

Our purpose here is somewhat orthogonal to the direction the subject has gone in recent
years. Keller & Rubinow [10] proposed a partial analytic solution of the reaction–diffusion
supersaturation model, but the basis of this solution was not followed through, or even validated.
Our purpose here is to attempt to throw some analytic understanding on the problem, but we
are less concerned with the fundamental distinction between the supersaturation and the post-
nucleation models. While Ross and co-workers (e.g. [11,13]) have emphasized the distinction
between these two theories, they do not appear so dissimilar as mathematical models.

Our initial investigations sought to establish the basis of the Keller–Rubinow approximations,
but we have gone far beyond such a limited aspiration. Firstly, we cannot find any régime in
which the Keller–Rubinow theory is asymptotically valid. Worse, we believe that the model as
stated is actually not well-posed, in a sense which we will explain. In so doing, we resolve,
apparently for the first time, the nature of this ill-posedness and its consequent implication for
numerical solutions, and we suggest a resolution of the ill-posedness, whose efficacy will be
investigated in a future paper.

2. Nucleation and crystal growth
An immediate difficulty with the Keller/Rubinow precipitation rate (1.3) is that p is a
discontinuous function at d = 0, and numerical solutions of the model have a proclivity to produce
Liesegang ‘bands’ which are one grid point wide (this point will be elaborated in §5). There is thus
the suspicion that the model (1.3) is overly simplified and results in ill-posedness. Additionally,
there is very little to guide what appropriate choices of the parameters are. We therefore study the
issue of nucleation and crystal growth a little more carefully.
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A common discussion of nucleation concerns homogeneous nucleation, where the surface
energy of the crystal interface provides an energy barrier to nucleation (e.g. [25]); in order to
provide a deterministic mechanism to overcome this, a stochastic theory such as Becker–Döring
theory is necessary [26,27]. However in practice, nucleation occurs heterogeneously, on pre-
existing impurities in the liquid. To understand how this occurs, consider an area A of a solid
impurity in contact with a liquid solution, where the chemical potential of the liquid is μL. We
suppose that the chemical potential of the solid precipitate is μS, and the two are related, for a
dilute solution, by

�μ=μL − μS = kT ln
(

c
cs

)
, (2.1)

where cs is the saturation concentration in the liquid, k is Boltzmann’s constant and T is the
absolute temperature. (Thus, when c = cs, the solid and liquid are in equilibrium.) If the area
forms a nucleus of precipitate consisting of N molecules with chemical potential μS, then the
change in free energy is −(μL − μS)N = −N�μ, but the corresponding change of surface energy
is A�γ , where

�γ = γSI + γSL − γLI, (2.2)

and γjk is the surface energy at the interface between phase j and phase k (S, L, I indicate solid,
liquid, impurity, respectively). If the nucleated solid phase is (initially) a monolayer, then N =
A/d2

m, where dm is the molecular diameter, and thus the total free energy change is

�G =
(
�γ − �μ

d2
m

)
A. (2.3)

We thus see that heterogeneous nucleation occurs ‘spontaneously’ if

�μ>�μc = d2
m�γ , (2.4)

and for dilute solutions, this gives an estimate of the nucleation threshold cn as

cn − cs ≈ d2
mcs�γ

kT
. (2.5)

This assumes that the growth process on the impurity forms an approximate monolayer rather
than growing a local cap; this depends on the kinetics of growth on the surface.

(a) Growth rate
Next we may ask what the growth rate is, once nucleation has occurred. This is provided by
Lifshitz–Slyozov theory [28]. The idea is that a spherical crystal sits in a solution which is
supersaturated in the far field, but at (unstable) equilibrium (where the free energy is a maximum)
at the interface, and the resultant diffusion of the solute to the interface provides the growth rate.

