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A B S T R A C T

Volcanoes of Strombolian type are able to maintain their semi-permanent eruptive states through the con-
stant convective recycling of magma within the conduit leading from the magma chamber. In this paper we
study the form of this convection using an analytic model of degassing two-phase flow in a vertical channel.
We provide solutions for the flow at small Grashof and large Prandtl numbers, and we suggest that per-
manent steady-state counter-current convection is only possible if an initial bubbly counter-current flow
undergoes a régime transition to a churn-turbulent flow. We also suggest that the magma in the chamber
must be under-pressured in order for the flow to be maintained, and that this compromises the assumed
form of the flow.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Strombolian volcanic eruptions (Vergniolle and Mangan, 2000)
are characterised by regular explosions from the magmatic vent,
in which gases are released in a rhythmic fashion. The manner of
the explosions is not very violent, and the eruptions are some-
times characterised by the extreme longevity of the sequence. The
type example, Stromboli, which sometimes erupts in a Strombolian
eruptive style, is thought to have been erupting continuously for
thousands of years.

Volcanoes which erupt in a Strombolian manner are characterised
by relatively low viscosity (102–103 Pa s) gas-rich basaltic magma,
and it is thought that the eruptive gases (H2O, CO2, SO2 for example)
are exsolved from the magma as it is depressurised on its ascent.
Many examples of Strombolian-type volcanoes are known, e.g.,
Villarrica, Chile (Witter et al., 2004), Izu-Oshima, Japan (Kazahaya et
al., 1994), Satsuma-Iwojima, Japan (Kazahaya et al., 2002), Stromboli,
Italy and Mount St. Helens, United States (Stevenson and Blake,
1998). Some of these possess a lava lake at the summit of the
magma column, e.g. Pu’u ’O’o, Hawaii (Witham and Llewellin, 2006),
Izu-Oshima (Kazahaya et al., 1994) and Villarrica (Witter et al., 2004).
Degassing phases can last from many years to millennia (Stevenson
and Blake, 1998). Clearly some mechanism must be at work within
the magmatic plumbing system which transports a steady supply of
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volcanic gases from deep below the Earth’s surface to the volcanic
vent.

It is generally thought that these long-lived eruptive phases are
maintained by counter-current convection in the magmatic conduit
which connects the magma chamber to the surface (Kazahaya et
al., 1994; Stevenson and Blake, 1998; Beckett et al. 2011, 2014).
The upwelling magma is bubble-rich, and this provides the buoy-
ancy to drive the upflow. The bubbles erupt at the surface, and the
degassed magma is then heavier as well as colder and more viscous,
and sinks back to the chamber. As pointed out by Carrigan (1983),
such counter-current convection additionally provides a mechanism
to offset the heat loss to the surrounding country rock, which would
otherwise cause the magma to freeze in the conduit.

There have been a number of experimental and theoretical stud-
ies of such counter-current convection. Experiments (e.g., Stevenson
and Blake, 1998; Huppert and Hallworth, 2007; Beckett et al. 2011)
use two liquids of differing densities and viscosities, and reveal vary-
ing flow patterns, but a core-annular flow seems to be preferred at
high viscosity ratios, with the heavier more viscous fluid flowing
down the outside of the pipe (Beckett et al. 2011).

This proposed mechanism of continuous passive degassing has
been considered in many studies in the literature (Kazahaya et al.,
1994, 2002; Shinohara et al., 1995; Stevenson and Blake, 1998;
Stix, 2007; Witter et al., 2004), and more recently, direct geo-
physical and geochemical evidence has emerged illuminating the
processes of counter-current flow (Moussallam et al., 2015; Ilanko
et al., 2015; Carbone et al., 2012; Wadsworth et al., 2015). A sim-
ple model for the flow in a cylindrical conduit is analogous to the
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two-fluid experimental studies, where bubble-rich magma ascends
in the centre and heavier degassed magma descends in an outer
annulus (Kazahaya et al., 1994), and the flow is driven by the den-
sity difference between the ascending and descending magmas. This
pipe model has also been extended to describe convection of sili-
cic magma in a conduit (Shinohara et al., 1995; Kazahaya et al.,
2002; Stevenson and Blake, 1998). Such a model essentially treats
the gas-rich and gas-poor magmas as two different fluids with dif-
ferent densities and viscosities. Mixing of the two magmas would be
unlikely if the Reynolds number is less than 103 and the flow remains
laminar (Shinohara et al., 1995).

Theoretical studies are in principle able to address issues which
lie outside the present scope of experimental studies, in particular
the rôle of convective heat transport in keeping the magma in a liquid
state, and the rôle of exsolution in providing buoyancy in the cen-
tral core flow, and its description as a two-phase flow. Experimental
investigation of two-phase convection in the conduit is challeng-
ing. The heat transfer issue can perhaps be ignored, but in order for
exsolution to occur due to pressure release, a large pressure drop
is necessary; at a laboratory scale, this suggests enormous veloci-
ties, which mitigates against the attainment of laminar flow. A way
round this is for the liquid to have very high viscosity, and probably
much higher than basaltic magma, in view of the laboratory length
scale. For materials such as golden syrup this requires cold tem-
peratures, and the issue of having dissolved gas becomes an issue;
but the attainment and maintenance of large pressure drops seem
hazardous.

There have been a number of numerical studies of two-phase
flow in a volcanic conduit related to the present investigation. Melnik
(2000) provides a homogeneous model of bubbly flow, with appli-
cation to explosive eruptions. Starostin et al. (2005) also presented
a two-phase flow model for explosive eruptions, assuming homo-
geneous flow (i.e., with a single velocity). Bercovici and Michaut
(2010) presented a full two-fluid two-phase flow model, but were
concerned with unidirectional flows and the transition to supersonic
flow. Others (Burton et al., 2007; Witham, 2011) consider two-phase
flow in the context of Strombolian eruptions, but there appears not
to have been a corresponding two-phase model of the corresponding
counter-current flow. The physics of exsolving two-phase flows has
been discussed by Gonnermann and Manga (2012), who also sum-
marise recent modelling efforts. James et al. (2008) discuss models of
slug flow in a volcanic context. Mangan et al. (2004) consider bubble
nucleation in some detail, but their two-phase flow model is quite
simple. Pioli et al. (2012) provide experimental results, and are par-
ticularly focussed on régime transition. Sparks (2003) summarises
much of the two-phase flow theory that was developed around
the time of the eruption of the Soufrière Hills Volcano, Montserrat

(Voight et al., 1999), in the late 1990s, for example by Melnik and
Sparks (1999), Barmin et al. (2002), Massol and Jaupart (1999), and
Melnik and Sparks (2002); he also draws attention to a parallel
Russian literature, most of it in Russian, but adequately summarised
by Slezin (2003). Some of these models are fairly simplistic, and all
of them are concerned with unidirectional flow, and are derived
from the earlier work by Vergniolle and Jaupart (1986) on separated
flow and Vergniolle and Jaupart (1990) on foams. The situation is
reviewed by Vergniolle and Gaudemer (2015), who re-iterate the
difficulty associated with analysing the counter-current two-phase
flow in a Strombolian conduit.

Burton et al. (2007) draw attention to the likelihood of régime
transition in Strombolian conduits, and specifically from bubbly to
slug flow, and this effect will form a central theme to our paper.
Jaupart and Vergniolle (1988, 1989) conceived of what is usually
taken to be an alternative explanation for the bubbly flow in the
conduit. In their model, exsolution occurs in the underlying chamber,
forming a foam at the chamber roof. This provides the source of the
gas bubbles in the conduit.

In this paper we re-examine the question of modelling magma
flow in a conduit, in which volatiles are exsolved and thus drive a
permanent buoyancy-induced counter-current convective flow. We
frame our model in the context of a two-phase bubbly flow, which
we are then able to simplify to a form which is essentially capa-
ble of analytic solution. As discussed above, there has been a lot
of two-phase flow modelling for unidirectional flows, and while it
has been contemplated for counter-current flows (Vergniolle and
Gaudemer, 2015), no such model appears to have been proposed:
this paper addresses that omission. We identify a parametric limit
which ensures fully-developed flow, and show that it is only physi-
cally appropriate for sufficiently long conduits, or sufficiently viscous
magma, and we are then able to draw specific conclusions on the
pressure and bubble fraction profiles in the conduit.

It is fairly evident during eruptions that the bubbly flow style is
not maintained to the outlet vent of the conduit; for example, the
occurrence of mild explosions (Strombolian ‘burps’), or more violent
ejections of gas and ash (Carbone et al., 2012) are indicative of churn
or slug-type flow, but in the context of a theoretical model, it is
not obvious how or why this should occur. Régime transitions have
been studied experimentally, but there is little understanding of what
causes them to occur. In this paper, we shall find that régime transition
is an essential component in modelling the counter-current flow.

As we shall see, in our conception, there is no significant differ-
ence between the conceptual picture of Jaupart and Vergniolle and
that considered here of exsolution in the conduit: the only difference
is quantitative, and concerns what the initial bubble volume fraction
is at the base of the conduit.

