
GPU implementation of explicit and implicit finite

difference methods in Finance

Mike Giles

Mathematical Institute, Oxford University

Oxford-Man Institute of Quantitative Finance

Oxford e-Research Centre

Endre László, István Reguly (Oxford)
Julien Demouth, Jeremy Appleyard (NVIDIA)

expanded version of presentation at GTC 2014

July 25th, 2014

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 1 / 33

GPUs

In the last 6 years, GPUs have emerged as a major new technology in
computational finance, as well as other areas in HPC:

over 1000 GPUs at JP Morgan, and also used at a number of other
Tier 1 banks and financial institutions

use is driven by both energy efficiency and price/performance, with
main concern the level of programming effort required

Monte Carlo simulations are naturally parallel, so ideally suited to
GPU execution:

◮ averaging of path payoff values using binary tree reduction
◮ key requirement is parallel random number generation, and that is

addressed by libraries such as CURAND

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 2 / 33

Finite Difference calculations

Focus of this work is finite difference methods for approximating
Black-Scholes and other related multi-factor PDEs

explicit time-marching methods are naturally parallel – again a good
target for GPU acceleration

implicit time-marching methods usually require the solution of lots of
tridiagonal systems of equations – not so clear how to parallelise this

key observation is that cost of moving lots of data to/from the main
graphics memory can exceed cost of floating point computations

◮ 288 GB/s bandwidth
◮ 4.3 TFlops (single precision) / 1.4 TFlops (double precision)

=⇒ should try to avoid this data movement

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 3 / 33

1D Finite Difference calculations

In 1D, a simple explicit finite difference equation takes the form

un+1
j = aj u

n
j−1 + bj u

n
j + cj u

n
j+1

while an implicit finite difference equation takes the form

aj u
n+1
j−1 + bj u

n+1
j + cj u

n+1
j+1 = unj

requiring the solution of a tridiagonal set of equations.

What performance can be achieved?

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 4 / 33

1D Finite Difference calculations

grid size: 256 points

number of options: 2048

number of timesteps: 50000 (explicit), 2500 (implicit)

K20 capable of 3.5 TFlops (single prec.), 1.2 TFlops (double prec.)

single prec. double prec.

msec GFinsts GFlops msec GFinsts GFlops

explicit1 347 227 454 412 191 382

explicit2 89 882 1763 160 490 980

implicit1 28 892 1308 80 401 637

implicit2 33 948 1377 88 441 685

implicit3 14 643 1103 30 294 505

How is this performance achieved?

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 5 / 33

NVIDIA Kepler GPU

SMX SMX SMX SMX

1.5MB L2 cache

SMX SMX SMX SMX

64kB L1 cache /

shared memory

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 6 / 33

1D Finite Difference calculations

Approach for explicit time-marching:

each thread block (256 threads) does one or more options

3 FMA (fused multiply-add) operations per grid point per timestep

doing an option calculation within one thread block means no need to
transfer data to/from graphics memory – can hold all data in SMX

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 7 / 33

1D Finite Difference calculations

explicit1 holds data in shared memory

each thread handles one grid point

performance is limited by speed of shared memory access,
and cost of synchronisation

__shared__ REAL u[258];

...

utmp = u[i];

for (int n=0; n<N; n++) {

utmp = utmp + a*u[i-1] + b*utmp + c*u[i+1];

__syncthreads();

u[i] = utmp;

__syncthreads();

}

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 8 / 33

1D Finite Difference calculations

explicit2 holds all data in registers

each thread handles 8 grid points, so each warp (32 threads which
act in unison) handles one option

no block synchronisation required

data exchange with neighbouring threads uses shuffle instructions
(special hardware feature for data exchange within a warp)

64-bit shuffles performed using in software
(Julian Demouth, GTC 2013)

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 9 / 33

1D Finite Difference calculations

for (int n=0; n<N; n++) {

um = __shfl_up(u[7], 1);

up = __shfl_down(u[0], 1);

for (int i=0; i<7; i++) {

u0 = u[i];

u[i] = u[i] + a[i]*um + b[i]*u0 + c[i]*u[i+1];

um = u0;

}

u[7] = u[7] + a[7]*um + b[7]*u[7] + c[7]*up;

}

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 10 / 33

1D Finite Difference calculations

Bigger challenge is how to solve tridiagonal systems for implicit solvers.

