
Lecture 5: Libraries and tools

Prof Wes Armour

wes.armour@eng.ox.ac.uk

Prof Mike Giles

mike.giles@maths.ox.ac.uk

Oxford e-Research Centre

Department of Engineering Science

Lecture 5 1

mailto:wes.armour@eng.ox.ac.uk
mailto:wes.armour@eng.ox.ac.uk


Learning outcomes

In this fifth lecture we will learn about GPU libraries and tools for GPU programming.

You will learn about:

• NVIDIA GPU libraries and there usefulness in scientific computing.

• Third party libraries.

• Directives based approaches to GPU computation.

• Tools for GPU programming.

Lecture 5 2



Software overview

NVIDIA provides a rich ecosystem of
software tools that allow you to
easily utilise GPUs in your project.

During this lecture we will focus on a
range of libraries and software tools
that will make your life easier when
either writing CUDA code or when
utilising GPUs in your projects.



Dependencies – Advantages / Disadvantages

Lecture 5 4

Some advantages:

• Simple to use – you don’t need to write your 
own complex code to perform a specific task.

• Well maintained – always benefit from the 
latest optimisations and improvements.

• Easier(?) to move from CPU code to GPU 
code (for example see cuFFTW).

Some disadvantages:

• Can make installing your code on another 
system harder (the user also needs to have 
the dependency installed).

• If the dependency isn’t maintained it could 
break your code as other things (e.g. 
compiler) are updated. 

• If your code is very dependent on it and the 
developers stop supporting it – you become 
the owner (not a great position to be in). 



CUDA math library

The CUDA Math Library contains all of the typical mathematical functions that you 
will need for your projects. It is very similar to Intel’s MKL library.

• various exponential and log functions

• trigonometric functions and their inverses

• hyperbolic functions and their inverses

• error functions and their inverses

• Bessel and Gamma functions

• vector norms and reciprocals (esp. for graphics)

• To use - “#include math.h”

The library supports standard int, float and double types, but in recent years has 
also added support for fp8, fp16 and bfloat16.

Typecasting and SIMD intrinsics are also included in this library.

CUDA Math Library | NVIDIA Developer

https://developer.nvidia.com/cuda-math-library


cuTENSOR

Lecture 5 6

Tensor cores originally introduced on Volta in
2017 provided hardware enabled acceleration
for matrix-matrix multiplies.

• Originally performed a 4x4 matrix multiply-
accumulate (think FMA for matrices) using
wmma:: instruction.

• Matrices A and B would be lower precision
and the accumulators would be the same or
higher precision

• With Ampere and Hopper some of these
restrictions have been relaxed. https://arxiv.org/pdf/2206.02874.pdf

https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-
high-performance-tensor-operations-in-cuda-v2.pdf

https://arxiv.org/pdf/2206.02874.pdf
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf


cuTENSOR

Lecture 5 7

https://developer.nvidia.com/cutensor

https://github.com/NVIDIA/CUDALibrarySamples/blob/master/cuTENSOR/reduction.cu

https://docs.nvidia.com/cuda/cutensor/index.html

Current tensor cores (Hopper) are able to use
various precisions and exploit sparsity to gain
further acceleration.

• FP64 inputs with FP32 compute (DMMA).

• FP32 inputs with FP16, BF16, or TF32
compute.

• Complex-times-real operations.

• Conjugate (without transpose) support.

• Support for up to 64-dimensional tensors.

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

https://developer.nvidia.com/cutensor
https://github.com/NVIDIA/CUDALibrarySamples/blob/master/cuTENSOR/reduction.cu
https://docs.nvidia.com/cuda/cutensor/index.html
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/


cuBLAS Library

Lecture 5 8

The cuBLAS (CUDA Basic Linear Algebra Subprograms) library provides CUDA 
accelerated standard BLAS APIs (for 152 different routines) for dense matrices. 

• includes matrix-vector and matrix-matrix product.

• it is possible to call cuBLAS routines from user kernels (via a device API).

• some support for a single routine call to do a “batch” of smaller matrix-matrix 
multiplications.

• also support for using CUDA streams to do a large number of small tasks 
concurrently.

• has support for multi-GPU operation (cuBLASTxt or cuBLASMg).

• has mixed / low precision implementations.



cuBLAS Library

To use cuBLAS in your codes, a set of routines are called from your host code. These come in 
two forms, helper routines and compute routines. 

