
Lecture 6: streams,
and some odds and ends

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 6 – p. 1/36



Overview

synchronicity

streams

multiple GPUs

other odds and ends

Lecture 6 – p. 2/36



Warnings

I haven’t tried most of what I will describe

sometimes details change from one version of CUDA
to the next – I think everything here is correct for the
current version

overall, keep things simple unless it’s really needed for
performance

if it is needed, proceed with extreme caution, do
practicals 6, 11 and 12, and check out the NVIDIA
sample codes

Lecture 6 – p. 3/36



Synchronicity

A computer system has lots of components:

CPU(s)

GPU(s)

memory controllers

network cards

Many of these can be doing different things at the same
time – usually for different processes, but sometimes
for the same process

Lecture 6 – p. 4/36



Synchronicity

The von Neumann model of a computer program is
synchronous with each computational step taking place

one after another

this is an idealisation – never true in practice

compiler frequently generates code with overlapped
instructions (pipelined CPUs) and does other
optimisations which re-arrange execution order and
avoid redundant computations

however, it is usually true that as a programmer you can
think of it as a synchronous execution when working out
whether it gives the correct results

when things become asynchronous, the programmer
has to think very carefully about what is happening and
in what order

Lecture 6 – p. 5/36



Synchronicity

With GPUs we have to think even more carefully:

host code executes on the CPU(s);
kernel code executes on the GPU(s)

. . . but when do the different bits take place?

. . . can we get better performance by being clever?

. . . might we get the wrong results?

Key thing is to try to get a clear idea of what is going on
– then you can work out the consequences

Lecture 6 – p. 6/36



GPU code

for each warp, code execution is effectively
synchronous

different warps execute in an arbitrary overlapped
fashion – use syncthreads() if necessary to
ensure correct behaviour

different thread blocks execute in an arbitrary
overlapped fashion

All of this has been described over the past 3 days
– nothing new here.

The focus of these new slides is on host code and the
implications for CPU and GPU execution

Lecture 6 – p. 7/36



Host code

Simple / default behaviour:

1 CPU

1 GPU

1 thread on CPU (i.e. scalar code)

1 default “stream” on GPU

Note: within the GPU, all operations in the default stream
operate strictly in sequence, each one finishing before the
next one starts

Lecture 6 – p. 8/36



Host code

most CUDA calls are synchronous / blocking:

example: cudaMemcpy

host call starts the copying and waits until it has
finished before the next instruction in the host code

why? – ensures correct execution if subsequent host
code reads from, or writes to, the data being copied

NOTE: cudaMemcpy operates asynchronously when
copying no more than 64kB from host to device – it does
this by first copying the data to a host buffer, before
returning to the host code (see Section 6.2.8.1 in the
Programming Guide)

Lecture 6 – p. 9/36



Host code

CUDA kernel launch is asynchronous / non-blocking;
host call starts the kernel execution, but doesn’t wait for
it to finish before going on to next instruction

similar for cudaMemcpyAsync

starts the copy but doesn’t wait for completion

has to be done through a “stream”

must use page-locked memory (also known as
pinned memory) to guarantee it is asynchronous
– see documentation

host will wait for completion at a blocking cudaMemcpy

or cudaDeviceSynchronize call

benefit? can reduce execution time by overlapping CPU
and GPU execution

Lecture 6 – p. 10/36



Page-locked memory

Section 6.2.6:

host memory is usually paged, so run-time system
keeps track of where each page is located

for higher performance, can fix some pages, but means
less memory available for everything else

CUDA uses this for better host <–> GPU bandwidth,
and also to hold “device” arrays in host memory

can provide up to 100% improvement in bandwidth

allocated using cudaHostAlloc, or registered by
cudaHostRegister

Lecture 6 – p. 11/36



Host code

cudaMemcpy(d_u1,h_u1,bytes,cudaMemcpyHostToDevice);

kernel_code<<<dimGrid, dimBlock>>>(d_u1, d_u2);

gold_code(h_u1,h_u2);

cudaMemcpy(h_u1,d_u1,bytes,cudaMemcpyDeviceToHost);

time

GPU

CPU

cudaMemcpy

kernel_code

cudaMemcpy

gold_code

Lecture 6 – p. 12/36



Host code

What could go wrong?

kernel timing – need to make sure it’s finished

could be a problem if the host uses data which is
read/written directly by kernel, or transferred by
cudaMemcpyAsync

cudaDeviceSynchronize() can be used to ensure
correctness (similar to syncthreads() for kernel
code)

Lecture 6 – p. 13/36



Multiple Streams

Quoting from Section 6.2.8.5 in the CUDA Programming
Guide:

Applications manage the concurrent operations
described above through streams.

A stream is a sequence of commands (possibly
issued by different host threads) that execute in
order.

Different streams, on the other hand, may execute
their commands out of order with respect to one
another or concurrently.