The free energy change associated with the presence of the crystal is not simply that given
by (2.3), because of the finite volume of the precipitate. More precisely, suppose that a spherical
impurity of diameter dI has a layer of precipitate on it, such that the total crystal diameter is dc. It
follows that the change of free energy from the original state is

�G = π [γSLd2
c + γSId2

I − γLId2
I ] − π�μ

6vm
(d3

c − d3
I ), (2.6)

where vm = 1
6πd3

m is the molecular volume. Using (2.2), we can write this in the form

�G = πd2
I

[
�γ + γSL

{(
dc

dI

)2
− 1

}]
− d3

I�μ

d3
m

[(
dc

dI

)3
− 1

]
. (2.7)

This expression mimics the situation for homogeneous nucleation, where, for small dc, the
surface energy causes an initial increase πd2

I�γ of �G, thus forming a barrier to nucleation. This
discontinuity is due to the replacement of a single impurity/solution interface with a pair of
interfaces, solution/precipitate and precipitate/impurity.
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This seems to contradict (2.4). In more detail, we calculate, from (2.7),

∂�G
∂dc

= 3dc�γ

dm

[
2π
3
γSL

�γ
dm −

(
�μ

�μc

)
dc

]
, (2.8)

which gives a threshold crystal size for growth (when �G is a maximum, i.e. when the right-
hand side of (2.8) is zero). However, we may note that, on the basis that dm � dI ≈ dc, the
first term in square brackets is negligible compared to the second, and can be ignored. This
then raises a further issue, which is that apparently (2.8) would imply that the condition for
heterogeneous nucleation is simply �μ> 0, as opposed to (2.4). The resolution of this is to note
that the discontinuity of�G given by (2.7) at dc = dI is in reality smoothed out by the supposition
that the surface energy varies continuously as the precipitate layer thickness increases, thus

�G = πd2
I

[
φ(h)�γ + γSL

{(
dc

dI

)2
− 1

}]
− d3

I�μ

d3
m

[(
dc

dI

)3
− 1

]
, (2.9)

where φ(h) is a dimensionless function of layer thickness h = dc − dI which varies from φ(0) = 0
to φ(∞) = 1 over a length scale h ∼ dm; in particular, dmφ

′(0) ∼ O(1). The function φ makes �G
continuous, and is due to short-range intermolecular forces similar to those which determine
disjoining pressure [29]. Ignoring the small term in γSL, (2.8) is modified, for h ∼ dm, to

∂�G
∂dc

= 3d2
c�γ

dm

[
πdmφ

′

3
− �μ

�μc

]
, (2.10)

and as dmφ
′(0) ∼ O(1), (2.4) is regained, depending on the precise value of φ′(0).

The upshot of this is that once the precipitate layer is sufficiently thick (many molecular
diameters), we can take �μ= 0, thus c = cs, at the interface, and the resultant growth rate is
obtained by solving the (steady-state) diffusion equation and equating the resulting flux at the
surface to the crystal growth rate [28], which leads to

ḋc = 4DVc(c − cs)
dc

, (2.11)

where D is the diffusion coefficient of the solute and Vc is the molar volume of the precipitate
(equal to its molecular weight divided by the density). To convert this to a growth rate p in (1.3),
where we suppose that the units of concentration are moles l−1 (M), and thus the units of p are
moles l−1 s−1 (the units of q are s−1), we note that the precipitate concentration is

d = πnI(d3
c − d3

I )
6Vc

, (2.12)

where nI is the number of impurities per litre (the impurities are assumed to be of the same size).
Relating this to (1.3), we find that the Keller/Rubinow form is justified, and the rate coefficient q
is given by

q = 2πnIdID
[

1 + Vcd
VI

]1/3
, (2.13)

where VI = 1
6πnId3

I is the volume density (m3 l−1) of the impurity. All of this discussion simply
reinforces the Keller/Rubinow assumption in (1.3) of a discontinuous growth rate.
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3. Mathematical model
In order to focus attention, we begin with a statement of the Keller–Rubinow model. The reaction
scheme we consider is that given in (1.2), for which the relevant equations are, assuming a one-
dimensional domain,

at = DAaxx − 2r,

bt = DBbxx − r,

ct = DCcxx + r − p

and dt = p,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1)

where r is the reaction rate, given by

r = k+a2b − k−c, (3.2)

and the small letters indicate the concentrations of the corresponding chemical species: a
represents silver and b dichromate. The precipitation rate is given by (1.3):

p =
{

q[c − cs]+ if c ≥ cn > cs or d> 0,

0 if c< cn and d = 0.
(3.3)

A more sophisticated version of this model is given by Fiałkowski et al. [30]. We suppose an
initially uniform solution of b = b0 with a = 0, and we impose a boundary condition a = a0 at x = 0;
these correspond to the experimentally imposed conditions.

