Dissecting the Ampere GPU Architecture
through Microbenchmarking

GTC 2021

Zhe Jia

Peter Van Sandt
Marco Maggioni
Jeffrey Smith
Daniele P. Scarpazza

High Performance Computing R&D Team

CITADEL

IMPORTANT DISCLAIMER

The results and conclusions in this presentation are Citadel's. Inclusion in the GTC program
does not indicate any endorsement or confirmation of any of Citadel's results or conclusions by
NVIDIA.

This presentation reflects the analyses and views of the authors. No recipient should interpret
this presentation to represent the general views of Citadel or its personnel. Facts, analyses, and
views presented in this presentation have not been reviewed by, and may not reflect information
known to, other Citadel professionals.

Assumptions, opinions, views, and estimates constitute the authors judgment as of the date
given and are subject to change without notice and without any duty to update.

Citadel is not responsible for any errors or omissions contained in this presentation and accepts
no liability whatsoever for any direct or consequential loss arising from your use of this
presentation or its contents.

ALL TRADEMARKS, SERVICE MARKS AND LOGOS USED IN THIS DOCUMENT ARE
TRADEMARKS OR SERVICE MARKS OR REGISTERED TRADEMARKS OR REGISTERED
SERVICE MARKS OF CITADEL.

Takeaways

Double effective available L2 by grouping work by L2
partitions

Explore novel opportunities for lock-free algorithms with
no penalty for contention

Design programs to maximize the utility of the memory
hierarchy and operations unique to Ampere

Plan: Four deep dives

1. Grouping work by L2 Partition

3. Sparse matrix multiplication

4. A100 vs V100

Deep dive #1

Grouping work by L2 partition

ign

t L2 des

Ampere uses a spl

Anatomy of a L2 hit

[Cache line missing from L1]
present in L2

Is the
cache line

near to
the SM?

Copy from far L2 partition into near J

[Read from near L2 partition } Duplication!

Double your effective available L2 space

« Grouping thread blocks by L2 partition reduces duplicated cache lines

Each SM has a near L2 partition detectable with micro-benchmarks
Cache lines stay duplicated if they are used from different partitions
Use each cache line only from one partition

Thread blocks identify their near partitions using their SM ids

Each SM reads its work set into its near partition

« Duplicated cache lines halve available L2

Each partition can store 20MiB
To effectively use 40MiB, cache lines must not be duplicated

Case study: pairs of partition-aware blocks

* Result: +85% throughput when
blocks are grouped by partition

* ... because they use available
L2 more effectively

» Experiment design

« Each thread block loads a block size
segment and does a simple
computation on each element

« Each block size segment is operated
on by a pair of blocks

 Pairs of blocks iterate over enough
data to exceed L1

Bad:
BLK O BLK 1 BLK 2 BLK 3
(SM 6) (SM 4) (sSM 7) (SM 5)
Partition O Partition 1
L2 cache —
velgk Y16k | 24K |32k ..
Global address
Good:
BLK O BLK 2 BLK 2 BLK 3
(SM 6) (SM 7) (SM 10) (SM 10)
Partition O Partition 1
L2 cach{_e,_,
8K+ | 16K |24K |32K ..

Global address

Case study: pairs of partition-aware blocks

1400
1200

1000

Q
o
o

600

Throughput (GB/s)

l .

Half of L2 size

400

200

15 17 19 21 23 25 27 29 31 33 35
Array Size (MiB)

—@—optimized —@—baseline

10

Benchmarks show a clear “near” and “far” L2 hit latency

« Studying: L2 latency seen by a single SM 00

* Results: 0
warmed reads from one SM are distributed
bimodally around 200 and 350 cycles
across different addresses 0

400

300

» Experiment design

» Scan a global array twice with 1 block and 1
thread bypassing higher levels of cache,
including near L2 partitions

» Measure latency for each access in the 150
second scan

« Each element is accessed exactly twice in
total 50

250

Number of accesses

200

100

0
[191, 215] (215,239] (239, 263] (263,287] (287,311] (311,335] (335,359] (359, 383]

Cycles

11

Late

Number of Experiments

ncy distribution over all SMs

SMs show 4 distinct frequencies of near and far latencies corresponding to SM counts in each partition

SMs associated with partition 0 repeatedly read one 128 B segment from global memory,
while let the SMs associated with partition 1 read from another 128 B segment

We vary the byte offset between the two segments between executions,
and measure access latency of each thread block in each execution

SMO || SM1 SM107 SM2 || SM3

T~ N/

128B offset 128B

[U N U O —
A OO O O N A O @
O O O O O O o o

\o]
o o
= W

- - - - T

12

Global address space
evenly distributed
across L2 partitions:
Discussion

* The hardware split between L2
partitions is asymmetric

* Asymmetry is not problematic
because... global memory
address space is evenly split
between L2 partitions