Lecture 6 – p. 14/36



Multiple Streams

Optional stream argument for

kernel launch

cudaMemcpyAsync

with streams creating using cudaStreamCreate

Within each stream, CUDA operations are carried out in
order (i.e. FIFO – first in, first out); one finishes before the
next starts

Key to getting better performance is using multiple streams
to overlap things

Lecture 6 – p. 15/36



Default stream

The way the default stream behaves in relation to others
depends on a compiler flag:

no flag, or --default-stream legacy

old (bad) behaviour in which a cudaMemcpy or kernel
launch on the default stream blocks/synchronizes with
other streams

--default-stream per-thread

new (good) behaviour in which the default stream
doesn’t affect the others

note: flag label is a bit odd – it has other effects too

Lecture 6 – p. 16/36



Example 1

cudaStream_t streams[8];

float *data[8];

for (int i=0; i<8; i++) {

cudaStreamCreate(&streams[i]);

cudaMalloc(&data[i], N * sizeof(float));

}

for (int i=0; i<8; i++) {

// launch a tiny kernel on default stream

k<<<1, 1>>>();

// launch one worker kernel per stream

kernel<<<1, 64, 0, streams[i]>>>(data[i], N);

}

cudaDeviceSynchronize();
Lecture 6 – p. 17/36



Example 1

old behaviour:

time

default

stream 0

stream 1

stream 2

stream 3

stream 4

stream 5

stream 6

stream 7

k

kernel

k

kernel

k

kernel

k

kernel

k

Lecture 6 – p. 18/36



Example 1

new behaviour:

time

default

stream 0

stream 1

stream 2

stream 3

stream 4

stream 5

stream 6

stream 7

k

kernel

k

kernel

k

kernel

k

kernel

k

kernel

k

kernel

k

kernel

k

kernel

Lecture 6 – p. 19/36



Default stream

The second (main?) effect of the flag comes when using
multiple threads (e.g. OpenMP or POSIX multithreading)

In this case the effect of the flag is to create a separate
independent (i.e. non-interfering) default stream for each
thread

Using multiple default streams, one per thread, is a good
alternative to using multiple “proper” streams

Lecture 6 – p. 20/36



Example 2

omp_set_num_threads(8);

float *data[8];

for (int i = 0; i < 8; i++)

cudaMalloc(&data[i], N * sizeof(float));

#pragma omp parallel for

for (int i = 0; i < 8; i++) {

printf(" thread ID = %d \n",omp_get_thread_num());

// launch one worker kernel per thread

kernel<<<1, 64>>>(data[i], N);

}

cudaDeviceSynchronize();

Lecture 6 – p. 21/36



Stream commands

Each stream executes a sequence of kernels, but
sometimes you also need to do something on the host.

There are at least two ways of coordinating this:

use a separate thread for each stream

it can wait for the completion of all pending tasks,
then do what’s needed on the host

use just one thread for everything

for each stream, add a callback function to be
executed (by a new thread) when the pending tasks
are completed

it can do what’s needed on the host, and then launch
new kernels (with a possible new callback) if wanted

Lecture 6 – p. 22/36



Stream commands

cudaStreamCreate()

creates a stream and returns an opaque “handle”

cudaStreamCreateWithPriority()

additionally defines an execution priority

cudaStreamSynchronize()

waits until all preceding commands have completed

cudaStreamQuery()

checks whether all preceding commands have
completed

cudaStreamAddCallback()

adds a callback function to be executed on the host
once all preceding commands have completed

Lecture 6 – p. 23/36



Stream events

Useful for synchronisation and timing between streams:

cudaEventCreate(event)

creates an “event”

cudaEventRecord(event,stream)

puts an event into a stream (by default, stream 0)

cudaEventSynchronize(event)

CPU waits until event occurs

cudaStreamWaitEvent(stream,event)

stream waits until event occurs in another stream

cudaEventQuery(event)

check whether event has occured

cudaEventElapsedTime(time,event1,event2)

Lecture 6 – p. 24/36



Two use cases

One important use case for streams is to overlap PCIe
transfers with kernel computation for real-time signal
processing.

time

stream 0

stream 1

stream 2

H2D kernel D2H

H2D kernel D2H

H2D kernel D2H

In the best case this gives a factor 3× improvement when
the data transfers take as long as the kernel computation

Lecture 6 – p. 25/36



Two use cases

A second use case is to overlap the execution of lots of
small independent kernels which otherwise would execute
sequentially.

Using multiple streams keeps all of the SMs in a big GPU
busy.

time

stream 0

stream 1

stream 2

stream 3

k1 k5

k2 k6

k3 k7

k4 k8

Lecture 6 – p. 26/36



CUDA graphs

CUDA graphs (Section 6.2.8.7):

I think this looks really interesting as an alternative to
streams with programmed interdependencies, but I
haven’t yet tried it out

enables a programmer to specify a set of computational
tasks as a task DAG (Directed Acyclic Graph)

GPU is responsible for managing the DAG, noting when
tasks complete and launching new tasks that are now
able to run

can also “capture” a DAG by noting what happens
within streams

Lecture 6 – p. 27/36



Occupancy and Cooperative Groups

CUDA Runtime API: Section 8.2.3.1 – Occupancy
Calculator

cudaOccupancyMaxActiveBlocksPerMultiprocessor

calculates the maximum number of copies of the kernel
which can run in a single SM.