A comment should be made concerning the choice of the reaction rate r, as it relates to a
trimolecular reaction (1.2), or more specifically

2Ag+ + Cr2O2−
7 → Ag2Cr2O7. (3.4)

In principle, this total reaction must be a combination of (at least) two bimolecular steps such as

A + B
k1�

k−1

I

and A + I
k2�

k−2

C,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.5)

where I = AgCr2O−
7 , for example. If we then assume that the first of these reactions is very fast and

thus in quasi-equilibrium, we regain (3.2), with k+ = k1k2/k−1 and k− = k−2. Other assumptions
can lead to different rates, however. We follow (3.2) as it is the assumption used by Keller and
Rubinow.1

We assume DB = DC, and then non-dimensionalize the equations by writing

a ∼ a0, b, d ∼ b0, c ∼ cn, p, r ∼ qcn, t ∼ b0

qcn
and x ∼

√
DAb0

qcn
, (3.6)

whence the dimensionless model is

at = axx − 2εr,

bt = δbxx − r,

νct = νδcxx − p + r

and dt = p,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.7)

1In fact, the detail of the bimolecular steps becomes irrelevant when we later assume that the reaction 2A + B � C is fast.
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where

p =
{

[c − α]+ if c ≥ 1 or d> 0,

0 if c< 1 and d = 0

and r =Λ(λa2b − c),

⎫⎪⎪⎬
⎪⎪⎭ (3.8)

and we have defined

α = cs

cn
< 1, ε= b0

a0
� 1, ν = cn

b0
, δ = DB

DA
, λ= k+a2

0b0

k−cn
and Λ= k−

q
. (3.9)

In a saturated solution, we have

c = cs = k+Ksp

k−
, (3.10)

where the solubility product Ksp is given by

Ksp = a2
s bs (3.11)

in saturation, and is measured; it follows that

λ= αa2
0b0

a2
s bs

, (3.12)

so we can assume λ> α.
We now paraphrase Keller and Rubinow’s development, following Fowler [31, pp. 829 ff.].

Suppose that the reaction is very fast, Λ� 1, so that r ≈ 0. Then

c ≈ λa2b. (3.13)

Suitable initial conditions are

a = 0, b = 1, c = d = 0 at t = 0, (3.14)

and suitable boundary conditions are

a = 1, bx = cx = 0 at x = 0,

and a → 0, b → 1, c → 0 as x → ∞.

}
(3.15)

We define the total dichromate
B = b + νc, (3.16)

whence we obtain
Bt = δBxx − p

and dt = p,

}
(3.17)

and also

c = AB, A = λa2

1 + λνa2

and p =
{

[AB − α]+ if AB ≥ 1 or d> 0,

0 if AB< 1 and d = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.18)

Keller and Rubinow assume that the reaction term r can be neglected in the equation for a because
b0 � a0 (the dichromate is very dilute), and it is easy to show this by combining (3.7)1,2; thus

a = erfc
(

x

2
√

t

)
. (3.19)

The monotonically decreasing function A is thus given by

A(θ ) = λerfc2θ

1 + λνerfc2θ
, θ = x

2
√

t
. (3.20)
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The initial and boundary conditions are

B = 1, d = 0 at t = 0;

Bx = 0 at x = 0

and B → 1 as x → ∞.

⎫⎪⎪⎬
⎪⎪⎭ (3.21)

(a) Primary precipitation
The maximum value of A = λ/(1 + λν) is at θ = 0, and thus precipitation occurs at x = 0 providing
λ> 1/(1 − ν), as we assume (and also ν < 1). Keller and Rubinow provide an approximate solution
for their model, as follows. Initially, there is a central precipitating region 0< x< s(t), where p> 0,
and p = 0 outside this. As long as ṡ> 0, the concentration must be at the nucleation threshold,
thus

AB = 1 at x = s, ṡ> 0. (3.22)

Conversely, while s is stationary, we must have

AB< 1 at x = s, ṡ = 0. (3.23)

Thus after the front becomes stationary, the possibility of secondary nucleation ahead of the front
arises.