2. A model for two-phase flow in a conduit

In this section we study a model of counter-current dispersed two-phase convection in a conduit; initially this will be taken to be a two-
dimensional channel, but later the model will be applied to a cylindrical conduit, or pipe. The flow is driven by the buoyancy created by volatile
exsolution as the magma ascends. As we have explained above, our primary motivation lies in extending earlier theoretical studies to a more
realistic situation where two-phase exsolving counter-current flows are considered. But it should be emphasised that this description falls
short of realism in several regards. Firstly, it is obviously an idealisation to consider a conduit with straight-sided walls (firstly, a channel, and
subsequently, a pipe). Irregular flow geometries may in themselves render the theory inadvisable, particularly as to whether a core-annular
flow is relevant. Perhaps more importantly, as emphasised by Sparks (2003), exsolution changes the liquidus of the magma, which will lead
to crystal growth at the same time as bubbles form. We do not presume to include such effects, but simply recognise that they may be of
significant importance.

The situation we consider is indicated in Fig. 1, which shows schematically a conduit flow from a magma chamber towards the surface. The
chamber may have a foam layer at its roof, which feeds into a counter-current two-phase flow in the conduit, with an exsolving bubble-rich
central flow rising through a bubble-poor downwelling flow. The cartoon shows also a transition from this counter-current bubbly flow to a
churn flow, in which there are also large Taylor bubbles, and no clear separation between the up- and down-flows. We think of the exsolved
gas as steam, although there will be other dissolved gases, in particular, CO2. Additionally (and particularly as steam is exsolved), crystals will
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magma chamber

bubbly flow

churn flow

Fig. 1. A cartoon of the conduit flow from the magma chamber. We show a régime transition between bubbly counter-current flow and churn flow, which we later find to be
necessary in a steady state description.

grow in the melt (Sparks, 2003). We ignore this also. Initially, for simplicity, we will consider a two-dimensional flow described by horizontal
and vertical coordinates x and z, respectively. Extension to cylindrical pipe flow will be done later in Section 3.4.

In a two-phase flow model, the average gas and liquid pressures are generally different, and the difference is usually constituted in terms
of the phase velocities (Drew and Passman, 1999). This includes terms representing bulk viscosity and bubble collapse (Batchelor, 1967, pp.
253, 480), as well as surface tension. In an earlier draft of this paper, many such terms were included, and then it was shown through scaling
arguments that they were all small in comparison to the pressure difference along the conduit, so we will take the pressures to be equal.

The magma consists of two components, liquid magma and gaseous steam, having respective densities ql and qg. The gas volume fraction
is a, and the mass fraction of dissolved water in the magma is c. As the magma ascends, exsolution occurs at a rate E (with units of kg steam
per unit volume per unit time), and therefore mass conservation of the liquid and gas phases can be written in the form

[ql(1 − a)]t + ∇ .[ql(1 − a)u] = −E,

(qga)t + ∇ .(qgav) = E, (1)

The sum of these represents conservation of total mass, i.e., of the non-aqueous magma and the water substance component. Additionally we
also have conservation of mass of total water substance, whose density is ql(1 − a)c + qga, or alternatively, conservation of non-aqueous
magma, whose density is q[(1 − a)(1 − c); selecting the latter, we have therefore

[ql(1 − a)(1 − c)]t + ∇ .[ql(1 − a)(1 − c)u] = 0, (2)

where u is the liquid velocity, v is the gas velocity, and combining this with Eq. (1)1 (we use the notation (a)b to represent the b-th member of
the equation set (a)), we obtain

[ql(1 − a)c]t + ∇ .[ql(1 − a)cu] = −E. (3)

There are two momentum equations, and these take the form

[ql(1 − a)u]t + ∇ .[ql(1 − a)uu] = −(1 − a) ∇ p + ∇ .
[
ll(1 − a)

(
∇ u + ∇ uT

)]
+ M − ql(1 − a)gk,

(qgav)t + ∇ .(qgavv) = −a∇ p − M − qgagk, (4)

where p is the pressure, l l is the liquid viscosity, which we begin by taking to be independent of dissolved water content, g ≈ 9.8 m s−2 is
acceleration due to gravity, and k is the unit vector in the vertical direction. The term M is an interfacial drag term which will generally be
proportional to v − u. One particularly useful assumption is to take

M =
lla(1 − a)(v − u)

k
, (5)
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which is the appropriate form if the resultant equation for the gas momentum (neglecting acceleration) is equivalent to Darcy’s law (for the
liquid flow relative to the dispersed bubbles), with k being the permeability.

The liquid density ql will depend on volatile concentration c, temperature T and pressure p. The first two of these dependences are small,
but the last is significant (Huppert and Woods, 2002). On the other hand, magma density will depend even more on crystal fraction, which we
do not consider in our model. For reasons of simplicity, we take ql to be constant. We assume an ideal gas such that

qg =
Mwp
RT

, (6)

where Mw = 1.8 × 10−2 kg mol−1 is the molecular weight of H2O and R = 8.3 J mol−1 K−1 is the gas constant.
In the Earth’s asthenosphere, pressures are sufficiently high that all gases are dissolved in the liquid melt (i.e., a = 0), but as the magma

ascends and the hydrostatic pressure decreases, the magma becomes supersaturated in volatiles and bubbles will start to nucleate; first CO2

comes out of solution, and then H2O. At a depth of 10 km, most CO2 has already exsolved (Burton et al., 2007), but H2O continues to be exsolved
in a conduit flow, so that c will decrease from its initial value c|a=0 = c0. We assume that an equilibrium exists between the amount of H2O
dissolved in the melt and the surrounding pressure which satisfies the experimental relationship

c = Kpm , (7)

where K is a solubility constant. Eq. (7) is a form of Henry’s law, which expresses the equilibrium at a gas-liquid interface between the processes
of dissolution and evaporation; its form is based on experimental observations. The exponent m = 0.5 for rhyolite and is 0.7 for basalt (Parfitt
and Wilson, 2008); for basalt the value of K is approximately K = 1.1 × 10−3 MPa−m . The liquid density will vary slightly as the gas is exsolved,
but if c is small, the variation is small and will be ignored.

It is commonly the case in considering conservation of energy of each phase to assume that the interfacial heat transfer is so large that the
gas and liquid temperatures are the same. In this case, we only need to consider conservation of total energy, and this is given approximately
by (see Fowler, 2011, p. 845, for example)

aqgcpg
dT
dtg

+ (1 − a)qlcpl
dT
dtl

+ LE = ∇ .[(1 − a)kl ∇ T]; (8)

the four terms in this equation represent advection of heat by the gas, advection of heat by the liquid, loss of latent heat due to exsolution, and
thermal conduction of heat; here kl is the thermal conductivity of the magma (that for water vapour being much less), cpg and cpl are the gas
and liquid specific heats at constant pressure, L is the latent heat, which we take to be constant, and

d
dtl

=
∂

∂t
+ u.∇ ,

d
dtg

=
∂

∂t
+ v.∇ . (9)

It can be shown that other adiabatic terms involving pressure are small, on the basis that the variation of pressure along the conduit is much
smaller than the variation of sensible heat, Dp � qlcplDT. The Eqs. (1), (3), (4), (6), (7) and (8) give us eight equations for the eight unknowns
u, p, a, q, qg, E, T and c. Generally, the evaporation rate E is determined from the energy Eq. (8). This is commonly the case in two-phase phase
change problems, since at thermodynamic equilibrium, the temperature is prescribed as the liquidus temperature of the melt. In the present
case, this is not quite true, since the thermodynamic equilibrium is given by Eq. (7), which is independent of temperature, and thus E can be
thought of as being determined by Eq. (3).

2.1. Bubbly flow

We initially assume a bubbly flow, which we expect to be appropriate for sufficiently small a. A major simplification of the two-phase
model stems from the assumption that the interactive drag between the phases would be large if there were any significant velocity difference
between the phases, not only in the gas momentum equation, but also in that for the liquid. In a viscously dominated flow, the appropriate
vertical velocity scale is qlga2/l l, where a is the conduit radius (or half-width if a channel), and thus if we assume the drag to be of the form
(5), we find that M/qlg ∼ a2/a2

b , where ab is bubble radius (since we have the permeability k ∼ a2
b). Typical bubble sizes in erupted scoria are of

the order of 100 lm (Rust and Cashman, 2011), and in this case the assumption of a homogeneous flow in which the gas and liquid velocities
are equal is a reasonable assumption, since ab � a. We thus begin by taking v = u. To obtain an appropriate momentum equation, we thus
need to add the two momentum equations to eliminate M. This rough argument is elaborated more explicitly below, following Eq. (13).