Helper routines for:

• memory allocation

• data copying from CPU to GPU, and vice versa

• error reporting

cuBLAS | NVIDIA Developer

Compute routines for:

• e.g. matrix-matrix and matrix-vector product

• Warning! Some calls are asynchronous, i.e. the call starts the operation 

but the host code then continues before it has completed!!

https://developer.nvidia.com/cublas


cuBLAS Library

cuBLAS is one of three libraries that use
“tensor cores”. Tensor cores are different to a
standard processing core, the are designed to
perform very specific operations and these
operations are executed on mixed precision
data.

If you are able to reduce the precision of your
matrix / vector operations in cuBLAS you can
gain significant acceleration.

https://developer.nvidia.com/cublas

https://developer.nvidia.com/cublas


cuBLAS Library

Since Ampere, there has been a “TF32” variable that
is a compromise between FP32 and BFLOAT16. It
allows for a compromise between lower precision and
FP32 matrix-matrix operations.

Also DMMA64 for double precision – uses AI magic?

Useful for:

• AI Training

• Liner solvers

https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts. 

https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts


cuFFT Library

Lecture 5 12

The cuFFT library is a GPU accelerated library that provides Fast Fourier 
Transforms.

• Provides 1D, 2D and 3D FFTs.

• Has almost all of the variations found in FFTW and other CPU libraries.

• Includes the cuFFTW library, a porting tool, to enable users of FFTW to 
start using GPUs with minimal effort.

• Provides some device level functionality. If this is something of interest 
ask Karel – he has already produced shared memory device level FFTs 
for our projects. 



cuFFT Library

Lecture 5 13

cuFFT is used exactly like cuBLAS - it has a set of routines called by host code:

Helper routines include “plan” construction.

Compute routines perform 1D, 2D, 3D FFTs:

• cufftExecC2C() - complex-to-complex.
• cufftExecR2C() - real-to-complex.
• cufftExecC2R() - complex-to-real.

(double precision routines have different function calls, e.g. cufftExecZ2Z())

It supports doing a “batch” of independent transforms, e.g. applying 1D 
transform to a 3D dataset 

The simpleCUFFT example in SDK is a good starting point.

https://docs.nvidia.com/cuda/cufft/index.html#introduction

https://docs.nvidia.com/cuda/cufft/index.html#introduction


cuSPARSE Library

Lecture 5 14

cuSPARSE is a GPU accelerated library that provides various routines to 
work with sparse matrices.

• Includes sparse matrix-vector and matrix-matrix products.

• Can be used for iterative solution (but see cuSOLVER for an easy life).

• Also has solution of sparse triangular system

• Note: batched tridiagonal solver is in cuBLAS not cuSPARSE



cuRAND Library

Lecture 5 15

The cuRAND library is a GPU accelerated library for random number 
generation.

It has many different algorithms for pseudorandom and quasi-
random number generation.

Pseudo: XORWOW, mrg32k3a, Mersenne Twister and Philox 4x32_10
Quasi: SOBOL and Scrambled SOBOL 

Uniform, Normal, log-Normal and Poisson outputs

This library also includes device level routines for RNG within user 
kernels.



cuSOLVER

Lecture 5 16

cuSOLVER brings together cuSPARSE and cuBLAS.

Has solvers for dense and sparse systems.

Key LAPACK dense solvers, 3 – 6x faster than MKL.

Sparse direct solvers, 2–14x faster than CPU equivalents.



Other notable libraries

Lecture 5 17

CUB (CUDA Unbound): https://nvlabs.github.io/cub/

• Provides a collection of basic building blocks at three levels: device, 
thread block, warp.

• Functions include sort, scan and reduction.
• Thrust uses CUB for CUDA versions of key algorithms.
• Last update over a year ago…

http://on-demand.gputechconf.com/gtc/2014/presentations/S4566-cub-collective-software-primitives.pdf

AmgX (originally named NVAMG): http://developer.nvidia.com/amgx

• Library for algebraic multigrid

https://nvlabs.github.io/cub/
http://on-demand.gputechconf.com/gtc/2014/presentations/S4566-cub-collective-software-primitives.pdf
http://developer.nvidia.com/amgx


Other notable libraries

Lecture 5 18

cuDNN

• Library for Deep Neural Networks
• Some parts developed by Jeremy Appleyard (NVIDIA) working in Oxford

nvGraph
• Page Rank, Single Source Shortest Path, Single Source Widest Path

NPP (NVIDIA Performance Primitives)
• Library for imaging and video processing
• Includes functions for filtering, JPEG decoding, etc.