Suppose that A(θ ) is slowly varying in space, and that s is slowly varying in time; then a quasi-
static solution is appropriate. As B is continuous at s, it follows that AB = 1 there (if ṡ> 0), and
this solution is

AB = α +
(1 − α) cosh

(√
A∗x

)
cosh

(√
A∗s

) , (3.24)

where A∗ = A/δ. For x> s, a stationary solution is not possible, but for slowly varying s,

B = 1 −
(

1 − 1
A

)
erfc

{
x − s

2
√
δt

}
. (3.25)

Equating the derivatives Bx at s±, we find that s is determined by the relation

√
A(Θ) − 1√

A(Θ)
= (1 − α)

√
π t tanh

(√
A(Θ)
δ

s

)
, (3.26)

in which A(Θ) is given by (3.20), but with

Θ = s

2
√

t
. (3.27)

To solve this, we define

u =
√

A(Θ)
δ

s, (3.28)

and then (3.26) can be written in the form

u tanh u = 2Θ√
δπ

{
A(Θ) − 1
(1 − α)

}
. (3.29)

The right-hand side is a unimodal (one-humped) function of Θ , while u tanh u is an increasing
function of u. Therefore, u(Θ) is a positive unimodal function in the range 0<Θ <Θ1, where
A(Θ1) = 1. Consulting (3.26), we see that initially A = 1 and thereafter increases with t. Therefore,
initially Θ =Θ1 and decreases with increasing t. As A is increasing as is s, u must increase, but it
cannot do so indefinitely, because of the maximum value of u(Θ). In consequence, there is a finite
time t∗ when s reaches a maximum s∗, and the solution cannot be continued in this form beyond
this time. We then enter a phase where ṡ = 0, and (3.23) applies.

Keller and Rubinow go on to suggest that a sequence of precipitation bands will subsequently
form, and they analyse these based on the same approximating solutions. The initial motivation
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of our work was to establish the asymptotic basis for their approximation, and then use this to
develop the solution explicitly. However, despite a considerable amount of effort, we have not
been able to find any asymptotic limit in which the Keller–Rubinow solution holds. Below, we
provide an asymptotic description based on the limit δ� 1, which bears little resemblance to the
Keller–Rubinow theory. The solution has been tested successfully against numerical results, as
described in §5.

(b) An asymptotic approximation
We consider the equation (3.17) with δ� 1.2 Specifically, we have

Bt = δBxx − [AB − α]+, x< s,

Bt = δBxx, x> s,

Bx = 0 at x = 0, B → 1 as x → ∞

and B = 1
A

, [Bx]+− = 0 at x = s.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.30)

At leading order in δ, the solution is (with an obvious notation for θ ′ and θ ′′ and assuming AB>α
in x< s)

B = 1, x> s

and B = exp
[
−

∫ t

ts

A(θ ′) dt′
]

+ α

∫ t

ts

exp
[
−

∫ t

t′
A(θ ′′) dt′′

]
dt′, x< s,

⎫⎪⎬
⎪⎭ (3.31)

where ts(x) is the time when the front passes x (because the boundary condition for the equation
Bt = −(AB − α) in x< s is B = 1 at t = ts). The conditions on Bx at x = 0 and x = s are not satisfied,
but are enabled by weak boundary layers there.

It is convenient to write the integrals in terms of θ = x/2
√

t, noting also that t = ts at θ =Θ =
s/2

√
t, where s is determined by the condition

A(Θ) = 1; (3.32)

thus

B = exp
[
−1

2
x2

∫Θ
θ

A(φ) dφ
φ3

]
+ 1

2
αx2

∫Θ
θ

exp
[
−1

2
x2

∫φ
θ

A(ψ) dψ
ψ3

]
dφ
φ3 , x< s. (3.33)

Of interest is the slope S of c = AB at x = s. This is because we must have c< 1 in x> s, and thus
S< 0. Putting x = 2

√
tθ and doing the calculation, we find

S = 1

2
√

t

(
A′ + 2(1 − α)t

Θ

)
, (3.34)

using the fact that A = B = 1 at x = s. As A′(Θ)< 0 and Θ are thus fixed, we see that S< 0 in x< s
for t< tc, where

tc = Θf|A′(Θf)|
2(1 − α)