2.2. Dimensionless model

The geometry and boundary conditions of the counter-current flow in the conduit are shown in Fig. 2. The figure shows the right hand
side of a counter-current flow, with the centre of the flow at the left, and the conduit wall at the right. The upwelling flow (to the left of the
diagram) is bubble-rich and hot, the downwelling flow (to the right) is bubble-poor and relatively cool. As mentioned above, we consider first
flow in a two-dimensional channel; the extension to pipe flow is made later in Section 3.4. We define horizontal and vertical coordinates x and
z, with corresponding velocity components v = u = (u, w), and the two-dimensional conduit occupies −a < x < a, 0 < z < lc. We make the
model dimensionless in the following way. The notation x ∼ a below signifies that we define a dimensionless length variable x∗ by means of
the relation x = ax∗, and so on for the other variables; in the resulting dimensionless equations, the asterisks are then omitted for convenience;
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Fig. 2. The geometry and boundary conditions of the flow. The cartoon shows the dimensionless half-width of the channel, with the centre-line at x = 0, the interface between
bubbly and degassed flow at x = s, and the conduit wall at x = 1.

the slight exception to this is in the definition of the dimensionless conduit length l∗, where the asterisk is retained to avoid confusion with
the length scale l. The model is made dimensionless using the scalings

x ∼ a, z ∼ l, w ∼ v0 ≡ qlga2

ll
, u ∼ qlga3

lll
, qg ∼ q0

g =
Mwqlgl

RTc
,

c ∼ c0, T ∼ Tc, p = qlglP, E ∼ q0
gqlga2

lll
, t ∼ lll

qlga2
, lc = ll∗, (10)

where l is a suitable length scale for the conduit (chosen precisely below), and Tc is the chamber temperature. The vertical velocity scale is
chosen to provide a balance between the driving buoyancy of the ascending bubbly magma and the viscous stress which resists it, although it
should be pointed out that the value of this scale is a lot larger than inferred ascent rates of ∼0.3 m s−1 (Burton et al., 2007), which they deduce
from the magma flux necessary to produce observed SO2 emissions.

The non-dimensional Eqs. (1), (3), (4), (6) and (7) take the form

(qga)t + ∇ .(qgau) =E,

−at + ∇ .[(1 − a)u] = − dE,

[(1 − a)c]t + ∇ .[(1 − a)cu] = − CE,

c =wPm ,

qg =
P

T
,

e2Gq(ut + u.∇ u) = − ∂P

∂x
+ e2

(
∂2u
∂x2

+ e2 ∂2u
∂z2

)
,

Gq(wt + u.∇ w) = − 1 − ∂P

∂z
+ a(1 − dqg) +

∂2w
∂x2

+ e2 ∂2w
∂z2

,

q =(1 − a) + daqg. (11)

The parameters are defined by

e =
a
l

, G = eGr, Gr =
v2

0

ga
=

q2
l ga3

l2
l

, d =
q0

g

ql
, C =

d

c0
, w =

K(qlgl)m

c0
; (12)

Gr is the Grashof number for the flow, thus G is a reduced Grashof number in a high aspect ratio flow. We now choose to specify the length
scale by choosing C = 1, thus

l =
RTcc0

Mwg
, l∗ =

Mwglc
RTcc0

. (13)
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In order to demonstrate explicitly the reason why the model can be taken to be homogeneous, as described in Section 2.1, we render the
vertical component of the gas momentum Eq. (4)2 dimensionless, using the scales in Eq. (10). Denoting the gas vertical velocity as w and the
liquid vertical velocity as W, the result of this is, in dimensionless terms,

dG(Ew + ẇ) = −aPz − a2

k
a(1 − a)(w − W) − daqg , (14)

where ẇ = wt + v.∇ w; assuming d � 1 and G � 1, we see that the interfacial drag term dominates, and thus the flow can be taken to be
homogeneous, if k � a2; and since (see Section 2.1) k � a2

b , we see that, as stated, the assumption of homogeneous flow is valid provided the
bubble size ab � a, the tube radius (or channel half-width).

The dimensionless temperature T satisfies the energy equation

G [1 − a + acqg]
dT
dt

+ dGSE =
1
Pr

[{
(1 − a)Tx

}
x + e2{

(1 − a)Tz
}

z

]
, (15)

where

Pr =
llcpl

kl
, c =

dcpg

cpl
, S =

L
cplTc

. (16)

All of the model parameters are listed in Table 1, together with the values we use. Table 2 lists the dimensionless parameters and their
approximate values. The neglect of O(e2) terms yields the lubrication approximation P = P(z, t). If we neglect other terms of order 10−2 and
less except where they are singular, we obtain a reduced model, which is

(qga)t + ∇ .(qgau) =E,

−at + ∇ .[(1 − a)u] =0,

[(1 − a)c]t + ∇ .[(1 − a)cu] = − CE,

c =wPm ,

qg =
P

T
,

G(1 − a)(wt + u.∇ w) = − (1 − a) − Pz + wxx,

G(1 − a)(Tt + u.∇ T) =
1
Pr

{
(1 − a)Tx

}
x. (17)

We have retained the small thermal diffusivity term to allow description of the thermal boundaries separating the upflow and downflow. Note
that the Reynolds number of the flow in terms of the vertical velocity scale is just the (unreduced) Grashof number

Gr =
q2

l ga3

l2
l

, (18)

Table 1
Parameters and their typical values. The values of Ta and Tc are taken from Harris and Stevenson (1997),
and the viscosity values from Métrich et al. (2001); the low value is typical of crystal-free upwelling
basaltic magma, and the higher value is more typical of downwelling crystal-rich gas-poor magma.
The value of the surface tension s (used later in Eq. (56)) is from Mangan and Sisson (2005).

Parameter Meaning Value used

a Conduit radius 2 m
c0 Initial mass fraction of dissolved water 0.05
cpl Liquid specific heat 103 J kg−1 K−1

cpg Gas specific heat 2 × 103 J kg−1 K−1

g Gravity 9.8 m s−2

kl Liquid thermal conductivity 1.8 W m−1 K−1

K Coefficient in Henry’s law (7) 1.1 × 10−3 MPa−m

L Latent heat of exsolution 106 J kg−1

l Conduit length scale 3 km
Mw Molecular weight of water 1.8 × 10−2 kg mol−1

pa Atmospheric pressure 105 Pa
R Universal gas constant 8.3 J K−1 mol −1

Tc Magma chamber temperature 1273 K
Ta Surface magma temperature 1173 K
l l (Range of) magma viscosity 20–1.4 × 104 Pa s
m Exponent in Henry’s law (7) 0.7
q0

g Reference gas density 130 kg m−3

ql Magma density 2.6 × 103 kg m−3

qs Rock density 3.5 × 103 kg m−3

s Gas-liquid surface tension 0.05 N m−1
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Table 2
Dimensionless parameters and values. The range of G is associated with the different viscosities of
upwelling (high G) and downwelling (low G) flow. Equivalent ranges would apply to the value of Pr;
the value quoted is for l l = 102 Pa s, but Pr is in any case large.

Parameter (Dimensionless) meaning Value

G Reduced Grashof number 0.17 × 10−2 – 0.9 × 103

Pr Prandtl number 104

S Stefan number 0.8
c Specific heat capacity ratio 0.03
C Chooses conduit length scale ≡ 1
d Density ratio 0.05
e Conduit aspect ratio 0.67 × 10−3

g Viscosity ratio 1.4 × 10−3

k Relative temperature decrease 0.08
m Exponent in Henry’s law 0.7
w Coefficient in Henry’s law 0.46
Pa Surface pressure 1.3 × 10−3

and since e ∼ 10−3 and G = eGr, the flow is apparently laminar if G � 1. Small values of G are appropriate for degassed viscous magma, and we
expect that this is the value which determines the mixing of the two magmas, because of the basic principle that in the motion of two fluids,
the more viscous one controls proceedings because it is harder to move; for example, in the study of water waves, one generally ignores the
air (unless it is driving the flow) on the basis that it is easily deformed. In addition, the different viscosities will cause the upwelling flow to be
significantly narrower than the downwelling return flow, so that the upwelling flow Reynolds number will practically be similar to that of the
downwelling flow. On this basis we assume that the flow is laminar, and we neglect mixing, although some will inevitably occur.1

Now if

0t + ∇ .(0u) = 0,

xt + ∇ .(xu) = 0, (19)

then it follows that

(
0

x

)
t

+ u.∇
(
0

x

)
= 0. (20)

Applying this to Eq. (17), we see that, bearing in mind that C = 1, c + qga

1−a is advected with the flow. Indeed, we can suppose that this is also
true within the magma chamber. Since, by choice of the scale for c, c = 1 when a = 0 before exsolution occurs, it follows that the value of
this conserved quantity is one (for the bubbly flow: zero for the degassed magma). We will suppose that at the base of the conduit, bubbles
are either already present in the chamber, or just start to form at the entrance to the conduit: thus a|z=0 ≥ 0. The alternative, that bubble
nucleation does not begin until further up the conduit, is unlikely, since only thermal buoyancy could then drive the flow, which would thus
be more prone to stagnate and freeze.