» Guessing: NVIDIA went out of
their way to route HBM traffic to
partition slices evenly

Hypothetical SM layout to summarize our conjectures
for visualization purposes only - no implied faithfulness to actual topology

NVIDIA — A100 Tensor Core GPU Architecture 13

Global address
space evenly
distributed across
L2 partitions: Proof

Heatmap shows global memory
homogeneous access

Virtual address mapping to L2
partitions in 8-KiB granularity

Sub-slices of L2 are associated to
HBM memory controllers

Address (B) SMO Cycles SM2 Cycles SM3 Cycles SM1 Cycles SM6 Cycles SM7 Cycles SM4 Cycles

3EG000
3E6200
3E6400
3E6600
3E6800
3EBAQ0
3E6CO00
3EGEQO
3E7000
3E7200
3E7400
3E7600
3E7800
3E7AQ0
3E7C00
3EYVEQO
3E8000
3E8200
3E8400
3E8600
3E8800
3E8AQ0
3E8C00
3E8BEOQOQ
3EQ000
3E9200
3E9400
3E9600
3E9800
3E9AQ0
3E9CO00
3E9QEOQQ
3EA000
3EA200
3EA400
3EAGOO

—

PO P1 PO P1

KiB

KiB

Deep dive #2

Atomics

Shared memory atomics: a new, contention-free increment

50 T

Ampere introduces an atomic increment P4 —x—
instruction: ATOMS.POPC.INC Shared memory hoy T
. V100
Immune to contention 40 | T4 — o |
on prior generations, v A100
contention reduces throughput 5 <%
This feature does not extend to other 3 304 l
operations §
— see next slides £
20 -
Additions other than 1 rely on old ATOMS.ADD ¢
instruction £
and suffer from contention =
10 | .
R i et
0 | \ L & .—H—.+I
1 2 4 8 16 32 64 128 256

Number of contending threads

16

Shared memory atomics: a new, contention-free increment

50 T
' P4 —x—
Experimental Proof (B0 o
P Shared memory £ -
Benchmark: _ 40 | V1$2 o
« Each thread atomically increments = N A100
a shared memory location ©
by an immediate value of 1 ‘g 30 |- .
* N threads update the same address g‘
* Non-contending threads E 20 - i
update sequential addresses E
* Increasing thread count from 1 to 256 =
10 | .
» One block with 256 threads
===
(e ‘ : - o—‘—o—o—.j
1 2 4 8 16 32 64 128 256

Number of contending threads

17

All other atomics still suffer from contention

40

Shared
memory

35

30

Memory Throughput (GiB/s)

I
P4 —x—
K80 —e— |
M60 —&—
V100
T4 —o— |
A100

1 2 4 8 16 32 64

Number of contending threads

« Throughput suffers from contention on both shared and global memory

* Ampere throughput

« on shared memory: slightly worse than V100

« on global memory: slightly better than V100

P4 and T4 GPUs: best throughput, due to high clock frequencies

Memory Throughput per Block (GiB/s)

2

1.5

0.5

Global
memory

P100 —+—
P4 —x—
K80 —e&—
M60 —&—
V100
T4 —o—

5k

\
10k

Number of contending threads

!
20k

51k 102k

307k

819k

Memory Throughput (GiB/s)

I
P4 —x—
40 K80 —&—-
Shared E0 —=—
V100
357 T4 —o— |
m m A100
30 [e Ory |
25 .
20 .
15
10 +
5 -
0 | | |
1 2 4 8 16 32 64 128
Number of contending threads
atomicAdd()

Contending threads update the same address
Non-contending threads access sequential addresses
Increase contending threads from 1 to 256

One block with 256 threads

Memory Throughput per Block (GiB/s)

2

1.5

0.5

ther atomics still suffer from contention: Proof

N Global S
S memory "%

1k 2k 5k 10k 20k 51k 102k 819k

Number of contending threads

atomicAdd()

Each block has 1024 threads

All threads and blocks access same global address
We vary block count from 1 to 896

307k

Deep dive #3

Sparse Matrix Multiplication

Fine-grained sparse matrix-matrix multiplication: Format

+ Ampere introduces a new, hardware primitive for sparse GEMM acceleration
* Fine-grained rather than block-oriented
» Twice as fast as dense in the right conditions
» It supports a specific form of sparse GEMM that requires operands to be in a pre-determined format
* At most 2 non-zeros in every contiguous group of 4 values
Sparse matrix W Compressed matrix W

il

G C[2 wp) C/2

Non-zero 2- blts

NVIDIA — $22085 data values indices o1

Fine-grained sparse matrix-matrix multiplication: Transpose

B: Dense, KxN
Select
using Sparse Tensor Cokes
32x8
A: Sparse, MxK/2
16x16 16x8
o Compressed!—» C: Dense, MxN