, (3.35)

andΘ =Θf at t = tc. For t> tc, S in x< s is positive. As S = A′ < 0 in x> s, we see that the condition
for front advance breaks down at t = tc, and after that the front is stationary. The situation is
indicated in figure 2. The subsequent evolution of the solution is considered in §4. Note that (3.34)
is apparently only approximate, in view of the weak boundary layer in B; however, analysis of
the boundary layer shows that (3.34) remains valid to leading order in δ.3

2It is also possible to analyse the case δ� 1, but this is omitted here, for two reasons: firstly, it is not likely to be physically
appropriate, and secondly, it is then generally found that secondary bands do not form.
3The boundary layer is analysed by putting B = 1 + δb, x = s + δX, and the result of this leaves (3.34) unaltered. The solution
is approximately linear behind the front (the outer solution remains valid), it is exponentially declining ahead of the front,
b = −bfe−ṡ(X−Xf), the front shifts to s = 2Θ

√
t + δXf, Xf ≈ −2(1 − α)t3/2/Θ2|A′(Θ)| and the value of B at the front is B ≈ 1 − δbf,

bf = (1 − α)t/Θ2.
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c

t > tc
c

x x

t < tc

Figure2. Thebehaviour of c at the front for (a) t< tc and (b) t> tc. Theapparentdiscontinuity in slopeat the front is smoothed
by a weak boundary layer. The situation in (b) is not tenable, and the front stops moving.

4. Secondary banding
We now consider the situation when t> tc. When the primary crystal stops growing,

t = tc, s = sc = 2Θf
√

tc, (4.1)

where A(Θf) = 1. Subsequent to this, we have to solve

Bt = δBxx − [AB − α]+, x< sc,

Bt = δBxx, x> sc,

Bx = 0 at x = 0, B → 1 as x → ∞,

and B<
1

Ac
, [B]+− = [Bx]+− = 0 at x = s,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

where Ac(t) = A(sc/2
√

t). The outer solutions are as before; however, a (strong) boundary layer
now develops at x = sc, and can be approximately analysed as follows. We write

x = sc +
√
δX and t = tc + τ , (4.3)

and expand A(θ ) near sc for small τ . The result of this, using (4.1) and (3.35), is

A ≈ 1 + (1 − α)τ + · · · . (4.4)

In X< 0, we thus have approximately

Bτ = BXX − {1 + (1 − α)τ }B + α. (4.5)

The outer solution (ignoring the diffusion term) is just B ≈ 1 − (1 − α)τ , and if we define

B = 1 − (1 − α)τg, (4.6)

then to O(τ ), we have (because we can neglect the term (1 − α)τ in (4.5))

g + τgτ = τgXX + 1, (4.7)

of which there is a similarity solution for g of the form

g = 1 − 4(1 − g0)i2erfc(−η), η= X
2
√
τ

, (4.8)

which satisfies the condition g(−∞) = 1, and has g(0) = g0, to be determined.4

4The error function integral i2erfc is defined in Abramowitz & Stegun [32].
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Figure 3. Numerical and asymptotic evolution of the first precipitation front, s(t), for different values of δ. The numerical curve
is generated from the solution to (3.17)with parametersα= 0.25,ν = 0.1 andλ= 5. The asymptotic curve is given by s(t)=
2Θ

√
t whereΘ is given by (3.32). (a) δ= 0.1, tn = 0.873, ta = 1.129 and (b) δ= 0.01, tn = 1.1170, ta = 1.129. Here tn and

ta are denoted the numerical and asymptotic times, respectively, where the first precipitation front terminates. (Online version
in colour.)

Similarly, in η > 0, we write

B = 1 − (1 − α)τh(η), h = 4g0i2erfc η, (4.9)

which satisfies continuity of B at X = 0; g0 is then determined by the condition of continuity of
BX, and this yields g0 = 1

2 . Combining this with the expansion for A, we find that, in X> 0,

c = AB ≈ 1 + (1 − α)τ {1 − 2 i2erfc η} + · · · , (4.10)

with a similar expression in X< 0. Expanding the repeated error function integral for small η then
shows that

c ≈ 1 + (1 − α)
[
±1

4
X2 + X

√
τ

π
+ 1

2
τ

]
+ · · · for X ≶ 0. (4.11)

The requirement that c ≤ 1 at the front is not satisfied, and in addition cX > 0 at the front. As a
result, secondary nucleation occurs immediately ahead of the stationary front.

