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Learning outcomes

In this sixth lecture we will look at CUDA streams and how they can be used to increase performance in GPU computing.  We 
will also look at some other useful odds and ends. 

You will learn about:

• Synchronicity between host and device.

• Multiple streams and devices.

• How to use multiple GPUs.

• Some other odds and ends.
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Setting the scene
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Modern computers are typically comprised of many different 
components.

• Central Processing Unit (CPU).

• Random Access Memory (RAM).

• Graphics Processing Unit (GPUs).

• Hard Disk Drive (HDD) / Solid State Drive (SSD). 

• Network Interface Controller (NIC)…

Typically, each of these different components will be 
performing a different task, maybe for different 

processes, at the same time.

Synchronicity
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Synchronicity
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The von Neumann model of a computer
program is synchronous with each
computational step taking place one after
another (because instruction fetch and
data movement share the same
communication bus).

This is an idealisation, and is almost never
true in practice.
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Synchronicity

Lecture 6 6

Compilers will generate code with
overlapped instructions (pipelining – see
lecture one), re-arrange execution order
and avoid redundant computations to
produce more optimal code.

As a programmer we don’t normally
worry about this and think of execution
sequentially when working out whether
a program gives the correct result.
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Synchronicity
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However, when things become asynchronous, the 
programmer has to think very carefully about what is 

happening and in what order! 

Synchronicity - GPUs
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When writing code for GPUs we have to think even more 
carefully, because:

Our host code executes on the CPU(s);

Our kernel code executes on the GPU(s)

. . . but when do the different bits take place?

. . . can we get better performance by being clever?

. . . might we get the wrong results?

The most important thing is to try to get a clear idea 
of what is going on, and when – then you can work 

out the consequences… 



Simple host code
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The basic / simple / default behaviour in CUDA is that 
we have:

1x CPU.

1x GPU.

1x thread on CPU (i.e. scalar code).

1x “stream” on GPU (called the “default stream”).
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Recap – GPU Execution
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We’ve looked at how code executes on GPUs, 
lets have a quick recap:

• For each warp, code execution is effectively 
synchronous within the warp.

• Different warps execute in an arbitrary 
overlapped fashion – use __syncthreads() 
if necessary to ensure correct behaviour.

• Different thread blocks execute in an 
arbitrary overlapped fashion.

So nothing new here. 

Over the next few slides we will discuss 
streams – asynchronous execution and the 

implications for CPU and GPU execution.
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Blocking and non-blocking calls
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Host code – blocking calls
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Most CUDA calls are synchronous (often called “blocking”).

An example of a blocking call is cudaMemcpy().

1. Host call starts the copy (HostToDevice / DeviceToHost).

2. Host waits until it the copy has finished.

3. Host continues with the next instruction in the host 
code once the copy has completed.

cudaMalloc(&d_data, size);

float *h_data = (double*)malloc(size);

…

cudaMemcpy( d_data, h_data, size, H2D ) ;

kernel_1 <<< grid, block >>> ( … ) ;

cudaMemcpy ( …, D2H );

…



Host code – blocking calls
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Why do this??? 

This mode of operation ensures correct execution.

For example it ensures that data is present if the
next instruction needs to read from the data that
has been copied…

cudaMalloc(&d_data, size);

float *h_data = (double*)malloc(size);

…

cudaMemcpy( d_data, h_data, size, H2D ) ;

kernel_1 <<< grid, block >>> ( … ) ;

cudaMemcpy ( …, D2H );

…

Host code – blocking calls
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So the control flow for our code looks something like…

H2D

Kernel_1

D2H

Host Thread

Default 
Stream

Ti
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Host Thread

cudaMalloc(&d_data, size);

float *h_data = (double*)malloc(size);

…

cudaMemcpy( d_data, h_data, size, H2D ) ;

kernel_1 <<< grid, block >>> ( … ) ;

cudaMemcpy ( …, D2H );

…

Host code – non-blocking calls
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In CUDA, kernel launches are asynchronous 
(often called “non-blocking”).

An example of kernel execution from host 
perspective:

1. Host call starts the kernel execution.

2. Host does not wait for kernel execution to 
finish.

3. Host moves onto the next instruction.
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Host code – non-blocking calls
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The “crazy code” for our last control flow 
diagram might look like…

H2D

Kernel_1

D2H

Host Thread

Default 
Stream

Ti
m

e

Host Thread

CPU 

function_A

cudaMalloc(&d_data, size);

float *h_data = (double*)malloc(size);

…

cudaMemcpy( d_data, h_data, size, H2D ) ;

kernel_1 <<< grid, block >>> ( … ) ;

CPU_function_A( … );

cudaMemcpy ( …, D2H );

…



Host code – non-blocking calls
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Another example of a non-blocking call is 
cudaMemcpyAsync().

This function starts the copy but doesn’t wait for 
completion. 

Synchronisation is performed through a “stream”.