want to keep computation within an SMX and avoid data transfer
to/from graphics memory

prepared to do more floating point operations if necessary to avoid
the data transfer

need lots of parallelism to achieve good performance

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 11 / 33

Solving Tridiagonal Systems

On a CPU, the tridiagonal equations

ai ui−1 + bi ui + ci ui+1 = di , i = 0, 1, . . . ,N−1

would usually be solved using the Thomas algorithm – essentially just
standard Gaussian elimination exploiting all of the zeros.

inherently sequential algorithm, with a forward sweep and then a
backward sweep

would require each thread to handle separate option

threads don’t have enough registers to store the required data
– would require data transfer to/from graphics memory to hold /
recover data from forward sweep

not a good choice – want an alternative with reduced data transfer,
even if it requires more floating point ops.

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 12 / 33

Solving Tridiagonal Systems

PCR (parallel cyclic reduction) is a highly parallel algorithm.

Starting with

ai ui−1 + ui + ci ui+1 = di , i = 0, 1, . . . ,N−1,

where uj =0 for j<0, j≥N, can subtract multiples of rows i±1, and
re-normalise, to get

a′i ui−2 + ui + c ′i ui+2 = d ′

i , i = 0, 1, . . . ,N−1,

Repeating with rows i±2 gives

a′′i ui−4 + ui + c ′′i ui+4 = d ′′

i , i = 0, 1, . . . ,N−1,

and after log2N repetitions end up with solution because ui±N = 0.

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 13 / 33

Solving Tridiagonal Systems

template <typename REAL> __forceinline__ __device__

REAL trid1_warp(REAL a, REAL c, REAL d){

REAL b;

uint s=1;

#pragma unroll

for (int n=0; n<5; n++) {

b = __rcp(1.0f - a*__shfl_up(c,s)

- c*__shfl_down(a,s));

d = (d - a*__shfl_up(d,s)

- c*__shfl_down(d,s)) * b;

a = - a*__shfl_up(a,s) * b;

c = - c*__shfl_down(c,s) * b;

s = s<<1;

}

return d;

}

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 14 / 33

1D Finite Difference calculations

Using a naive implementation of PCR we would have:

1 grid point per thread

multiple warps for each option, so data exchange via shared memory,
and synchronisation required – not ideal

O(N log2N) floating point operations – quite a bit more than
Thomas algorithm

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 15 / 33

1D Finite Difference calculations

This leads us to a hybrid algorithm: implicit1.

follows data layout of explicit2 with each thread handling 8 grid
points – means data exchanges can be performed by shuffles

each thread uses Thomas algorithm to obtain middle values as a
linear function of two (not yet known) “end” values

uJ+j = AJ+j + BJ+j uJ + CJ+j uJ+7, 0 < j < 7

the reduced tridiagonal system of size 2× 32 for the “end” values
is solved using PCR

total number of floating point operations is approximately double
what would be needed on a CPU using the Thomas algorithm
(but CPU division is more expensive, so similar Flop count overall?)

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 16 / 33

1D Finite Difference calculations

implicit2 is very similar to implicit1, but instead of solving

aj u
n+1
j−1 + bj u

n+1
j + cj u

n+1
j+1 = unj

it instead computes the change ∆uj ≡ un+1
j − unj by solving

aj ∆uj−1 + bj ∆uj + cj ∆uj+1 = dn
j

and then updates uj .

This gives better accuracy, which might be important if working in
single precision.

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 17 / 33

1D Finite Difference calculations

Errors:

explicit1, explicit2 SP errors: 1e-5

could improve a little by changing to

un+1
j = unj + (aj u

n
j−1 + bj u

n
j + cj u

n
j+1)

implicit1 SP errors: 5e-5

implicit2 SP errors: 1e-6

discretisation errors: 1e-4

model errors (wrong PDE, wrong coefficients): MUCH larger

Personally, I think single precision is perfectly sufficient, but the banks
still prefer double precision.

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 18 / 33

1D Finite Difference calculations

If the matrices do not change each timestep, then some parts of the
tridiagonal solution do not need to be repeated each time.

Impressively, the compiler noticed this in the original version of
implicit1, and pre-computed as much as it could, at the cost of
some additional registers.

For meaningful performance results for real time-dependent matrices,
I stopped this by adding a (zero) time-dependent term on the main
diagonal.

However, for applications with fixed matrices, implicit3 exploits this
to pre-compute as much as possible.

