Lecture 2: different memory and variable types

Prof. Mike Giles
mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute
Oxford e-Research Centre
Memory

Key challenge in modern computer architecture

- no point in blindingly fast computation if data can’t be moved in and out fast enough
- need lots of memory for big applications
- very fast memory is also very expensive
- end up being pushed towards a hierarchical design
CPU Memory Hierarchy

Main memory
- 32 – 128 GB
- 2GHz DDR4
 - 200+ cycle access, 60 – 120GB/s

L3 Cache
- 12 – 24 MB
- 2GHz SRAM
 - 25-35 cycle access, 200 – 400GB/s

L1/L2 Cache
- 32KB + 512KB
- 3GHz SRAM
 - 5-12 cycle access

registers

- faster
- more expensive
- smaller

Lecture 2 – p. 3
Execution speed relies on exploiting data *locality*

- **temporal locality**: a data item just accessed is likely to be used again in the near future, so keep it in the cache
- **spatial locality**: neighbouring data is also likely to be used soon, so load them into the cache at the same time using a ‘wide’ bus (like a multi-lane motorway)

This wide bus is only way to get high bandwidth to slow main memory
Caches

The cache line is the basic unit of data transfer; typical size is 64 bytes \(\equiv 8 \times 8\)-byte items.

With a single cache, when the CPU loads data into a register:
- it looks for line in cache
- if there (hit), it gets data
- if not (miss), it gets entire line from main memory, displacing an existing line in cache (usually least recently used)

When the CPU stores data from a register:
- same procedure
Importance of Locality

Typical workstation:
20 Gflops per core
40 GB/s L3 \rightarrow L2 cache bandwidth
64 bytes/line

40GB/s \equiv 600M line/s \equiv 5G double/s

At worst, each flop requires 2 inputs and has 1 output, forcing loading of 3 lines \Rightarrow 200 Mflops

If all 8 variables/line are used, then this increases to 1.6 Gflops.

To get up to 20Gflops needs temporal locality, re-using data already in the L2 cache.
Pascal

- usually 32 bytes cache line (8 floats or 4 doubles)
- P100: 4092-bit memory path from HBM2 device memory to L2 cache \rightarrow up to 720 GB/s bandwidth
- GeForce cards: 384-bit memory bus from GDDR5 device memory to L2 cache \rightarrow up to 320 GB/s
- unified 4MB L2 cache for all SM’s
- each SM has 64-96kB of shared memory, and 24-48kB of L1 cache
- no global cache coherency as in CPUs, so should (almost) never have different blocks updating the same global array elements
GPU Memory Hierarchy

Device memory

- 4 – 12 GB
- 5GHz GDDR5

L2 Cache
- 200-300 cycle access, 250 – 500GB/s
- 2 – 4MB

L1 Cache
- 200-300 cycle access, 500 – 1000GB/s
- 16/32/48KB

registers
- 80 cycle access

faster
more expensive
smaller
Importance of Locality

5 Tflops GPU
320 GB/s memory \leftrightarrow L2 cache bandwidth
32 bytes/line

320 GB/s \equiv 10G line/s \equiv 40G double/s

At worst, each flop requires 2 inputs and has 1 output, forcing loading of 3 lines \Rightarrow 3 Gflops

If all 4 doubles/line are used, increases to 13 Gflops

To get up to 2 TFlops needs about 50 flops per double transferred to/from device memory

Even with careful implementation, many algorithms are bandwidth-limited not compute-bound
Practical 1 kernel

__global__ void my_first_kernel(float *x) {
 int tid = threadIdx.x + blockDim.x*blockIdx.x;
 x[tid] = threadIdx.x;
}

- 32 threads in a warp will address neighbouring elements of array x
- if the data is correctly “aligned” so that x[0] is at the beginning of a cache line, then x[0] – x[31] will be in same cache line – a “coalesced” transfer
- hence we get perfect spatial locality
A bad kernel

```c
__global__ void bad_kernel(float *x) {
    int tid = threadIdx.x + blockDim.x*blockIdx.x;
    x[1000*tid] = threadIdx.x;
}
```