From the definitions of c and qg in Eq. (17), we can take (with T = 1, corresponding to an upflow temperature equal to that in the chamber)

wPm +
aP

1 − a
= 1, (21)

and thus

a =
1 − wPm

1 − wPm + P
. (22)

The function a(P), which describes the variation of the bubble volume fraction with dimensionless pressure, is portrayed in Fig. 3. Assuming
atmospheric pressure at the surface, a suitable boundary condition is to specify

P = Pa =
pa

qlgl
at z = l∗, (23)

where l∗ is the dimensionless conduit length, having been scaled with the length scale l defined in Eq. (13), pa = 105 Pa is atmospheric
pressure, which also implies a ≈ 1 there, since Pa ∼ 10−3; all the gas exsolves at the surface. We come to this observation later.

1 It turns out that the assumption G � 1 is actually quite safe, since the numerically computed values of w ∼ 10−3, so that the Reynolds number is indeed small, and this also
resolves the discrepancy noted earlier between the choice of velocity scale and observed conduit velocities.
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Fig. 3. The function a(P) defined by Eq. (22), using the values w = 0.46, m = 0.7. a is the bubble volume fraction, P is the dimensionless pressure, and w and m are dimensionless
parameters defined in Eq. (12) and Table 1, respectively.

In addition, we need a boundary condition at the inlet. One possibility should be to prescribe the magma pressure in the chamber. This
would imply

P = P0 at z = 0, (24)

where the simplest assumption would be that of a lithostatic pressure in the chamber,

P0 ≈ qsl∗

ql
∼ 1.35l∗, (25)

according to the values in Table 1, where qs is the density of the crustal rock. An alternative is to prescribe the upwards mass flux at the inlet,
since this is approximately known (Burton et al., 2007). More properly, the inlet boundary condition requires a consideration of the chamber
filling process. We offer some comments on this in Section 4, although a complete discussion is beyond the scope of the present paper.

The application of Henry’s law, and thus the validity of Eq. (17)4, requires that a > 0. Assuming no entrainment, this requires upflow, since
when the bubbles reach the top of the conduit, they erupt or fizz into the atmosphere. In the descending flow, we presume that a = 0, and
Eq. (17)4 does not apply.

In summary, our analysis shows that we can take the bubble volume fraction a to be an algebraic function of the pressure variable P in the
upwelling magma. This opens the path to solving the counter-current flow equations, which we treat in the next section.

3. Fully developed velocity profile

Initially, and for ease of exposition, we suppose that the viscosity takes the same value for both up and down flow; this restriction is relaxed
later. We assume that the central portion of the conduit contains the ascending magma and we refer to this region as the upwelling zone. This
is surrounded by the downwelling zone, where the degassed magma descends back to the chamber and we assume that there is no mixing at
the upwelling-downwelling interface, which we denote (in x > 0) by x = s. We take the centre line to be at x = 0 and the bounding wall at
x = 1. As we suppose the flow is symmetric about the centre line, this is sufficient for our needs. See Fig. 2 for an illustration of the geometry.

An interesting question concerns the velocity at the interface between the bubbly upwelling magma and the degassed downwelling magma.
In their study, Kazahaya et al. (1994) assumed that the vertical velocity was zero at the interface. While this seems reasonable, it is not the
most general assumption, and was thought by Stevenson and Blake (1998) to be the reason why their experimental results disagreed with the
Kazahaya theory, a view endorsed by Huppert and Hallworth (2007). In our analysis, we allow for a non-zero interfacial velocity. The problem
is somewhat similar to the counter-current flow in a settling pint of Guinness, where the inwards slope of the vessel wall causes the bubbles
to sink with the fluid on the outside, although they rise in the interior (Benilov et al., 2013).

We now consider steady solutions of the reduced model of the preceding section. It is convenient to define a reduced temperature h via

T = 1 − k + kh, (26)

where

k =
DT
Tc

, DT = Tc − Ta, (27)
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and Ta is the magma temperature at the upper surface of the conduit; its value is determined by the heat losses from the surface and to the
surrounding country rock. The point is that then h = 1 at the chamber, and h = 0 at the surface. In summary, the model describes a bubbly,
mostly upwelling, flow (u, w) in 0 < x < s, in which

[(1 − a)u]x + [(1 − a)w]z = 0,

G(1 − a)(uwx + wwz) = −1 − P′ + a + wxx,

G(1 − a)(uhx + whz) =
1
Pr

[(1 − a)hx]x, (28)

with a given by Eq. (22). E no longer appears in the model as it has been used to determine c and thus a in Eq. (22) (see the discussion following
Eq. (20)). In the (mostly) downwelling zone, s < x < 1, a = c = 0, so that

ux + wz = 0,

G(uwx + wwz) = −1 − P′ + wxx,

G(uhx + whz) =
1
Pr

hxx. (29)

Most studies of counter-current convection assume that the velocity field has reached a uniform state, in which viscous drag balances the
buoyancy term, and we will follow this assumption. It is based on the notion that the inlet length a Gr is much less than the conduit length,
i.e., G � 1, and therefore the acceleration terms in Eqs. (28) and (29) are small. Considering Eq. (12), this condition is met most easily by taking
the larger of the viscosity estimates in Table 1 (which we show to be the appropriate choice below). The flow is then uni-directional, u = 0,
and w depends only on x. Such solutions have been provided before (e.g., Kazahaya et al., 1994; Huppert and Hallworth, 2007); the principal
distinctions here are that the ascending fluid density varies as outgassing occurs, and thus also the radius or half-width of the ascending column
of fluid varies with height.

The bubbly flow is contained in 0 ≤ x < s and the degassed flow in s < x < 1. The no slip condition at the conduit wall requires w(1) = 0,
and the centre line symmetry requires wx(0) = 0. In addition we require continuity of w and wx at the interface. It follows from Eqs. (28)2 and
(29)2 that

wxx = 1 + P′ − a, x < s,

wxx = 1 + P′, x > s. (30)

Because the thermal diffusivity is so small, the ascending gas-rich magma is at the chamber temperature h = 1 and the descending
degassed magma is at the surface temperature h = 0 (and also a = 0). A thermal boundary layer separates the two regions, but its analysis
distracts from, and is not necessary for, the analysis of the flow, and is relegated to the appendix.

We solve Eq. (30) subject to

wx(0) = 0, w(s) = −Wd, w(1) = 0. (31)

A simple integration then yields

w =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (a − 1 − P′)(s2 − x2) − Wd for 0 ≤ x ≤ s,

− 1
2 (1 + P′)(s2 − x2) + as(s − x) − Wd for s ≤ x ≤ 1,

(32)

and the condition of no slip at x = 1 gives

P′ = −1 +
2as

1 + s
+

2Wd

1 − s2
. (33)

Lastly, it remains to determine the interface position s and the interfacial velocity Wd. The conditions to determine these come from inte-
gration of the mass conservation Eq. (28)1, using conditions of u = 0 at x = 0 and x = 1, and no flow through the interface at x = s, i.e.,
u = ws′ there. One consequence of this is the condition of no net mass flux, which is approximately (since d � 1) that of no net liquid flow:

∫ 1

0
(1 − a)w dx = 0, (34)

where the constant on the right hand side is zero because of equal up and down flow at the top and bottom. By integrating only from x = s to
x = 1, we find that the downwards degassed flux is independent of height, thus

Q+ = −
∫ 1

s
w dx = Q∗ (35)
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Fig. 4. The surface G(a, s). This function, of bubble volume fraction and upwelling flow half-width, is given by Eq. (38), and represents the negative of the dimensionless vertical
pressure gradient P′ in the conduit, i.e., the pressure gradient scaled by the magmastatic value. Since 0 < G < 1, −1 < P′ < 0. A value of zero indicates a constant pressure in
the conduit, while a value of −1 indicates a magmastatic pressure.

(this defines Q+), where Q∗ is constant (and either to be determined or prescribed from the appropriate inlet condition). Using Eqs. (32) and
(33), these conditions lead to the pair of relations

as(1 − s)2
[
(1 − 2a)s2 + 2s − 1

]
= 2Wd(as3 − 3as + 2),

as(1 − s)3

6(1 + s)
+

Wd(2 − s − s2)
3(1 + s)

= Q∗, (36)

and solving these yields

Wd =
as(1 − s)2 [

(1 − 2a)s2 + 2s − 1
]

2
(
as3 − 3as + 2

) ,

Q∗ = Q+(a, s) ≡ a(1 − a)s2(1 − s)3(3 + s)
6

(
as3 − 3as + 2

) . (37)

A distinction from earlier work (Huppert and Hallworth, 2007) is that the upwelling half-width s is not prescribed, but must be determined
from Eq. (37)2.