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 19 / 33

3D Finite Difference calculations

What about a 3D extension on a 2563 grid?

memory requirements imply one kernel with multiple thread
blocks to handle a single option

kernel will need to be called for each timestep, to ensure that
the entire grid is updated before the next timestep starts

13-point stencil for explicit time-marching

✟✟✟✟
✟✟✟✟

✟✟✟✟

✟✟✟✟
✟✟✟✟

✟✟✟✟

✟✟✟✟
✟✟✟✟

✟✟✟✟

t
t t

t t
t t❢ t

t t

t t
t

implementation uses a separate thread for each grid point in
2D x-y plane, then marches in z-direction

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 20 / 33

3D Finite Difference calculations

grid size: 2563 points

number of timesteps: 500 (explicit), 100 (implicit)

K40 capable of 4.3 TFlops (single prec.), 1.4 TFlops (double prec.)
and 288 GB/s

single prec. double prec.

msec GFlops GB/s msec GFlops GB/s

explicit1 747 597 100 1200 367 127

explicit2 600 760 132 923 487 144

implicit1 505 360 130 921 235 139

Performance as reported by nvprof, the NVIDIA Visual Profiler

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 21 / 33

3D Finite Difference calculations

explicit1 relies on L1/L2 caches for data reuse – compiler does an
excellent job of optimising loop invariant operations

u2[indg] = t23 * u1[indg-KOFF-JOFF]

+ t13 * u1[indg-KOFF-IOFF]

+ (c1_3*S3*S3 - c2_3*S3 - t13 - t23) * u1[indg-KOFF]

+ t12 * u1[indg-JOFF-IOFF]

+ (c1_2*S2*S2 - c2_2*S2 - t12 - t23) * u1[indg-JOFF]

+ (c1_1*S1*S1 - c2_1*S1 - t12 - t13) * u1[indg-IOFF]

+ (1.0f - c3 - 2.0f*(c1_1*S1*S1 + c1_2*S2*S2 + c1_3*S3*S3

- t12 - t13 - t23)) * u1[indg]

+ (c1_1*S1*S1 + c2_1*S1 - t12 - t13) * u1[indg+IOFF]

+ (c1_2*S2*S2 + c2_2*S2 - t12 - t23) * u1[indg+JOFF]

+ t12 * u1[indg+JOFF+IOFF]

+ (c1_3*S3*S3 + c2_3*S3 - t13 - t23) * u1[indg+KOFF]

+ t13 * u1[indg+KOFF+IOFF]

+ t23 * u1[indg+KOFF+JOFF];

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 22 / 33

3D Finite Difference calculations

explicit2 uses extra registers to hold values which will be needed again

u = t23 * u1_om

+ t13 * u1_mo

+ (c1_3*S3*S3 - c2_3*S3 - t13 - t23) * u1_m;

u1_mm = u1[indg-JOFF-IOFF];

u1_om = u1[indg-JOFF];

u1_mo = u1[indg-IOFF];

u1_pp = u1[indg+IOFF+JOFF];

u = u + t12 * u1_mm

+ (c1_2*S2*S2 - c2_2*S2 - t12 - t23) * u1_om

+ (c1_1*S1*S1 - c2_1*S1 - t12 - t13) * u1_mo

+ (1.0f - c3 - 2.0f*(c1_1*S1*S1 + c1_2*S2*S2 + c1_3*S3*S3

- t12 - t13 - t23)) * u1_oo

+ (c1_1*S1*S1 + c2_1*S1 - t12 - t13) * u1_po

+ (c1_2*S2*S2 + c2_2*S2 - t12 - t23) * u1_op

+ t12 * u1_pp;

indg += KOFF;

u1_m = u1_oo;

u1_oo = u1[indg];

u1_po = u1[indg+IOFF];

u1_op = u1[indg+JOFF];

u = u + (c1_3*S3*S3 + c2_3*S3 - t13 - t23) * u1_oo

+ t13 * u1_po

+ t23 * u1_op;

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 23 / 33

3D Finite Difference calculations

For implicit time-marching, the ADI discretisation requires the solution
of a tridiagonal equations along each line in the x-direction, and then
the same in the y - and z-directions.

implicit1 is based on library software being written by Endre László,
István Reguly and Jeremy Appleyard (NVIDIA), based on the 1D hybrid
PCR code - - better than the Thomas method because it involves much
less data transfer to/from graphics memory.

The clever part of the implementation is in the data transpositions
required to maximise bandwidth – a bit like transposing a matrix.