NVIDIA - s22085

Sparse vs. Dense GEMM - best-case performance

600

500

400

300

Arithmetic throughput (TFLOPS)

200

Theoretical Sparse FP16 - - - -
Theoretical Dense FP16 - - - -
Measured Sparse FP16 ——
Measured Dense FP1l6 —}—

100

| | [| | ! I [
1000 2000 3000 4000 5000 6000 7000 8000

Matrix Size

Arnthmetic throughput (TFLOPS)

Sparse GEMM with transposed operands

600

500

400

300

200

100

Theoretical Sparse FP16 - - -
Measured Sparse FP1&(TT) —E—
Measured Sparse FP16(TN) —s
Measured Sparse FP16(NT)

~ Measured Sparse FP16(NN) — —

m Non-transpose Non-transpose
Non-transpose Transpose
Transpose Non-transpose
Transpose Transpose

=

| ! [| | | [[
1000 2000 3000 4000 5000 6000 7000 8000

Matrix Size

24

Arithmetic throughput (TFLOPS)

Sparse vs. Dense GEI\/II\/I in the wrong conditions”

400

300

200

100

Sparse FPlE[NT}I +
Dense FP16(TT) —&—
Dense FP16(TN) —A—
Dense FP16(NT) ——
Dense FP16(NN) ——f—

] 1 ! !
m Non-transpose Non-transpose

Non-transpose Transpose .
[, Transpose Non-transpose

I Transpose Transpose

1000 2000

3000 4000

Matrix Size

5000 6000 7000 8000

25

Deep dive #4

A100 vs. V100

Why compare A100 against V1007

Most recent GPU given:
* Full-length, full-height
« Similar power profile

27

t's the same! Instruction encoding

* 1:1 instruction to control

Width foits) | 6 3 3 1 4

m Reuse flags Wait barrier mask Read barrier index Write barrier index Yield flag Stall cycles

 Qur prior work includes encodings from previous generations
and is available on arXiv

Elapsed Time (us)

t's the same! Dual-port registers

4.4 | -

Register Bank Conflict

« Dual, two-port registers

S A « Same as in Volta
3.6 | - # R it .
T, (TTiUTES SIS SRR A SRR G T SN S S S I s
* Go read our Volta paper, it’s
3.4 | - explained in depth there
FFMA R6, R98, R99, RX

32 | . FFMA R6, R97, R9S, RX

3]]]] |]]]] |]
100 102 104 106 108 110 112 114 116 118 120

Register Index of RX

It's the same! Shared memory latency suffers from bank conflicts

100 -

AL00 —&—

* Average access latency
shows similar slow down
across Ampere and previous
generations with increasing
bank conflicts

« V100 shows best latency
among generations

Average Latency (clock cycles)

15

Number of threads accessing
different locations in the same bank

A100 benchmarks in the topology

300 T T T T T 20000 T T T T T
AL00 (4B bank) —3¢—
T4 (4B bank) —W— Measu_red —
V100 (4B bank) ——}— Thecretical
200 - K80 (8B bank) —¢— b
M60 (4B bank) —@—
150 | P100 (4B bank) —— |
15000 | 4
= 7
8 @
9 9
¢ e
s
: g
il 2
= 3 10000 | .
[~ =
[:
© - [B\
: 2 616 .
< E
w
5000 [
296 [~ L] - ™ -
T
15 Lt | | Measured mm— 0 8 188 |- N . . . i
1 2 4 1400 | Theoretical K80 Meo O
Number of tt :2
different locatio
g 128 - -
1200 | 4 rs]
g =
5 2
(V]
= looo - i %
3 4 64 —
E
o
=
3 800 N
Fad
o
€
E 600 | N 32 [~ S80S0 S SS08080 S00080S SSS0080 SS0E08S S0S0000 S00E8080 S8R0
%
o
2
[G]
200 |-) 1 I L ! I ! ! \
0 32 64 96 128 160 192 224 256
200 | . Relative memory address Byte
: i 1
K80 M&0 P100 V100 A100 P4 T4

GPUs

31

A100 (Ampere) memory capacity

 LO instruction cache capacity 2.7x
bigger

1
____________________________ (I
192 KiB L1 data cache/shared 2 KiB L1 constant cache
- memory

40,960 KiB partitioned L2 data / constant / instruction cache

T i
~40 GiB HBM2

! » Detected using micro-benchmarks

Total L1 and shared memory
capacity 1.5x bigger
* 96% utilization of theoretical L1 max