Finally, our plan, in principle, is this. Eq. (37)1 allows us to write Eq. (33) in the form

P′ = −
[

1 − as
{
3(1 − s)2 + 2(1 − a)s(3 − 2s)

}
2(1 − a) + a(1 − s)2(2 + s)

]
= −G(a, s), (38)

and −1 < P′ < 0, see Fig. 4; Eq. (22) defines a(P) as a monotonic function. For a given value of Q∗, Eq. (37)2 defines s(a; Q∗). Thus we solve
P′ = −G[a(P), s{a(P), Q∗}] ≡ −g(P; Q∗), and we solve this subject to the entry boundary condition P = P0 at z = 0; then the value of Q∗

is chosen in order to satisfy the exit condition P = Pa at z = l∗. Alternatively, we prescribe Q∗ at the inlet, and this determines the inlet
pressure P0.

There are two evident difficulties with this strategy. The first lies in the inversion of Eq. (37). The function Q+(a, s) > 0 is concave in both
a and s (essentially it behaves like a(1 − a)s2(1 − s3)), and so constant Q+ contours (for Q+ � 0.004)2 take the form of closed loops in (a, s)
space. An example is shown in Fig. 5, for Q+(a, s) = 0.003. Thus there are two possible choices for s, which we denote as s+(a) and s−(a),
corresponding to the upper and lower branches of the contour

Q+(a, s) = Q∗. (39)

The question is, which should we choose?
The second issue concerns the fact that for given Q∗, s is only defined for a finite range of a; thus not all values of Q∗ allow a to reach

a(Pa) ∼ 0.999. This is discussed further in Section 3.2 below.

2 It is because Q+ ∼ 10−3 that w ∼ 10−3, as mentioned in an earlier footnote.
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Fig. 5. The contour Q+(a, s) = 0.003. The value of Q+ is the downwards flux of degassed magma (see Eq. (35)), and so for a prescribed value of this equal to 0.003, the contour
indicates the dependence of the upwelling flow half-width s on the bubble volume fraction a.

3.1. Entrance relaxation

The fact that there are two possible values of s is a problem because it is not then clear which to choose; and if both are possible, which will
occur in practice. A simple analogy can provide some insight here. A simple logistic population model for a population of size u(t) is

tu̇ = u(K − u), (40)

where t is the natural growth time and K is the carrying capacity. If t is small, we might neglect the derivative term, and then we have two
possibilities: u = 0 and u = K. In this case, the correct solution (u = K) is selected because the derivative term shows that it is stable, while
u = 0 is unstable.

Confronted by the multiplicity (an isola) indicated in Fig. 5, the most natural resolution is therefore that some rapid relaxation process has
been neglected, and in the present case, the most obvious candidate is the neglect of the inertial relaxation terms proportional to G. We now
give a suggestive argument that indicates that this is the case.

First note that in a laboratory experiment, one might devise an apparatus in which both a and s are prescribed at the inlet; this suggests
that s should satisfy a differential equation (whose steady solution would thus be Eq. (39)). Our argument below suggests that this is the case.

Returning to Eqs. (28) and (29), we have exactly

0 = − (1 + P′ + Mu − a) s + wx|s,
0 = − (1 + P′ + Md) (1 − s) + [wx]1

s , (41)

where

Mu =
G(1 − a)

s
d
dz

∫ s

0
w2 dx,

Md =
G

(1 − s)
d
dz

∫ 1

s
w2 dx, (42)

and these are functions of z. We now make the assumption that, consistently with Eq. (42),

0 = − (1 + P′ + Mu − a) + wxx, x < s,

0 = − (1 + P′ + Md) + wxx, x > s, (43)

throughout the flow (this is a kind of Pohlhausen approximation). We can then integrate as before. Omitting algebraic details, we find that the
conserved quantity

Q∗ =
∫ s

0
(1 − a)w dx ≡ (1 − a)swu, (44)
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or

Q∗ = −
∫ 1

s
w dx ≡ −(1 − s)wd, (45)

satisfies

Q∗ = − s3(1 − s)2(2 + s)DM
3(as3 − 3as + 2)

+ Q+(a, s), (46)

where

DM = Mu − Md. (47)

To calculate this, we make the assumptions (bearing in mind Eqs. (44) and (45))

∫ 1

s
w2 dx = (1 − s)w2

d ≈ (1 − s)wd
2 =

Q∗2

(1 − s)
,

∫ s

0
w2 dx = sw2

u ≈ swu
2 =

Q∗2

(1 − a)2s
, (48)

and then Eq. (42) leads to

DM ≈ −Q∗2G
[

1
(1 − a)s3

+
1

(1 − s)3

]
s′, (49)

where we can ignore derivatives of a on the basis that a varies relatively slowly. It then follows from Eq. (46) that an appropriate modification
of Eq. (39) is

js′ + Q+(a, s) = Q∗, (50)

where

j =
(2 + s)Q∗2G

3(as3 − 3as + 2)

[
(1 − s)2

1 − a
+

s3

1 − s

]
, (51)

and is small and positive. This suggests that s rapidly relaxes to the lower branch of the Q+ = Q∗ contour, and in fact we use Eq. (50) together
with Eq. (38) in solving the model numerically.

The adoption of Eq. (50) raises the awkward question of what an appropriate boundary condition for s might be, and where it should be
applied. Luckily, if j � 1, the choice of boundary condition is not significant, and we argue in the following section that it should be applied at
z = 0.

3.2. Churn flow

If we use the parameters w, Pa and m in Table 2, then we find that at the surface, where P = Pa, and using the definition of c in Eq. (17), the
dimensionless water concentration in the magma is ∼0.01, corresponding (via the scale c0 in Eq. (10)) to 0.05 wt. %, and the consequent bubble
fraction (via Eq. (22)) is about 0.9986. Of course this assumes the empirical Eq. (7) is accurate down to atmospheric pressure, which is not really
the case (measured values are nearer 0.1 wt. %), but this does not significantly affect the outlet void fraction. Such a high void fraction would
be representative of a foam, but observations do not support this idea; rather, it is generally assumed that a transition to a slug or churn flow
occurs in the conduit, where bubble coalescence leads to the formation of large Taylor bubbles, comparable in dimension to the width of the
conduit (James et al., 2013). Slug and churn flow are particular types of two-phase flow which are associated with changes in gas and/or liquid
mass flux. In both régimes the continuous phase is a bubbly liquid with small bubbles, but there are also large ‘Taylor’ gas bubbles; the size of
these is typically comparable to the conduit diameter, and the distinction is that in slug flow, the Taylor bubbles almost fill the conduit, while
in churn flow they do not, and the flow consequently appears more disordered (hence the alternative description as ‘churn-turbulent’ flow).
The transition from bubbly to slug or churn flow is typically associated with an increase of bubble volume fraction beyond some critical value
(Montoya et al, 2016), with this transition being to slug flow in narrow conduits, but more likely to churn flow in wide conduits. Alternatively,
volcanologists visualise the magma becoming ‘permeable’ at large gas fractions (Burton et al., 2007), although such terminology must be used
carefully. The two concepts are not so different, insofar as they both involve the coalescence of bubbles; it is only the the geometric nature
of the resulting structures which is at issue: whether they form discrete Taylor bubbles, or filamentary stringers which combine to form a
connected pathway.

Typical vesicularities in erupted scoria from a range of different eruptions and magma types are of the order of 80% (i.e., a = 0.8) (Rust
and Cashman, 2011), and we might initially suppose that this represents the small bubble fraction in the liquid magma in a churn or slug flow.
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On the other hand, it is more likely that a transition to churn flow occurs at a much lower value (0.3–0.5) (Burton et al., 2007; Ishii and Zuber,
1979), so that the observed vesicularities include both the small bubble fraction and a portion of the filamentary structures, as seen by Burton
et al. (2007, Fig. 5).

We will suppose that transition to churn or filamentary flow occurs at a critical value ac of the small bubble fraction, and this suggests that
this is also where the counter-current flow becomes a churn flow; evidently this occurs for z < l∗, and it is then necessary to model the churn
flow in the upper part of the conduit.

We now turn to a two-phase flow model which can represent churn or slug flow. We reconsider Eqs. (1), (3) and (4), but now we suppose
that the flow consists of bubbly liquid together with Taylor bubbles of radius ab which are sufficiently large (comparable to the conduit
diameter) that the discussion in Section 2.1 suggests that phase separation is significant, thus v �= u. On the other hand, the flow is now
thoroughly mixed, and a cross-sectionally averaged model is appropriate; in particular, the effect of viscous resistance of the liquid is modelled
by a wall friction term, the variables are cross-sectionally averaged so that the average horizontal velocity is zero, and there are no horizontal
derivatives. We thus modify Eqs. (1), (3) and (4) to the form

[ql(1 − b)(1 − a)]t +
∂

∂z
[ql(1 − b)(1 − a)w] = −E,

(qg(1 − b)a)t +
∂

∂z
(qg(1 − b)aw) = E − A,

(qgb)t +
∂

∂z
(qgbv) = A,

[ql(1 − b)(1 − a)c]t +
∂

∂z
[ql(1 − b)(1 − a)cw] = −E,

ql(1 − b)(1 − a)(wt + wwz) + qg[(1 − b)a + b](vt + vvz) + A(v − w) = −p′ − tw

a
− [ql(1 − b)(1 − a) + qg{(1 − b)a + b}] g,

M ≈ −bp′ − qgbg, (52)

where b is the large bubble fraction, A is a bubble aggregation rate, the bubbly liquid momentum equation has been simplified by using the
first three mass conservation equations, tw is the wall stress, divided here by conduit radius a, which is the appropriate hydraulic radius for
the flow, and we neglect the acceleration terms in the gas momentum equation. Here v is the vertical large bubble velocity and w is the vertical
bubbly liquid velocity.