CUDA Video Decoder API…



Libraries

Other notable libraries



Libraries

Other notable libraries



MAGMA

Lecture 5 21

MAGMA (Matrix Algebra on GPU and Multicore Architectures) has been available for a few years (See 
nice SC17 handout: http://www.icl.utk.edu/files/print/2017/magma-sc17.pdf ) 

• LAPACK for GPUs – higher level numerical linear algebra, layered on top of cuBLAS.

• Open source – freely available.

• Last updated February 2023.

https://icl.utk.edu/magma/
https://developer.nvidia.com/magma

http://www.icl.utk.edu/files/print/2017/magma-sc17.pdf
https://icl.utk.edu/magma/
https://developer.nvidia.com/magma


ArrayFire

Lecture 5 22

Originally a commercial software (from Accelereyes), but is now open source. 

• Supports both CUDA and OpenCL execution.

• C, C++ and Python interfaces.

• Working to incorporate OneAPI (So should support most Intel hardware).

• Supports NVIDA and AMD GPUs/APUs, Intel processors and mobile 
devices from ARM, Qualcomm…

• Wide range of functionality including linear algebra, image and signal 
processing, random number generation, sorting…

• Actively developed.

https://arrayfire.com/
https://github.com/arrayfire/arrayfire

https://arrayfire.com/
https://github.com/arrayfire/arrayfire


Thrust

Lecture 5 23

Thrust is a high-level C++ template library with an interface based on 
the C++ Standard Template Library (STL).

Thrust has a very different philosophy to other libraries - users write
standard C++ code (no CUDA) but get the benefits of GPU acceleration. 

Thrust relies on C++ object-oriented programming – certain objects 
exist on the GPU, and operations involving them are implicitly 
performed on the GPU.

It has lots of built-in functions for operations like sort and scan.

It also simplifies memory management and data movement.

https://thrust.github.io/

https://thrust.github.io/


Kokkos

Lecture 5 24

Kokkos is another high-level C++ template library, 
similar to Thrust.

It has been developed in the US DoE Labs, so there is 
considerable investment in both capabilities and on-
going software maintenance.

Could be worth investigating if you are considering using 
Thrust in your projects. 

For more information see
https://kokkos.github.io/kokkos-core-wiki/
https://kokkos.org/about/

https://kokkos.github.io/kokkos-core-wiki/
https://kokkos.org/about/


A final word on libraries

Lecture 5 25

NVIDIA maintains webpages with links to a variety of CUDA
libraries:

www.developer.nvidia.com/gpu-accelerated-libraries

and other tools:

www.developer.nvidia.com/tools-ecosystem

https://en.wikipedia.org/wiki/Duke_Humfrey%27s_Library

http://www.developer.nvidia.com/gpu-accelerated-libraries
http://www.developer.nvidia.com/tools-ecosystem
https://en.wikipedia.org/wiki/Duke_Humfrey%27s_Library


A note on directive based approaches and 
other languages

Lecture 1 26



OpenMP 

Lecture 5 27

OpenMP 5.0 is a directive based approach to 
parallelisation. 

• It uses a fork-join model.

• Can be used in C / C++ and FORTRAN codes. 

• It supports both CPU and GPU hardware.

Is now becoming the industry standard for in node CPU 
parallelisation.

By Wikipedia user A1 - w:en:File:Fork_join.svg, CC BY 3.0, 
https://commons.wikimedia.org/w/index.php?curid=32004077

https://commons.wikimedia.org/w/index.php?curid=32004077


SYCL

Lecture 5 28

SYCL (“sickle”) - C++ Single-source Heterogeneous 
Programming for OpenCL.

From KHRONOS Group (responsible for OpenCL).

Provides an abstraction layer that builds on OpenCL. 

It enables code for heterogeneous processors to be written 
in a “single-source” style using completely standard C++.

Supported by Intel, NVIDIA and AMD.



Other Languages 

Lecture 5 29

FORTRAN: CUDA FORTRAN compiler with natural FORTRAN equivalent to CUDA C.

MATLAB: can call kernels directly, or use OOP like Thrust to define MATLAB objects which live on the GPU
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html

Mathematica: similar to MATLAB?