- in this case, different threads within a warp access widely spaced elements of array \(x \) – a “strided” array access
- each access involves a different cache line, so performance will be awful
Global arrays

So far, concentrated on global / device arrays:

- held in the large device memory
- allocated by host code
- pointers held by host code and passed into kernels
- continue to exist until freed by host code
- since blocks execute in an arbitrary order, if one block modifies an array element, no other block should read or write that same element
Global variables can also be created by declarations with global scope within kernel code file

```c
__device__ int reduction_lock=0;

__global__ void kernel_1(...) {
    ...
}

__global__ void kernel_2(...) {
    ...
}
```
Global variables

- the \texttt{__device__} prefix tells \texttt{nvcc} this is a global variable in the GPU, not the CPU.
- the variable can be read and modified by any kernel
- its lifetime is the lifetime of the whole application
- can also declare arrays of fixed size
- can read/write by host code using special routines
 \texttt{cudaMemcpyToSymbol}, \texttt{cudaMemcpyFromSymbol}
 or with standard \texttt{cudaMemcpy} in combination with
 \texttt{cudaGetSymbolAddress}
- in my own CUDA programming, I rarely use this capability but it is occasionally very useful
Constant variables

Very similar to global variables, except that they can’t be modified by kernels:

- defined with global scope within the kernel file using the prefix `__constant__`
- initialised by the host code using `cudaMemcpyToSymbol`, `cudaMemcpyFromSymbol` or `cudaMemcpy` in combination with `cudaGetSymbolAddress`
- I use it all the time in my applications; practical 2 has an example
Constant variables

Only 64KB of constant memory, but big benefit is that each SM has a 10KB cache

- when all threads read the same constant, almost as fast as a register
- doesn’t tie up a register, so very helpful in minimising the total number of registers required
A constant variable has its value set at run-time

But code also often has plain constants whose value is known at compile-time:

#define PI 3.1415926f

 a = b / (2.0f * PI);

Leave these as they are – they seem to be embedded into the executable code so they don’t use up any registers

Don’t forget the \texttt{f} at the end if you want single precision;
in C/C++

\texttt{single} \times \texttt{double} = \texttt{double}
Registers

Within each kernel, by default, individual variables are assigned to registers:

```c
__global__ void lap(int I, int J,
                    float *u1, float *u2) {
    int i = threadIdx.x + blockIdx.x*blockDim.x;
    int j = threadIdx.y + blockIdx.y*blockDim.y;
    int id = i + j*I;

    if (i==0 || i==I-1 || j==0 || j==J-1) {
        u2[id] = u1[id];    // Dirichlet b.c.'s
    }
    else {
        u2[id] = 0.25f * ( u1[id-1] + u1[id+1] + u1[id-I] + u1[id+I] );
    }
}
```
Registers

- 64K 32-bit registers per SM
- up to 255 registers per thread
- up to 2048 threads (at most 1024 per thread block)
- max registers per thread \Rightarrow 256 threads
- max threads \Rightarrow 32 registers per thread
- big difference between “fat” and “thin” threads
Registers

What happens if your application needs more registers?

They “spill” over into L1 cache, and from there to device memory – precise mechanism unclear, but

either certain variables become device arrays with one element per thread

or the contents of some registers get “saved” to device memory so they can used for other purposes, then the data gets “restored” later

Either way, the application suffers from the latency and bandwidth implications of using device memory
Local arrays

What happens if your application uses a little array?