The choice of a Darcy-like expression for M as in Eq. (5) is no longer appropriate, as the drag is likely to be inertia-dominated. A suitable
expression is given by Montoya et al (2016), and is

M =
3
4bqlcD|v − w|(v − w)

db
, (53)

where db = 2ab is bubble diameter, and cD is a drag coefficient. This expression is equivalent to Ergun’s equation (Ergun and Orning, 1949)
describing rapid flow past packed spheres, and Ergun and Orning suggest

cD =
bB

(1 − b)
, (54)

with values of B ∼ 1 – 5.3 However, the configuration of the flow in a packed bed is quite different to that of a churn flow. Indeed, for a
percolative filamentary flow, the gas forms the continuous phase, which might suggest cD → 0 as b → 1.

This last assumption is mirrored by other parameterisations of cD. Ishii and Zuber (1979), for example, suggest

cD =
8
3
b(1 − b)2 (55)

(translating their Eq. (21)). Chen et al. (2009, Eq. (4)) suggest cD ∝ (1 − b)4. Such expressions may be little more than suggestive for the case
of a vesiculating magma, where the apparent onset of percolation at gas fractions ∼0.8 suggests a rapid reduction in cD at that value. We take
this into consideration below.

Montoya et al.’s more general description suggests that cD is a complicated function of the dimensionless parameters

Re =
qldb|v − w|

ll
, Eö =

gDq d2
b

s
, Mo =

gl4
l Dq

q2
l s

3
, (56)

3 This follows from Eq. (6) of Ergun and Orning, noting that the specific surface area for spheres is Sv = 6/db , that u in their formula is the superficial velocity, and where for
isolated Taylor bubbles, we identify the continuous phase volume fraction as e = 1 − b. The range of B (their b) is in their Table 1.
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these being the Reynolds, Eötvös and Morton numbers. Chen et al. (2009) give a complicated expression for cD in terms of these, but the values
in the present case are so extreme that these empirical correlations are unlikely to have much validity. Specifically, if we take the velocity scale
to be that in Eq. (10), then Re = Gr ∼ 5 for a viscosity of l l ∼ 104 Pa s, while the Eötvös number is ∼2 × 106, and then Mo = Eö3

Gr2 ∼ 1018,
well outside the range of Montoya et al.’s Fig. 3. In the absence of any clear indication, we will take cD as an O(1) number, but its reduction as
b increases is important.

The Eq. (52) can be written in dimensionless form, scaled as in Eq. (10), which gives, in the steady state,

(qgbv)′ = A,

{(1 − b)(1 − a)w}′ = −dE,

{qg(1 − b)aw}′ = E − A,

{(1 − b)(1 − a)wc}′ = −E,

G[(1 − b)(1 − a) + d{(1 − b)a + b}]ww′ + f Gr w2 + dGA(v − w) = −P′ − (1 − b)(1 − a),

3cDa Gr |v − w|(v − w)
4db

= −P′ − dqg , (57)

where we have taken

tw = fqlw
2. (58)

Ignoring terms of order d, G and f Gr (typical values of the friction factor are f ∼ 0.005), this leads to the approximate set (cf. Eq. (17))

(qgbv)′ = A,

(1 − b)(1 − a)w = −W ,

(qg(1 − b)aw)′ = E − A,

Wc′ = E,

−P′ = (1 − b)(1 − a),

3cDa Gr |v − w|(v − w)
4db

= −P′, (59)

where W is constant. The dimensionless temperature is taken to be constant in the churn flow, and equal to its surface value, thus h = 0,
whence Eqs. (17)5 and (26) imply

qg =
P

1 − k
. (60)

In addition, we have Henry’s law from Eq. (17)4:

c = wPm. (61)

At the transition interface (from bubbly to churn),

s = sc, a = ac, P = Pc at z = zc. (62)

The second, fifth and sixth equations in Eq. (59) can be written in the form

(1 − b)(1 − a)w = −W ,

v − w = K,

−P′ = (1 − b)(1 − a), (63)

where the new parameter is defined by

K =
[

4db(1 − b)(1 − a)
3cDa Gr

]1/2

, (64)

and is in general a function of b.
We assume that a = ac is constant (≈0.5), which thus serves to determine the aggregation rate. In Eq. (63), b is a function of P, determined

through the conservation law obtained by combining Eqs. (59)1, (59)3 and (59)4 to eliminate E and A, together with Eqs. (60) and (17)4. This
leads to the implicit definition of b through

bK − {(1 − b)a + b}W
(1 − b)(1 − a)

=
K + WPm

YP
, (65)
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where K is a constant, and

Y =
1

w(1 − k)
. (66)

To determine K and W, we use the fact that W is the net liquid downflow, and this is approximately zero (actually O(d)). However, the net
volume flux of gas from the counter-current flow is acQ∗/(1 − ac), and this is approximately equal to the left hand side of Eq. (65) at z = zc,
with a correction factor (1 − k) to account for the small change in density across the transition due to the temperature jump (mass flux is
conserved, not volume flux); thus we take

W = 0, K =
PcacQ∗

w(1 − ac)
. (67)

It follows that

bK =
Vc

P
, Vc =

acQ∗Pc(1 − k)
(1 − ac)

. (68)

We now consider the variation of the drag coefficient cD with b. We follow the suggestion of Ishii and Zuber (1979) in Eq. (55) that cD

decreases as b approaches one. However we modify their expression to take account of the presumed dramatic reduction in drag when the
vesicularity a + (1 − a)b reaches a critical value a∗ ≈ 0.8 (Rust and Cashman, 2011), i.e., (presuming a = ac)

b = b∗ =
a∗ − ac

1 − ac
. (69)

To be specific, we suppose

cD = c0
D(1 − b)(b∗ − b)2 (70)

(the inclusion of the cosmetic term 1 − b is purely for convenience). More realistically, cD will not approach zero as there is always some drag,
but the effect is small and can be ignored. Then we have

K =
K0

b∗ − b
, (71)

where

K0 =

[
4db(1 − ac)

3c0
Da Gr

]1/2

, (72)

and thus b is given by

b =
b∗Vc

Vc + K0P
. (73)

The function b(P) is illustrated in Fig. 6. It represents the variation of the large bubble volume fraction with the dimensionless pressure. As P

decreases, b increases as we would expect.
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Fig. 6. The function b(P) defined by Eq. (73), using the values b∗ = 0.6, Vc = 0.007, K0 = 0.1; these are dimensionless parameters defined in Eqs. (69), (68) and (72): b is the
large bubble volume fraction in churn flow, and P is the dimensionless pressure.
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3.3. Model summary

We now summarise our revised strategy to solve the model. If we are given an inlet pressure P0 at the chamber, we can then determine
a0 via Eq. (22). Select a value Q∗ sufficiently small that there is a point (a0, s0) on the contour Q+(a, s) = Q∗ in Fig. 5. Given a value of the
transition void fraction ac, the Q+(a, s) = Q∗ contour also determines the critical values sc and Pc at the transition to churn flow at z = zc,
which is also to be found.

Next we integrate Eqs. (38) and (50) using the inlet boundary conditions (with s = s0 there) until P = Pc, and this determines zc.
Following this, we integrate Eq. (63)3 in z > zc, with b(P) defined by Eq. (73), with P = Pc at z = zc, until P = Pa at z = l∗. This then
determines the actual length of the conduit in terms of the unknown Q∗. Given l∗, this serves to determine Q∗. In practice, it is convenient to
think of Q∗ as a parameter which is used to find the solutions for different conduit lengths, i.e., we assume Q∗ and determine the consequent
l∗. Of course, if instead we prescribe Q∗, then the inlet pressure has to be determined. We postpone providing numerical results for the model
until we deal with the more realistic case of a cylindrical vent, and differing viscosities for the gas-rich and gas-poor magma.