Python: CuPy (compatible with NumPy – acceleration for array computations), Numba and CUDA python
http://mathema.tician.de/software/pycuda
https://store.continuum.io/cshop/accelerate/
https://developer.nvidia.com/cuda-python
https://developer.nvidia.com/how-to-cuda-python
https://nvidia.github.io/cuda-python/overview.html

https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
http://mathema.tician.de/software/pycuda
https://store.continuum.io/cshop/accelerate/
https://developer.nvidia.com/cuda-python
https://developer.nvidia.com/how-to-cuda-python
https://nvidia.github.io/cuda-python/overview.html


Other useful things…

Lecture 5 30

https://developer.nvidia.com/tools-ecosystem
https://developer.nvidia.com/language-solutions
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-compilers

https://developer.nvidia.com/tools-ecosystem
https://developer.nvidia.com/language-solutions
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-compilers


Which library should I use for my problem?

Lecture 1 31



The seven dwarfs

Lecture 5 32

Phil Colella a senior researcher at Lawrence Berkeley 
National Laboratory, talked about “7 dwarfs” of numerical 
computation in 2004.

Expanded to 13 by a group of UC Berkeley professors in a 
2006 report: “A View from Berkeley” 
www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
183.pdf

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf


The seven dwarfs

Lecture 5 33

These 13 dwarfs define key algorithmic kernels in many 
scientific computing applications.

They have been very helpful to focus attention on HPC 
challenges and development of libraries and problem-
solving environments/frameworks.



The seven dwarfs

Lecture 5 34

1. Dense linear algebra

2. Sparse linear algebra

3. Spectral methods

4. N-body methods

5. Structured grids

6. Unstructured grids

7. Monte Carlo



1. Dense Linear Algebra

Lecture 5 35

Many tools available, some from NVIDIA, some third party:

• cuBLAS

• cuSOLVER

• MAGMA

• ArrayFire

CUTLASS, an NVIDIA tool for Fast Linear Algebra in CUDA 
C++ might also be worth a look if you can’t use the above 
libraries for any reason.

https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/

https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/


2. Sparse Linear Algebra

Lecture 5 36

Iterative solvers

• Some available in PetSc (Portable, Extensible Toolkit for 
Scientific Computation, for solving PDEs) -
https://petsc.org/release/overview/nutshell/

• Others can be implemented using sparse matrix-vector 
multiplication from cuSPARSE (is also now in PETSc).

• NVIDIA has AmgX, an algebraic multigrid library.

Direct solvers

• NVIDIA’s cuSOLVER.
• SuperLU project (Gaussian elimination with partial pivoting) 

https://portal.nersc.gov/project/sparse/superlu/

• STRUMPACK (ask Mike) 
https://portal.nersc.gov/project/sparse/strumpack//

https://petsc.org/release/overview/nutshell/
https://portal.nersc.gov/project/sparse/superlu/
https://portal.nersc.gov/project/sparse/strumpack/


3. Spectral methods

Lecture 5 37

cuFFT /cuFFTW

Library provided / maintained by NVIDIA 

For those interested in FFTs on GPUs – ask karel…



4. N-Body methods

Lecture 5 38

OpenMM:
• http://openmm.org/

open source package to support molecular 
modelling, developed at Stanford.

Fast multipole methods:
• ExaFMM by Yokota and Barba: 

http://www.bu.edu/exafmm/

• FMM2D by Holm, Engblom, Goude, 
Holmgren: http://user.it.uu.se/~stefane/freeware
https://lorenabarba.com/figshare/exafmm-10-years-
7-re-writes-the-tortuous-progress-of-computational-
research/

• Software by Takahashi, Cecka, Fong, Darve: 
http://onlinelibrary.wiley.com/doi/10.1002/nme.324
0/pdf

https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-n-body-simulation

https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/nbody/doc/nbody_gems3_ch31.pdf

http://openmm.org/
http://www.bu.edu/exafmm/
http://user.it.uu.se/~stefane/freeware
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
http://onlinelibrary.wiley.com/doi/10.1002/nme.3240/pdf
https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-n-body-simulation
https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/nbody/doc/nbody_gems3_ch31.pdf


5. Structured grids

Lecture 5 39

Lots of people have developed one-off applications.

No great need for a library for single block codes (though 
possible improvements from “tiling”?).

