
Notes on using the

nVidia 8800 GTX graphics card

Mike Giles and Su Xiaoke

Summary

These brief notes describe our experiences while developing a version of a
LIBOR Monte Carlo code to execute on an nVidia 8800 GTX graphics card
with 16 multi-processors, each of which has 8 cores.

It is assumed that the reader has already read at least the first three sections
of the nVidia CUDA Programming Guide version 1.0.

1 LIBOR application

The LIBOR application involves calculating the evolution of 80 forward rates
for 40 timesteps, after which a portfolio product is evaluated. The evolution
is driven by an input vector of 40 random numbers, so a real Monte Carlo
simulation calculates a very large number of paths using different random
numbers and then averages the results. A second part of the application
computes the so-called “Greeks” (the sensitivity of the payoff to changes in
the initial forward rates) using an adjoint approach which requires the storing
of all forward rates at all of the timesteps.

The key points from a computational point of view are that

• each path calculation is completely independent and can be handled by
a separate thread

• each path requires roughly 100 working variables, 80 for the forward rates
and 20 for other variables – in addition to this there are approximately
100 constants to be stored

• to compute the Greeks requires an additional 3200 variables per path

1



2 Experiences developing the code

The learning curve for programming within the CUDA development environ-
ment was roughly 2 weeks. This is less than for the Clearspeed Advance Board,
but this was probably partly as a consequence of having tackled the Advance
Board first. As with the Clearspeed product, the documentation is good and
the example codes very helpful.

The basic programming model is clear and simple, at least for this trivially
parallel application. Host code running on the main Intel or AMD processor
initiates the execution of a “kernel” code on the graphics card. This execution
is performed by multiple “blocks” each of which has multiple threads. Each
block executes on a single multi-processor, and has a minimum of 32 threads,
corresponding to 4 threads per core. However, for best performance one should
have many more active threads; this is discussed further below.

The main thing for new users to understand is the memory hierarchy. There
are several kinds of memory:

• host memory – the usual system memory

• device memory – GDDR3 memory on the graphics card

• constant and texture memory – off-chip memory with an on-chip cache

• shared memory – on-chip memory local to each multiprocessor

• registers – on chip-memory used as inputs/outputs of all arithmetic op-
erations

For the purposes of trivially parallel applications we can ignore both the
shared memory and the texture memory. The constant memory is ideal for
storing the many constants that an application uses; the graphics multipro-
cessors have read-only access to this memory, while the host has write-only
access. Any other data which has to be communicated between the host and
the device is done through “global” variables which are allocated within the
device memory; these can be read and written by both the host and the de-
vice. Finally, there are “local” variables which are specific to each thread.
The compiler will keep some of these within the registers, but most will stored
within the device memory.

The nvcc compiler has a useful flag -cubin which reports on the registers
and other memory used by each thread in the kernel code. This can be input
into an nVidia utility called the Occupancy Calculator to work out how many
active threads can be supported, given the limited number of registers. There
is then a programming choice. At one extreme, one can keep just one block per
multiprocessor, and increase the number of threads to the maximum possible.
Alternatively, at the other extreme, one can keep just 64 threads per block,

2



and use a large number of blocks; in this case the runtime system will decide
how many blocks can run concurrently on each multiprocessor. In each case
one ends up with a large number of active threads, and our experience is that
there is less than 20% difference in overall performance.

The bottom line is in the timings reported in Table 1. The performance of
the CUDA code on the 8800 GTX is exceptional. With the optimum number of
blocks and threads, each one of the 128 graphics cores has greater throughput
than a single Intel Xeon core.

no Greeks Greeks
original code Visual Studio, one Xeon core 18.1 26.9
CUDA code 1500 blocks, 64 threads 0.048 0.20
CUDA code 750 blocks, 128 threads 0.048 0.19
CUDA code 500 blocks, 192 threads 0.045 0.19
CUDA code 375 blocks, 256 threads 0.047 0.19
CUDA code 300 blocks, 320 threads 0.046 0.18

Table 1: Program timings in seconds for 96000 paths

How is this possible? I think it is due to the efficient hardware/software
architecture combined with the simple nature of this application which is ide-
ally suited to that architecture. The large number of essentially identical path
calculations makes it possible to use a large number of threads per core. This
helps in two ways. The first is to achieve the maximum efficiency from the
pipelined cores. With multi-stage pipelines efficiency is usually lost through
pipeline stalls, waiting for inputs which are themselves the output of an earlier
operation. With 24 active threads per core and each thread taking its turn in
strict rotation, from the perspective of each individual thread it looks like a
classic von Neumann architecture with the output of each operation available
as an input for the very next operation.1 The second benefit is in hiding mem-
ory latency. The bandwidth from the multiprocessors to the global GDDR3
memory on the graphics card is very high (80GB/s) but there is nevertheless a
delay of 400 to 600 clock cycles. With a large number of threads, this latency
can be largely hidden, though the results in the table suggest that memory
bandwidth may still be a limiting feature; the Greeks computation requires
roughly three times as much memory transfer as the computation without the
Greeks.

1The vector operations on the Clearspeed card and hyperthreading in the Pentium 4

both try to address the same issue.

3



3 Notes on the code

The webpage contains the original C code and the new CUDA code.

The CUDA code is fairly similar to the original C code. The main change
is in the “main” routine which has been split into two parts. The first part,
which is again called “main”, executes on the host to perform the following
functions:

• copy all constants into the constant memory on the card

• allocate global memory for the payoffs computed on the card

• call the device kernel routines “Pathcalc Portfolio KernelGPU” and “Path-
calc Portfolio KernelGPU2” to do all of the work

• combine the output results and print the final values

The device kernel routines “Pathcalc Portfolio KernelGPU” and “Path-
calc Portfolio KernelGPU2” do the main work of calling “path calc”, “portfo-
lio” and the other computational routines.

The makefile uses the makefile structure created by nVidia for their test
programs. Specifically, they have a file common.mk which defines a generic
makefile, and then the user’s makefile just has to declare the names of the
user’s files. This also makes it possible to compile the code either with or
without debugging (use dbg=1 for debugging and error checking) and with or
without devide emulation (use emu=1 for device emulation).

4 Suggestions for other users

• Read through the most relevant examples supplied by nVidia, and use
the toolkit and makefile structure they have developed for their test
programs.

• Focus on the memory layout – for trivially parallel applications you just
need to use local, constant and global memory on the card, in addition
to the usual memory on the host.

• Define constants in the host code then copy them over to the card; allo-
cate global memory for any data that needs to be communicated between
the card and the host, and use local memory (the default) for all other
data.

• Use the nvcc compiler option -cubin to tell you how many registers are
used; input this into the Occupancy Calculator to get guidance on the
maximum number of active threads.

4