* 100% use of shared memory with 1
KiB reserved

 Unified L2 cache more than 6x
bigger

» Each partition more than 3x bigger
* Global memory is 2.5x bigger

A100 (Ampere) memory bandwidth

» Global memory bandwidth 1.7x faster
A100 . Moredthan 1.4x increase in memory clock
___ spee

R e R . * Theoretical L2 memory bandwidth
' 2.6x faster

* More than 3% increase in graphics clock

Private to every processing block :

* Global memory and L1 within 92% of

1,555 GiB/s HBM?2 theoretical maximum

1 Registers LO instruction cache : : : .
I By e ————— ~] ___________ —- 11 * Shared memory bandwidth 1.4x
: : 18 TiB/s L1 data cache/shared L1 constant cache : : faSter .]
ol _memory ') « Same as L1 which is co-located
| — ! : » Proportional to increase in SM count
: : L1.5 constant cache/L1 instruction cache , : frOm 80 tO 108 and the Increase In
B . i P | graphics clock
7,050 GB/s partitioned L2 data / constant / instruction cache : o Observed—theoretlcal rat|0 |mprOved
 over V100

: p .

A100 (Ampere) memory latency

A100 * Slightly longer latencies on:

.. » L1 data cache

: Private to every GPU
Py enbntnialeil * L1 constant cache
L T T I;ri;a?e_to_e;e;/ ;r;C;S;in_gTﬂ;CE K ! b L2 CaChe

R r = r 111« Partitioned L2 split between
d122 ¢ i ~200 and ~350 cycles

 Observed with micro-
benchmarks

1
1
1
1
1
34 Cyc. L1d / 22 Cy. shared 33 Cyc. L1 constant :
1
1
1
1
1

200 Cyc. Near Unified L2 350 Cyc. Far Unified L2

Cyc. = graphics cycles

GEMM throughput across precisions

Floating point data types Integer data types
300 1000
900
250
800
_ __ 700
g_) 200 cC/L)
O O 600
= =
b=t £
5 130 a 500
o =
S S
> 3 400
9 e
£ 100 = 300
200
50
i _
0.3
v et HE- : B
FP64 FP32 FP16 TF32 BF16 INTS INT4
=A100 mV100 =T4 =A100 = T4

35

CU

TFLOPS

FP32 (CUDA core)

10
cutlass —
5 Theoretical -

0 | | |

cublas — _

2048 4096 6144
Matrix Size

cuBLAS 11.2 vs. CUTLASS 2.4 GEMM

8192

TFLOPS

BLAS vs CUTLASS GEMM: Float

FP64 (Tensor core)

20 rN"L/____\r o

15 /\ — T —]

10 cublas — _
cutlass —

5 Theoretical - -

0 | | |

2048 4096 6144 8192
Matrix Size

36

CU

TFLOPS

TFLOPS

300
250
200
150
100

50

300
250
200
150
100

50

BF16 (Tensorcore)

1 F

cublas — |

cutlass — |
| Theoretical -
|
2048 4096 6144 8192
Matrix Size
FP16 (Tensorcore)

1 T

cublas —
cutlass —

Theoretical
| |

2048

4096 6144
Matrix Size

8192

cuBLAS 11.2 vs. CUTLASS 2.4 GEMM

TFLOPS

TFLOPS

SBLAS vs CUTLASS GEMM: Reduced

TF32 (Tensorcore)

i | F

cublas — |
cutlass — _|

Theoretical - _|
| | |

2048 4096 6144
Matrix Size

8192

FP16 (CUDA core)

................ Frrr

t 1

cublas — |
cutlass — |

Theoretical - _|
| | |

2048 4096 6144
Matrix Size

8192

37

CUBLAS vs CUTLASS GEMM: Integer

TOPS

Int4 (Tensorcore) Int8 (Tensorcore)
1200 fressrassesssannees | A - 600 [rosseserenennannes fresssraraisniaiiaa [rererery e =]
1000 - - 500 + -
800 - — tlf 400 - -
600 - — O 300 -
400 cutlass — _ = 200 cutlass — _
200 Theoretical i 100 Theoretical -

0 I | I 0 I I |

2048 4096 6144 8192 2048 4096 6144 8192
Matrix Size Matrix Size

cuBLAS 11.2 vs. CUTLASS 2.4 GEMM

38

Conclusion

» Group thread blocks by L2 partition to maximize effective L2
capacity

« Shared memory atomic increment is fast under contention
« Sparse matrix multiply performance depends on transpose

* Along the way, we also gave a comprehensive overview of
what’s new in Ampere architecturally

 Stay tuned for our tech report on arXiv around June