__global__ void lap(float *u) {

 float ut[3];

 int tid = threadIdx.x + blockIdx.x*blockDim.x;

 for (int k=0; k<3; k++)
 ut[k] = u[tid+k*gridDim.x*blockDim.x];

 for (int k=0; k<3; k++)
 u[tid+k*gridDim.x*blockDim.x] =
}

Lecture 2 – p. 22
Local arrays

In simple cases like this (quite common) compiler converts to scalar registers:

```c
__global__ void lap(float *u) {
  int tid = threadIdx.x + blockIdx.x*blockDim.x;
  float ut0 = u[tid+0*gridDim.x*blockDim.x];
  float ut1 = u[tid+1*gridDim.x*blockDim.x];
  float ut2 = u[tid+2*gridDim.x*blockDim.x];
  u[tid+0*gridDim.x*blockDim.x] = A[0]*ut0 + A[1]*ut1 + A[2]*ut2;
}
```
Local arrays

In more complicated cases, it puts the array into device memory:

- this is because registers are not dynamically addressable – compiler has to specify exactly which registers are used for each instruction
- still referred to in the documentation as a “local array” because each thread has its own private copy
- held in L1 cache by default, may never be transferred to device memory
- 48kB of L1 cache equates to 12k 32-bit variables, which is only 12 per thread when using 1024 threads
- beyond this, it will have to spill to device memory
Shared memory

In a kernel, the prefix \texttt{__shared__} as in

\begin{verbatim}
__shared__ int x_dim;
__shared__ float x[128];
\end{verbatim}

declares data to be shared between all of the threads in the thread block – any thread can set its value, or read it.

There can be several benefits:

\begin{itemize}
\item essential for operations requiring communication between threads (e.g. summation in lecture 4)
\item useful for data re-use
\item alternative to local arrays in device memory
\end{itemize}
Shared memory

If a thread block has more than one warp, it’s not pre-determined when each warp will execute its instructions – warp 1 could be many instructions ahead of warp 2, or well behind.

Consequently, almost always need thread synchronisation to ensure correct use of shared memory.

Instruction

__syncthreads();

inserts a “barrier”; no thread/warp is allowed to proceed beyond this point until the rest have reached it (like a roll call on a school outing)
Shared memory

So far, have discussed statically-allocated shared memory – the size is known at compile-time

Can also create dynamic shared-memory arrays but this is more complex

Total size is specified by an optional third argument when launching the kernel:
kernel<<<blocks, threads, shared_bytes>>>(...)

Using this within the kernel function is complicated/tedious; see B.2.3 in Programming Guide
Read-only arrays

With “constant” variables, each thread reads the same value.

In other cases, we have arrays where the data doesn’t change, but different threads read different items.

In this case, can get improved performance by telling the compiler by declaring global array with

```
const __restrict__
```

qualifiers so that the compiler knows that it is read-only
Non-blocking loads/stores

What happens with the following code?

```c
__global__ void lap(float *u1, float *u2) {
    float a;

    a = u1[threadIdx.x + blockIdx.x*blockDim.x]
    ...
    ...
    c = b*a;
    u2[threadIdx.x + blockIdx.x*blockDim.x] = c;
    ...
    ...
}
```

Load doesn’t block until needed; store also doesn’t block
Active blocks per SM

Each block require certain resources:

- threads
- registers (registers per thread × number of threads)
- shared memory (static + dynamic)

Together these determine how many blocks can be run simultaneously on each SM – up to a maximum of 32 blocks
Active blocks per SM

My general advice:

- number of active threads depends on number of registers each needs
- good to have at least 4 active blocks, each with at least 128 threads
- smaller number of blocks when each needs lots of shared memory
- larger number of blocks when they don’t need shared memory
Active blocks per SM

On Pascal:

- maybe 4 big blocks (512 threads) if each needs a lot of shared memory
- maybe 12 small blocks (128 threads) if no shared memory needed
- or 4 small blocks (128 threads) if each thread needs lots of registers

Very important to experiment with different block sizes to find what gives the best performance.
Summary

- dynamic device arrays
- static device variables / arrays
- constant variables / arrays
- registers
- spilled registers
- local arrays
- shared variables / arrays
Key reading

CUDA Programming Guide, version 9.0:
- Appendix B.1-B.4 – essential
- Chapter 3, sections 3.2.1-3.2.3

Other reading:
- Wikipedia article on caches:
 en.wikipedia.org/wiki/CPU_cache
- Web article on caches:
 lwn.net/Articles/252125/
- “Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System”:
 portal.acm.org/citation.cfm?id=1637764