In practice, this situation is untenable, and in numerical computations a series of grid point
scale spikes occurs, indicating a failure of the model to proceed past the cessation of the first
band. We now describe these results.

5. Numerical results
As we have shown that, under the assumption ε� 1, (3.1) reduces to (3.17), we will focus our
numerical simulations on the latter system. We simulate (3.17) using a method of lines approach
with the stiff ODE solver ode15s in MATLAB. We compute a partial Jacobian matrix where
we neglect the non-smooth p component and provide this to the solver. We use the numerical
results in two ways; firstly, we provide numerical evidence to compare with the asymptotic
results obtained concerning the first front; then, we provide numerical results for secondary spike
formation.

(a) The first front
Figure 3 shows a comparison of the asymptotic prediction for the front position with the
numerical solution at two values of δ. For δ = 0.1, the solution is qualitatively accurate, but for
δ = 0.01, it is much more accurate, indicating a consistent asymptotic approach as δ→ 0.
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Figure 4. Numerical (solid) and asymptotic (dashed) comparison of B(x, t) for two values of δ at t = 0.3 far from when the
first front terminates. (a) δ = 0.1 and (b) δ= 0.01. The numerical solution is generated by solving (3.17) with parameters
α = 0.25, ν = 0.1 andλ= 5. The asymptotic solution in the outer figure is given by (3.31), while the inset includes the weak
boundary layer near x = s(t) (described in the footnote before the beginning of §4). The boundary layer solution at x = 0 has
been omitted. (Online version in colour.)
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Figure 5. Numerical verification that near x = sc and t = tc, cx > 0 for x< sc, as shown in figure 2. The numerical solution
is computed by solving (3.17) with parametersα= 0.25, ν = 0.1,λ= 5 and δ= 0.01. We see that, for t< tc, cx < 0, while
for t> tc, cx > 0, which is consistent with (4.11). (Online version in colour.)

For the same two parameter values, figure 4 shows a comparison of the profile of B, and again
the agreement is excellent at the lower δ value. In the inset we include the weak boundary layer
at the front referred to in the footnote just before §4, but we have not included that at x = 0, which
is of less interest.

Finally, in figure 5 we plot the variation of c at three nearby values of x (x1 < x2 < x3, say) with
time. According to figure 2, for t< tc, c should be monotonically decreasing with x while xi < s,
but for t> tc, c becomes monotonically increasing with x. In figure 5, we can see this behaviour,
as the ordering of the curves switches at t ≈ 1.17; equivalently, figure 2 suggests that at fixed x, c
should increase with t, reaching c = 1 when x = s, and thereafter decrease again, and this is clearly
the case.

(b) Secondary spikes
In this section, all of our simulations are computed with the parameter set

α = 0.25, ν = 0.1, λ= 5 and δ = 0.05, (5.1)
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Figure 6. Precipitate d in the numerical solution to (3.17) with a step size of h= 0.1 on a grid [0, 10] for t = 60. After the first
layer terminates growth, secondary spikes emerge with increasing separation. (Online version in colour.)
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Figure 7. Precipitate d in the numerical solution to (3.17) for two step sizes on a grid [0, 10] for t = 60. Refining the step size
increases the number of spikes produced and their locations. (Online version in colour.)

where we note that, as λ> 1/(1 − ν), nucleation should commence at t = 0. From our analysis, it
appears that proper secondary spikes are impossible. As a first example figure 6 shows the final
time computation (t = 60) of the precipitate d using a grid space of h = 0.1 on a domain [0, 10].

At first glance, it appears that secondary spikes form and space out with increasing separation.
This type of behaviour has been noted before by people analysing this model [33]. However,
this apparent spacing is a numerical artefact, and if we decrease the grid spacing to h = 0.05 and
recompute the solution, new spikes appear (figure 7). Furthermore, the location of the spikes
changes, whereas if the problem was well posed numerically, we would expect a convergent set
of solutions to appear for decreasing step size.