You must use page-locked memory (also known as 
pinned memory) – see Documentation. 

In both of our examples, the host eventually waits 
when at (for example) a 
cudaDeviceSynchronize() call.

The benefit of using streams is that you can improve 
performance (in some cases, not all) by overlapping 

communication and compute, or CPU and GPU execution. 

Asynchronous host code
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When using asynchronous calls, things to watch out for, 
and things that can go wrong are: 

• Kernel timing – need to make sure it’s finished.

• Could be a problem if the host uses data which 
is read/written directly by kernel, or transferred 
by cudaMemcpyAsync().

• cudaDeviceSynchronize() can be used 
to ensure correctness (similar to 
syncthreads() for kernel code).

CUDA Streams
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CUDA Streams
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Quoting from section 6.2.8.5 in the CUDA 
Programming Guide:

Applications manage concurrency through streams.

A stream is a sequence of commands (possibly 
issued by different host threads) that execute in 
order.

Different streams, on the other hand, may execute
their commands out of order with respect to one 
another or concurrently.

http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
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Multiple CUDA Streams
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When using streams in CUDA, you must supply a 
“stream” variable as an argument to:

• kernel launch
• cudaMemcpyAsync()

Which is created using cudaStreamCreate();

As shown over the last couple of slides:

• Operations within the same stream are ordered  -
(i.e. FIFO – first in, first out) – they cant overlap.

• Operations in different streams are unordered wrt
each other and can overlap. 

Use multiple streams to increase performance by 
overlapping memory communication with compute.

cudaStream_t stream1;

cudaStreamCreate(&stream1);

my_kernel_one<<<blocks,threads,0,stream1>>>(…);

cudaStreamDestroy(stream1);

An example of launching a kernel in a 
stream that isn’t the “default stream”.

Page-locked / Pinned memory
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Section 6.2.6 of the cuda programming guide:

• Host memory is usually paged, so run-time system keeps 
track of where each page is located.

• For higher performance, pages can be fixed (fixed address 
space, always in RAM), but means less memory available for 
everything else.

• CUDA uses this for better host <–> GPU bandwidth, and also 
to hold “device” arrays in host memory.

• Can provide up to 100% improvement in bandwidth

• You must use page-locked memory with 
cudaMemcpyAsync();

• Page-locked memory is allocated using cudaHostAlloc(), or 
registered by cudaHostRegister(); https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/

Pinned memory is used as a staging area for transfers 
from the device to the host. We can avoid the cost of 

the transfer between pageable and pinned host arrays 
by directly allocating our host arrays in pinned 

memory.

The default stream
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The way the default stream behaves in relation to others depends on a compiler flag:

no flag, or --default-stream legacy

This forces old (bad) behaviour in which a cudaMemcpy or kernel launch on the default stream 
blocks/synchronizes with other streams.

Or --default-stream per-thread

This forces new (good) behaviour in which the default stream doesn’t affect the others.

For more info see the nvcc documentation:

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#options-for-steering-cuda-compilation

Practical 11
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An example is given in practical 11 for those interested, try with the two different flags:



The default stream
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The second (most useful?) effect of the flag 
comes when using multiple threads (e.g. OpenMP 
or POSIX multithreading).

In this case the effect of the flag is to create 
separate independent (i.e. non-interacting) 
default streams for each thread.

Using multiple default streams, one per thread, is 
a useful alternative to using “proper” streams.

However “proper” streams within cuda are very 
versatile and fully featured, so might be worth the 
time and complexity investment.  

Stream commands
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As previously shown, each stream executes a sequence of cuda calls. However to get the most out of 
your heterogeneous computer you might also want to do something on the host.

There are at least two ways of coordinating this:

Use a separate thread for each stream
• It can wait for the completion of all pending tasks,  then do what’s needed on the host.

Use just one thread for everything
• For each stream, add a callback function to be executed (by a new thread) when the pending 

tasks are completed.
• It can do what’s needed on the host, and then launch new kernels (with a possible new 

callback) if wanted.

Stream commands
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Some useful stream commands are:

cudaStreamCreate(&stream)

Creates a stream and returns an opaque “handle” – the 
“stream variable”.

cudaStreamSynchronize(stream)

Waits until all preceding commands have completed.

cudaStreamQuery(stream)

Checks whether all preceding commands have completed.

cudaStreamAddCallback()

Adds a callback function to be executed on the host once 
all preceding commands have completed.

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

Stream commands
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Functions useful for synchronisation and timing between streams:

cudaEventCreate(event)

Creates an “event”.

cudaEventRecord(event,stream)

Puts an event into a stream (by default, stream 0).

cudaEventSynchronize(event)

CPU waits until event occurs.

cudaStreamWaitEvent(stream,event)

Stream waits until event occurs (doesn’t block the host).

cudaEventQuery(event)

Check whether event has occurred.

cudaEventElapsedTime(time,event1,event2)

Times between event1 and event2.