3.4. Different viscosities and cylindrical conduits

Now we consider a cylindrical conduit, and we allow for the rising wet bubbly magma to have a lower viscosity lw than that of the
downwelling dry magma, ld, based on the fact that the viscosity of a liquid magma is a strong function of its gas content. However, it should
be noted that the viscosity of a foam can increase markedly over its parent liquid’s viscosity as the bubble fraction increases (Wu et al., 1984;
Princen and Kiss, 1989), and it is in fact possible that no major increase occurs, at least at large volume fraction. The parameter a is now the
conduit radius, and we define the viscosity ratio

g =
lw

ld
. (74)

For the range of values given for l l in Table 1 (i.e., from lw to ld), we have g ∼ 1.4 × 10−3, but as mentioned above, g could be larger than this.
The consequent modification of Eq. (30) can be written (where we choose to use ld as the viscosity in the scale choices in Eq. (10))

g

(
wrr +

1
r

wr

)
= 1 + P′ − a, r < s,(

wrr +
1
r

wr

)
= 1 + P′, r > s, (75)

and the solution proceeds as before. We find successively

w =

⎧⎪⎪⎨
⎪⎪⎩

1
4 (1+P′−a)(r2−s2)

g − Wd, r < s,

1
4 (1 + P′)(r2 − s2) − 1

2as2 ln
( r

s

) − Wd, r > s,

(76)

and equating the velocity to zero on the wall gives

Wd =
1
4

(1 + P′)(1 − s2) +
1
2
as2 ln s. (77)

Next we calculate the liquid upflow and downflow. The downflow is

Q+ = −2p
∫ 1

s
rw dr =

1
8
p

[
(1 + P′)(1 − s2)2 − 2as2(1 − s2 + 2s2 ln s)

]
, (78)

and the upflow is

Q− = 2p(1 − a)
∫ s

0
rw dr

=
1
8
p(1 − a)

[ {a − (1 + P′)}
g

s4 − 2s2{(1 + P′)(1 − s2) + 2as2 ln s}
]
. (79)

Equating these, we find

1 + P′ =
as2 [

(1 − a)s2 + 2g(1 − s2 + 2as2 ln s)
]

(1 − a)s4 + g(1 − s2){1 + (1 − 2a)s2} , (80)

and thus, with Eq. (79), we have

Q+ =
1
8pa(1 − a)s4 [

(1 − s2)(1 − 3s2) − 4s2 ln s − 4g(1 − s2){1 − s2 + (1 + s2) ln s}]
(1 − a)s4 + g(1 − s2){1 + (1 − 2a)s2} . (81)
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Fig. 7. The upwelling flow radius s versus the bubble volume fraction a, as given by Eq. (81), with the degassed liquid downflow Q+ = 0.01 and the viscosity ratio of wet to dry
magma g = 0.001.

As in the Cartesian case, the contours Q+ = Q∗ form closed loops in a, s space. An example is shown in Fig. 7, which gives the variation of
upwelling flow radius s as a function of bubble volume fraction a for a particular value of the downwelling dry magma flux. If we mimic the
inlet relaxation as in Eq. (50), thus we specify

js′ = Q∗ − Q+(s,a), (82)

then as before, s will follow the lower of the two equilibria (providing the initial value of s is sufficiently low). Values of Q∗ can be inferred from
measured values of gas flux Mg, for which we take a value of 37 kg s−1 (Burton et al., 2007). From Eq. (79), this corresponds to a dimensionless
volume flux aQ−/(1 − a), and in dimensional terms, using Eqs. (60) and (12) (with C = 1), we have

Mg = qlc0v0a2 aQ∗Pc

(1 − a)
, (83)

where we take Q− = Q∗. Using the parameter values in the tables, and also l l = 104 Pa s, ac = 0.5, we find Q∗ ≈ 0.01.

3.4.1. Churn flow
As before, we assume that there is a critical value ac associated with a transition to churn flow. Because the churn flow model is cross-

sectionally averaged, it is the same as in Eq. (59), and P and b are determined as before by

P′ = −(1 − a)(1 − b),

b =
b∗Vc

Vc + K0P
. (84)

In summary, we solve the pair Eqs. (80) and (82) with s = 0.5 (for example; the precise value is not important for the solution) and
P = P0 at z = 0, given Q∗. The value of Q∗ determines Pc at the régime boundary, which thus also gives its location zc. In z > zc, we then
solve Eq. (84)1, taking a ≡ ac and Eq. (84)2, until z = l̂ where P = Pa. From this we define

P̂ =
qsl̂
ql

(85)

(cf. Eq. (25)), and the object is to choose Q∗ such that P̂ = P0. Alternatively, we prescribe Q∗, and P0 is then determined.
A numerical solution quickly shows that the prospect of imposing an inlet pressure P0 > 1 is not possible. Indeed, it is clear from Eqs. (80)

and (84) that P′ > −1, which implies that (since Pa ≈ 0) P0 < l̂. The message is unfortunately obscured by its submergence in a sea
of equations; but the message is simply stated. When the conduit is open, the frictional resistances to motion are negligible, and the only
resistance of note is the weight of the magma itself. This means that the inlet magma pressure is far below lithostatic, and is also less than (liquid)
magmastatic. One might wonder whether this result, that the magma pressure at the inlet to the conduit is less than magmastatic, might depend
critically on certain assumptions in the model. For example, we assumed a transition to churn flow when the void fraction a = ac = 0.5;
but this assumption is not well constrained. However, other choices will have no effect on the conclusion, since the pressure gradient is below
magmastatic in both counter-current and churn régimes, as can be seen from Eq. (38) (since G < 1) and Eq. (63).
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Fig. 8. Solutions for the dimensional pressure p = qlglP and the vesicularity (the total gas volume fraction) V = a + b − ab as functions of dimensional height z for a cylindrical
conduit, and with a viscosity ratio (wet to dry) of g = 10−3, using values of the conduit length lc = 3 km and the dimensionless dry magma downflux Q∗ = 10−2. Units: z in km,
p in MPa, V dimensionless. Note that the scale for V is from 0.5 to 1.

Fig. 8 shows the profiles for a cylindrical conduit of p = qlglP and the vesicularity V (i.e., the total volume fraction of gas), defined by

V = a + b − ab, (86)

for the particular choice g = 10−3 and a conduit length of lc = 3 km, and for a value of Q∗ = 10−2, which corresponds to observed mass flow
rates (Burton et al., 2007).

For this choice of chamber depth, P0 ≈ 0.4 < Pc = 0.657, and there is no region of counter-current flow at all. The magma pressure
reaches a value of 30 MPa at the inlet, compared to a magmastatic value of 76 MPa and a lithostatic pressure of 103 MPa. The magma chamber
is thus severely underpressured.

It can be seen that the profile for p is approximately linear. This is due to Eq. (84), since a = ac is constant, and as indicated in Fig. 6, b
varies slowly for P � 0.1, and the gradient only deviates from linear near the surface. If we select a longer conduit, so that there is a counter-
current flow region, then the pressure gradient in the counter-current flow is also close to linear, P′ ≈ −(1 − a), assuming that g is small,
since a varies little, unless the conduit is very long.

4. Discussion

4.1. Counter-current two-phase flow

We began with the aim of placing the idea of counter-current
flows in Strombolian conduits into a consistent model framework
of two-phase flows. However, our investigation has led in increas-
ingly orthogonal directions. Previous models have not included the
dynamic effect of exsolution as the magma rises, and while two-
phase models of magma rise have been presented in other contexts
(Molina et al., 2012; Melnik, 2000), the present work is novel in this
respect.

In our analysis of the bi-viscous counter-current flow, we use vis-
cosity values (with ratio ∼103) suggested by Métrich et al. (2001).
A more recent analysis by Beckett et al. (2014) using detailed ther-
modynamic relationships suggests this ratio increases with depth,
passing 102 at a conduit depth of some 3 km. On this basis, they
suggest that the flow is only likely to be core-annular (as we have
initially assumed) for depths greater than 3 km, but that shallower
conduits may have side by side flow. This inference is based on
experimental studies of counter-current flow (Beckett et al. 2011;

Palma et al., 2011); however, it is noteworthy that these experimen-
tal results involve two liquids, and the wealth of flow régimes which
are displayed by two-phase gas-liquid flows (Hewitt and Roberts,
1969; Wallis, 1969; Hetsroni, 1982) is not considered.

Our model makes the simplest initial assumption concerning
two-phase flow, that is, that the flow is bubbly. We find that there
are two possible states for the flow, and steady counter-current bub-
bly flow is not possible at very low or very high gas volume fraction.
We provide a stability argument based on the inlet relaxation length
which suggests that the flow with the narrower bubbly column is the
stable one of these.

4.2. Churn flow

In practice, the non-existence of such flow at high or low void
fraction a is not important, because it is likely that a bubbly foam is
already created at the roof of the magma chamber. The non-existence
at high void fraction suggests a breakdown of the bubbly flow régime
to a churn-turbulent or slug flow, but such a transition is already
known to occur at more moderate values of a. In fact, régime dia-
grams for (air/water) two-phase flow (Hewitt and Roberts, 1969)
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suggest that for volume fractions larger than about 0.3, bubbly flow
is unstable, and the flow undergoes transition (in narrow pipes) to
slug flow (and later, churn and annular flow). Similar to flow in boil-
ing tubes (e.g., Hetsroni, 1982), we surmise that the flow undergoes
a similar régime transition as it rises through the conduit, although
the critical value of a = ac where this occurs presumably depends
on the properties of the magma, and its ability or inability to form a
foam. For low viscosity basaltic magma in wide conduits, we expect
a transition to churn-turbulent flow (Montoya et al, 2016).