Multi-block codes could benefit from a general-purpose 
library, mainly for MPI communication.

Oxford OPS project has developed a high-level open-
source framework for multi-block codes,
using GPUs for code execution and MPI for distributed-
memory message-passing.

All implementation details are hidden from “users”, so 
they don’t have to know about GPU/MPI programming. 

For those interested – ask Mike…

Slffea, Mysid - Drawn by Slffea, vectorized by Mysid.

https://en.wikipedia.org/wiki/User:Slffea
https://en.wikipedia.org/wiki/User:Mysid


6. Unstructured grids

Lecture 5 40

In addition to GPU implementations of specific 
codes there are projects to create high-level 
solutions which others can use for their 
application codes:

• Alonso, Darve and others (Stanford).

• Oxford / Imperial College / Warwick project 
developed OP2, a general-purpose open-
source framework based on a previous 
framework built on MPI.

• If there’s interest Mike could talk about OP2 
and OPS in lecture 8/9.

See https://op-dsl.github.io/ for both OPS and 
OP2

I,
 Z

u
re

ks
, C

C
 B

Y-
SA

 3
.0

 <
h

tt
p

:/
/c

re
at

iv
ec

o
m

m
o

n
s.

o
rg

/l
ic

en
se

s/
b

y-
sa

/3
.0

/>
, 

vi
a 

W
ik

im
ed

ia
 C

o
m

m
o

n
s 

 

https://op-dsl.github.io/


7. Monte Carlo methods

Lecture 5 41

• NVIDIA cuRAND library.

• ArrayFire library.

• Some examples in CUDA SDK distribution.

• Nothing else needed except for more 
output distributions?



Useful tools

Lecture 1 42



Tools - Debugging

Lecture 5 43

compute-sanitizer –tool memcheck

A command line tool that detects array out-of-bounds errors, and 
mis-aligned device memory accesses – very useful because such 
errors can be tough to track down otherwise.

compute-sanitizer --tool racecheck

This checks for shared memory race conditions:

• Write-After-Write (WAW): two threads write data to the same 
memory location but the order is uncertain.

• Read-After-Write (RAW) and Write-After-Read (WAR): one 
thread writes and another reads, but the order is uncertain.

compute-sanitizer --tool initcheck

This detects the reading of uninitialised device memory.

compute-sanitizer --tool synccheck

This detects incorrect use of __syncthreads() and related intrinsics.

https://developer.nvidia.com/compute-sanitizer

https://developer.nvidia.com/compute-sanitizer


Tools – CUDA-GDB

Lecture 5 44

For those familiar with the GNU debugger – GDB, this is an extension 
of GDB that allows users to debug both GPU and CPU code. 

All existing GDB debugging features are included for debugging host 
code and then further functionality allows the user to debug device 
code.

Supports C/C++ and Fortran (that includes CUDA code).



Tools - IDEs

Lecture 5 45

Integrated Development Environments (IDE):

Nsight Systems – Unified IDE for Windows/Linux/Mac/Jetson:
https://developer.nvidia.com/nsight-systems

Nsight Visual Studio edition – NVIDIA plugin for Microsoft Visual Studio
http://developer.nvidia.com/nvidia-nsight-visual-studio-edition

Nsight Eclipse plugins
https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide/index.html

these come with editor, debugger, profiler integration

https://developer.nvidia.com/nsight-systems
http://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide/index.html


Tools - Profiling

Lecture 5 46

NVIDIA Profiler ncu or ncu-ui for a graphical interface.

• This is a standalone piece of software for Linux and Windows systems.

• It uses hardware counters to collect a lot of useful information.

• Lots of things can be measured, but the limited number of counters 
means that, for some larger applications, it runs the application 
multiple to gather necessary information.

• The ncu CLI can be useful if you want to profile on a machine that 
you don’t have a graphical interface to. 

• Do ncu --help for more info on different options.

https://docs.nvidia.com/cuda/profiler-users-guide/index.html

https://docs.nvidia.com/nsight-compute/NsightCompute/index.html

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html


What have we learnt?

Lecture 5 47

In this lecture we’ve looked at the wide 
software ecosystem that now surrounds 
GPU computing and how that can be used 
to make your life as a programmer easier. 

We’ve looked at directives based 
approaches and how these are useful. 

Finally we’ve looked at tools that allow us 
to develop CUDA code in an easy and 
maintainable way.