For an example of its use see prac2 device.cu and this
NVIDIA blog

Multiplied by the number of SMs gives the maximum
number of blocks which can execute simultaneously without
any queueing. With new Cooperative Groups (see CUDA
C++ Programming Guide: Section 8) can launch these
together and synchronize across the group.

Lecture 6 – p. 28/36

https://developer.nvidia.com/blog/cuda-pro-tip-occupancy-api-simplifies-launch-configuration/


Multiple devices

What happens if there are multiple GPUs?

CUDA devices within the system are numbered, not always
in order of decreasing performance

by default a CUDA application uses the lowest number
device which is “visible” and available

visibility controlled by environment variable
CUDA VISIBLE DEVICES

current device can be set by using cudaSetDevice

each stream is associated with a particular device
– current device for a kernel launch or a memory copy

see simpleMultiGPU example in NVIDIA samples

see Section 6.2.9 for more information

Lecture 6 – p. 29/36



Multiple devices

If a user is running on multiple GPUs, data can go directly
between GPUs (peer – peer) – doesn’t have to go via CPU

very important when using direct NVlink interconnect –
much faster than PCIe

cudaMemcpy can do direct copy from one GPU’s
memory to another

a kernel on one GPU can also read directly from an
array in another GPU’s memory, or write to it

this even includes the ability to do atomic operations
with remote GPU memory

for more information see Section 6.15, “Peer Device
Memory Access” in CUDA Runtime API documentation:
https://docs.nvidia.com/cuda/cuda-runtime-api/

Lecture 6 – p. 30/36

https://docs.nvidia.com/cuda/cuda-runtime-api/


Multi-user support

What if different processes try to use the same device?

Depends on system compute mode setting (Section 6.4):

in “default” mode, each process uses the first device

not good when you have 2 identical fast GPUs

in “exclusive” mode, each process is assigned to first
unused device; it’s an error if none are available

cudaGetDeviceProperties reports mode setting,
and lots of other properties; see also
cudaDeviceGetAttribute

mode can be changed by sys-admin using
nvidia-smi command line utility

Lecture 6 – p. 31/36



Makefile

Compiling:

Makefile for first few practicals uses nvcc to compile
both the host and the device code

internally it uses gcc for the host code, at least by
default

device code compiler based on open source LLVM
compiler

sometimes, prefer to use other compilers (e.g. icc,
mpicc) for main code that doesn’t have any CUDA calls

this is fine provided you use -fPIC flag for
position-independent-code (don’t know what this means
but it ensures interoperability)

can also produce libraries for use in the standard way

Lecture 6 – p. 32/36



Makefile

Prac 6 Makefile:

INC := -I$(CUDA_HOME)/include -I.

LIB := -L$(CUDA_HOME)/lib64 -lcudart

FLAGS := --ptxas-options=-v --use_fast_math

main.o: main.cpp

g++ -c -fPIC -o main.o main.cpp

prac6.o: prac6.cu

nvcc prac6.cu -c -o prac6.o $(INC) $(FLAGS)

prac6: main.o prac6.o

g++ -fPIC -o prac6 main.o prac6.o $(LIB)

Lecture 6 – p. 33/36



Makefile

Prac 6 Makefile to create a library:

INC := -I$(CUDA)/include -I.

LIB := -L$(CUDA)/lib64 -lcudart

FLAGS := --ptxas-options=-v --use_fast_math

main.o: main.cpp

g++ -c -fPIC -o main.o main.cpp

prac6.a: prac6.cu

nvcc prac6.cu -lib -o prac6.a $(INC) $(FLAGS)

prac6a: main.o prac6.a

g++ -fPIC -o prac6a main.o prac6.a $(LIB)

Lecture 6 – p. 34/36



Makefile

Other compiler options:

-arch=sm 80

specifies GPU architecture

-Xptxas -dlcm=ca

uses L1/L2 cache in usual way – general default, also
implies 128 byte cache line

-Xptxas -dlcm=cg

bypass L1 cache / go straight to L2 – default for
read-only access (?), 32 byte cache line

see Section 20.4.2 for a little more info – applies to all
recent GPUs as far as I know

see also Sections 10.10, 10.11 for specialised load
instructions

Lecture 6 – p. 35/36



Conclusions

This lecture has discussed a number of more advanced
topics

As a beginner, you can ignore almost all of them

As you get more experienced, you will probably want to
start using some of them to get the very best performance

Lecture 6 – p. 36/36


	Overview
	Warnings
	Synchronicity
	Synchronicity
	Synchronicity
	GPU code
	Host code
	Host code
	Host code
	Page-locked memory
	Host code
	Host code
	Multiple Streams
	Multiple Streams
	Default stream
	Example 1
	Example 1
	Example 1
	Default stream
	Example 2
	Stream commands
	Stream commands
	Stream events
	Two use cases
	Two use cases
	CUDA graphs
	Occupancy and Cooperative Groups
	Multiple devices
	Multiple devices
	Multi-user support
	Makefile
	Makefile
	Makefile
	Makefile
	Conclusions