The modelling of churn-turbulent flow in averaged two-phase
flow models can be constructed in a similar way to models of bubbly
flow, except that we now conceive of the vesicularity as consist-
ing of small bubbles and larger Taylor bubbles, which may take the
form of elongated filaments (Burton et al., 2007), which themselves
may undergo a transition at elevated vesicularity to a connected
and thus permeable régime. A conclusion concerning such flows is
that they are quite simply represented, with the pressure drop being
essentially magmastatic (using the reduced density associated with
the vesicularity; indeed, this is also true for the bubbly flow), and
observed erupted vesicularities can be fairly simply explained.

4.3. Magma under-pressure

However, an implication of the magmastatic pressure is that the
magma chamber is severely underpressured. This point needs to be
emphasised. Generally one would suppose that the magma pressure
in the chamber would be close to the lithostatic pressure: otherwise
the chamber ought to collapse. In a closed conduit where plugging
and blow-out can occur, this seems fine; but in an open system, our
results are strongly suggestive of a chamber pressure which is well
below lithostatic. In our illustration of flow from a 3 km deep magma
chamber, the chamber pressure is 30 MPa compared to a lithostatic
pressure of 103 MPa. According to Burton et al.’s (2007) cartoon, the
flow would already have become permeable at that stage. In con-
trast, our model suggests that, due to the reduction in drag coefficient
as the percolation threshold is approached, this only happens at the
surface.

The suggestion of low chamber pressures raises the issue of the
dynamics of the magma chamber itself. In reality, the chamber and
the conduit form a combined system, whose dynamics should prop-
erly be coupled to the flow in the conduit and the supply from under-
neath. Normally, the dynamics of the chamber is associated with the
issue of eruptive periodicity, for which in explosive eruptions, the
simple explanation is that magma supply from below causes over-
pressuring of the chamber until dike formation and eruption can
occur (Blake, 1981; Tait et al., 1989).

4.4. Consequences for the magma chamber

In the present case, where we conceive of a permanently de-
gassing chamber, it is less obvious what happens. The inferred liquid
upflow of 570 kg s−1 in the conduit delivering its gas load of 37 kg s−1

would require a similar inflow to the chamber in order to exist in a
steady state, but this would require chamber inflation, which would
thus raise the chamber pressure, and the conduit flow could not be
maintained. Alternatively, if the liquid inflow is such as to maintain
mass balance, then the magma will become progressively depleted
in volatiles.

A possible way of accommodating such depletion is to include the
effect of crystallisation in the chamber, which has the effect of con-
centrating volatiles in the melt. Indeed, we might consider a chamber
at late stage, full of crystals and acting more like a coherent crys-
tal mush (Cashman and Giordano, 2014). Actually, portraits of the
plumbing system of this type have been suggested by Métrich et al.
(2010, Fig. 10) and more specifically by Suckale et al. (2016). Such

a system also allows for the external lithostatic pressure to be sup-
ported by the crystals, while the potentially lower pore pressure
allows for the possibility of compaction (McKenzie, 2011). The rate
of viscous compaction (i.e., the rate of change of porosity) is ∝Dp/ls
(Fowler, 1985), where Dp is the pressure difference between solid
and liquid, and ls is the solid viscosity. With Dp ∼ 102 MPa and
ls ∼ 1018 Pa s, this gives a time scale of 300 y for compaction to
occur, though longer if the viscosity is higher: 30,000 y if ls ∼ 1020 Pa
s. On the other hand, it is more likely that compaction in such a sit-
uation occurs via pressure solution (Angevine and Turcotte, 1983;
Birchwood and Turcotte, 1994; Fowler and Yang, 1999). For a one
kilometre diameter chamber, the crystallisation time is ∼d2/j (d
is diameter and j is thermal diffusivity), and this is also 30,000 y.
Further exploration of the possible dynamics of an underpressured
chamber is beyond the scope of this paper.

5. Conclusions

Although the inevitable complexity of two-phase flows makes for
a daunting technical description, the principal conclusions of this
paper are fairly simply stated. We have presented a fully coherent
model of two-phase flow, and applied it to describe the buoyancy
driven counter-current convection which is thought to occur in
Strombolian volcanic conduits. Bubbly flow is essentially homoge-
neous, and can be described by a counter-current flow in which the
viscous stresses balance the buoyancy, and this balance leads to a
pressure gradient which is less than magmastatic. But it is unlikely
that bubbly counter-current flow normally occurs, unless the cham-
ber is very deep, and instead there would be a transition to churn
flow, in which the bubbly liquid flow is punctuated by large Taylor
bubbles, which move through the liquid. A model for such a flow (52)
is even more complicated than that for bubbly flow, but is in fact
easier to analyse, and again the pressure gradient in the conduit bal-
ances the weight of the fluid mixture, and is therefore significantly
less than magmastatic. These conclusions concerning the pressure
gradient appear to be robust. Having said that, it must be emphasised
that, while the present two-phase flow model incorporates greater
realism than earlier two-liquid models, by including the effects of
exsolution, it still falls short of a complete description of the conduit
flow: the effects of crystals and crystallisation in the flow are not
considered, the confounding effects of a more tortuous geometry are
ignored, and even within the two-phase flow model itself, very lit-
tle is known in practice about the controls on flow régimes and the
transition between them.

For both types of flow, the magma is significantly under-
pressured with respect to (pure liquid) magmastatic pressure, and
this implies that the chamber pressure is absurdly low. This is a direct
consequence of the fact that in scaling the momentum equations for
both counter-current and churn flow, the principal resistance oppos-
ing the pressure gradient is the buoyancy term: the effects of wall
friction and/or interfacial drag are small. While many details of the
modelling can be questioned, it seems difficult to find an alternative
to this fundamental finding. If this is correct, it raises the issue of
how the dynamics of the magma chamber can act in such a way as
to maintain the exchange flow for periods of millennia, and a plausi-
ble and indeed inevitable suggestion is that the magma chamber acts
more like a late-stage crystallising mush. In this view, Strombolian
volcanoes would represent a late stage of evolution in the eruptive
type of volcanoes.
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Appendix A. Thermal boundary layer

The upwelling and downwelling flows are at temperatures h = 1
and h = 0, respectively. Separating the two zones will be a thin
boundary layer where the temperature changes rapidly in the neigh-
borhood of x = s∗, where s∗ < s is the position where w = 0
(since Wd > 0). For simplicity (only), we consider the case where the
upflow w(x) is as in Eq. (32), but u = 0 (the extension to the case
where also u �= 0 is straightforward). The energy Eq. (28)3 is then

Gwhz =
1
Pr

hxx. (87)

In the boundary layer we introduce a scaled coordinate X defined by

x = s∗ + dT X, (88)

where dT is the width of the layer, and approximate the velocity by

w ≈ −S(x − s∗), S = −wx(s∗) > 0; (89)

S depends on a and s, and thus is a function of z. Choosing

dT =
(

1
GPr

)1/3

� 1, (90)

the energy equation becomes

−SXhz = hXX. (91)

Finally, it remains to prescribe suitable boundary conditions for
Eq. (91). To match the interior and outer solutions we prescribe the
matching boundary conditions

h → 0 as X → +∞,

h → 1 as X → −∞. (92)

We also have the vertical boundary conditions

h = 1 on z = 0, X < 0,

h = 0 on z = 1, X > 0. (93)

Eq. (91) together with the boundary conditions (92) and (93) rep-
resent the thermal boundary layer problem. The structure of the
boundary layer is shown in Fig. 9.

X

θ = 1 θ = 0

z = 1

up down

θ = 1

θ = 0

Fig. 9. Structure of the thermal boundary layer.

A.1. Solution of the boundary layer problem

A similar problem to that given by Eqs. (91)–(93) was solved by
Howard and Veronis (1987) in the analysis of salt fingers and we
briefly describe their method of solution in this section. We will take
S to be constant for convenience (variable S is easily incorporated by
a transformation of z). To start, we define

n = S
1
3 X, (94)

thus obtaining

−nhz = hnn, (95)

with boundary conditions

h = 1 when n < 0, z = 0 and as n → −∞,

h = 0 when n > 0, z = 1 and as n → +∞. (96)

To solve this, we define

h(0, z) = 0(z), hn(0, z) = x(z). (97)

Eq. (91) is solved by Laplace transform in z in the two separate
regions X > 0 and X < 0, using the (unknown) value of 0. x can then
be computed as a convolution integral of 0. This can be done in both
regions, and elimination of 0 then yields the integral equation

− 1

3
1
3 C

(
2
3

) ∫ 1

0

x(t)

|z − t| 2
3

dt = 1, (98)

of which the solution is (Howard and Veronis, 1987; Carrier et al.,
1966)

x(z) = −
3

1
3 C

(
2
3

)
[z(1 − z)]−

1
6

2p
, (99)

and then

0(z) = 1 −
∫ z

0

[t(1 − t)]−
1
6

2p(z − t)
2
3

dt. (100)

We plot 0(z) in Fig. 10; solutions for h at fixed z are shown in Fig. 11.
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