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 24 / 33

3D Finite Difference calculations

The implicit1 code has the following structure:

kernel similar to explicit kernel to produce r.h.s.

separate kernel for tridiagonal solution in each coordinate direction

Fairly balanced between computation and communication, provided
attention is paid to maximising data coalescence.

In x-direction:

each warp handles one tri-diagonal system

data is contiguous in global memory

data is loaded in coalesced way, then transposed in shared memory
so each thread gets 8 contiguous elements

care is taken to avoid shared memory bank conflicts

process is reversed when storing data

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 25 / 33

Data transposition

What is the problem?

In this application, a warp of 32 threads wants to load in an array of 256
elements:

natural coalesced load means warp reads in first 32, then next 32,
and so on

thread 0 ends up with elements 0, 32, 64, 96, 128, . . .

but, for hybrid PCR algorithm, thread 0 needs elements 0, 1, 2, 3, 4,
5, 6, 7

so, how does data get re-arranged?

more generally, how do we handle it with I elements per thread?

same problem arises in applications where 32 threads want to load 32
objects (structs) each consisting of I contiguous elements

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 26 / 33

Data transposition

If I is odd, it can be done very simply using shared memory.

If j is the thread index, then

for i=0, I-1 do
load global array element j + 32 ∗ i
write into shared memory j + 32 ∗ I

end for

for i=0, I-1 do
read from shared memory i + j ∗ I

end for

✲

✻

i

j

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

Key point is that in final read, each thread in the warp is reading from a
different shared memory bank – there are 32 of these.

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 27 / 33

Shared memory

physically, the shared memory hardware is organised into 32 memory
banks

data for shared memory location k is stored in bank k mod 32

if two threads in the warp read different data from the same memory
bank then it takes longer (the requests are handled sequentially)

generally not a major concern, but in a worst case it can perform very
poorly

no bank conflict for odd I because j=32 is first positive integer with
j I mod 32 = 0 producing a bank conflict with j = 0.

when I is a power of 2, there is a problem since j = 0, 32/I , 64/I . . .
all access the same bank – particularly bad for large I

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 28 / 33

Data transposition

When I is a power of 2, we avoid bank conflicts by padding the shared
memory storage

for i=0, I-1 do
k = j + 32 ∗ i
load global array element k
write into shared memory k+k/32

end for

for i=0, I-1 do
k = i + j ∗ I

read from shared memory k+k/32
end for

✲

✻

i

j

0 1 2 3

4 5 6 7

8 9 10 11

28 29 30 31

33 34 35 36

37 38 39 40
✲

padded by 1

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 29 / 33

Data transposition

this can be extended to general I (neither odd nor a power of 2)

definitely confusing the first time you learn about it

not worth worrying about in most applications

can be important when developing library software to achieve the
ultimate in performance

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 30 / 33

3D Finite Difference calculations

In y and z-directions:

thread block with 8 warps to handle 8 tri-diagonal systems

data for 8 systems is loaded simultaneously to maximise coalescence

each thread gets 8 elements to work on

data transposition in shared memory so that each warp handles PCR
for one tridiagonal system

then data transposition back to complete the solution and finally
store the result

quite a tricky implementation but it performs very well

Bottom line – distinctly non-trivial, so check out the code on my webpage!

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 31 / 33

Finite Difference calculations

Other dimensions?

2D:

if the grid is small (1282?) one option could fit within a single SMX
◮ in this case, could adapt the 1D hybrid PCR method for the 2D ADI

solver
◮ main complication would be transposing the data between the x-solve

and y -solve so that each tridiagonal solution is within a single warp

otherwise, will have to use the 3D approach, but with solution of
multiple 2D problems to provide more parallelism

4D:

same as 3D, provided data can fit into graphics memory
(buy a K40 with 12GB graphics memory!)

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 32 / 33

Conclusions

GPUs can deliver excellent performance for financial finite difference
calculations, as well as for Monte Carlo

some parts of the implementation are straightforward, but others
require a good understanding of the hardware and parallel algorithms
to achieve the best performance

some of this work will be built into future NVIDIA libraries
(CUSPARSE, CUB?)

we are now working to develop a program generator to generate
code for arbitrary financial PDEs, based on an XML specification

For further info, see software and other details at
http://people.maths.ox.ac.uk/gilesm/codes/BS 1D/

http://people.maths.ox.ac.uk/gilesm/codes/BS 3D/

http://people.maths.ox.ac.uk/gilesm/cuda slides.html

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 33 / 33