The numerical simulations in the literature such as that of Hilhorst et al. [33] do not seem to do
a numerical refinement study to verify the legitimacy of the spacing they observe. Experimentally,
a true spacing law is observed and is due to Jablczynski [8], which states that, for the nth band
located at xn, the ratio xn+1/xn approaches a constant. We can investigate this numerically by
solving (3.17) for various step sizes. Figure 8 shows the predicted space law from solving to
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Figure 8. Numerically computed space law for a variety of step sizes on a grid of [0, 10] and time t = 4. If a band had more
than one grid point, the spike location was computed at the maximal value of d in the band. Plotted for comparison is the line
y = x. (Online version in colour.)
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Figure9. Precipitatenumerical solution to (3.17) for a series of step sizes onagrid [0, 10] for t = 60using the smoothprecipitate
term (5.3) with smoothing parameterσ = 0.5. The numerical solutions appear to converge as the step size is reduced. (Online
version in colour.)

t = 4 on a fixed grid [0, 10]. As the step size decreases, the ratio xn+1/xn approaches a slope of
1, indicating that the (n + 1)th spike will overlap the nth spike. This confirms numerically what
we showed analytically in (4.11), that a new band forms immediately after the previous one
terminates.

The grid scale spike behaviour is due to the presence of a Heaviside-type term, p, given by
(3.18). To make the presence of the Heaviside function explicit, (3.18) can be rewritten as

p = [AB − α]+H([AB − 1]+ + d); H(z) =
{

1, z> 0,

0, z ≤ 0.
(5.2)

This expression for p can be approximated using a hyperbolic tangent function as

p ≈ [AB − α]+ tanh
(

[AB − 1]+ + d
σ

)
, (5.3)
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where σ is the smoothing parameter. Note that the standard approximation to the Heaviside
function is H(x) ≈ 1

2 [tanh(x/σ ) + 1], but this takes the value H(0) = 1
2 , whereas we want to strictly

enforce H(0) ≈ 0, as this is an important nucleation threshold. The consequence of the smoothing
we have chosen is that our approximation for H(x) ≈ −1 as x → −∞; however, because the
argument is never negative, we do not need to worry about this negative branch. Figure 9 shows
the results of computing d on [0, 10] to t = 60 for a variety of step sizes and with the smoothing
parameter σ = 0.5. We note that unlike the grid scale spikes that emerge in the Heaviside model,
the location of the secondary bands remains fixed as the step size is reduced and the values of d
converge. Unlike the Heaviside model, all of the secondary bands are multiple grid points in size.

6. Conclusion
We set out to establish an asymptotic basis for the approximations used by Keller & Rubinow [10]
in their analysis of Ostwald’s supersaturation theory for the formation of Liesegang rings. Despite
intense effort, we have been unable to find such a basis. Instead, we have shown that in a limit
where the diffusivity of Cr2O2−

7 is much less than that of Ag+, a successful asymptotic solution
can be obtained, and we have verified this solution numerically. We also showed that the first
precipitation front will terminate, and this is followed by a sequence of subsequent nucleation
bands, but that these ‘bands’ occur as sharp spikes whose width is controlled by, and equal to, the
step size used in the numerical computation.

The cause of this ill-posedness lies in the discontinuity in the prescription of the crystal growth
rate, but in our discussion of the mechanics of nucleation, we found this discontinuity to be
physically appropriate. We also found that if the growth rate function is smoothed, then the
secondary bands are of finite width, and the model is well posed. What this suggests is that the
ill-posedness of the Keller–Rubinow model is due to the omission of a describing equation for a
switching variable, which enables the discontinuity in the growth rate by means of a hysteretic
switch between two steady states. While we postpone validation of this concept to a succeeding
paper, we suggest here that the switching variable can be taken to be the fractional area coverage
f ∈ [0, 1] of precipitate on nucleating impurities. Thus, f = 0 corresponds to d = 0 and f = 1 to d> 0;
it is the finite time relaxation of f between these two values which will enable the resolution of
the ill-posedness of the Keller–Rubinow model.
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