Multi-GPU computing
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Multiple devices
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What happens if there are multiple GPUs?

CUDA devices within the system are numbered, not always in order of 
decreasing performance! 

• By default a CUDA application uses the lowest number device which is “visible” 
and available (this might not be what you want).

• Visibility controlled by environment variable CUDA_VISIBLE_DEVICES.

• The current device can be chosen/set by using cudaSetDevice()

• cudaGetDeviceProperties() does what it says, and is very useful.

• Each stream is associated with a particular device, which is the “current” device 
for a kernel launch or a memory copy.

• see simpleMultiGPU example in SDK or section 6.2.9 for more information.
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Multiple devices
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If a user is running on multiple GPUs, data can go directly 
between GPUs (peer – peer), it doesn’t have to go via CPU.

This is the premise of the NVlink interconnect, which is much 
faster than PCIe (900GB/s P2P on Hopper).

cudaMemcpy() can do direct copy from one GPU’s memory to 
another.

A kernel on one GPU can also read directly from an array in 
another GPU’s memory, or write to it.
This even includes the ability to do atomic operations with 
remote GPU memory.

For more information see Section 6.13, “Peer Device Memory 
Access” in CUDA Runtime API documentation: 
https://docs.nvidia.com/cuda/cuda-runtime-api/
https://fuse.wikichip.org/news/1224/a-look-at-nvidias-nvlink-interconnect-and-the-nvswitch/

Multi-GPU computing
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Multi-GPU computing exists at all scales, from cheaper workstations 
using PCIe, to more expensive Quadro / Titan products using fewer 
NVLink, to high-end NVIDIA DGX servers.

Single workstation / server:
• a big enclosure for good cooling!
• up to 4 high-end cards in 16x PCIe v4 slots – up to 16GB/s interconnect.
• 2x high-end CPUs.
• 2-3kW power consumption – not one for the office!

NVIDIA DGX H100 Deep Learning server:
• 8 NVIDIA GH100 GPUs, each with 80GB HBM2.
• 2× 56-core Intel Xeons (Platinum 8480C 2.0 GHz).
• 2 TB RAM memory, 8x 3.84TB NVMe.
• 900GB/s NVlink interconnect between the GPUs.
• ~£379,000



Multi-GPU Computing
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How do you use these machines?

This depends on hardware choice:

• For single machines, use shared-memory multithreaded 
host application.

• For DGX products you must use the NVIDIA Collective 
Communications Library (NCCL).

• For clusters / supercomputers, use distributed-memory 
MPI message-passing.

https://devblogs.nvidia.com/fast-multi-gpu-collectives-nccl/

MPI approach
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In the MPI approach:

• One GPU per MPI process (nice and simple).

• Distributed-memory message passing between MPI processes (tedious 
but not difficult).

• Scales well to very large applications.

• Main difficulty is that the user has to partition their problem (break it up 
into separate large pieces for each process) and then explicitly manage 
the communication.

• Note: should investigate GPU Direct for maximum performance in 
message passing.

Multi-user support
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What if different processes try to use the same device?

The behaviour of the device depends on the system compute mode setting (section 3.4):

In “default” mode, each process uses the fastest device:
• This is good when one very fast card, and one very slow card.
• But not very useful when you have two identical fast GPUs (one sits idle).

In “exclusive” mode, each process is assigned to first unused device; 
However code will return an error if none are available.

cudaGetDeviceProperties() reports the mode setting 

The mode can be changed by a user account with sys-admin privileges using the nvidia-smi
command line utility.

Some tips and tricks
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Loose ends – Loop unrolling
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Section 10.37 (of the programming guide):
loop unrolling, If you have a loop:

for (int k=0; k<4; k++) a[i] += b[i];

Then nvcc will automatically unroll this to give:

a[0] += b[0];

a[1] += b[1];

a[2] += b[2];

a[3] += b[3];

This is a standard compiler trick to avoid the cost of incrementing and looping.

The pragma

#pragma unroll 5

will also force unrolling for loops that do not have explicit limits.

Loose ends – const __restrict__
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Section 10.2.6 (of the programming guide):

__restrict__ keyword

The qualifier asserts that there is no overlap (in memory 
space) between a,b,c, for example we do not have:

a[i]=q[i]

b[i]=q[i+1] 

(you have no pointer aliasing) so the compiler can 
perform more optimisations.

The following blog post demonstrates how this can 
achieve a good speed increase:

void foo(const float* __restrict__ a, 

const float* __restrict__ b, 

float* __restrict__ c) {

for (i=1; i<N; i++) {

a[i] = b[i] + c[i];

}

...

}

https://devblogs.nvidia.com/cuda-pro-tip-optimize-pointer-aliasing/#disqus_thread

Loose ends - volatile
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Section 17.5.3.3 (of the programming guide):
volatile keyword

Tells the compiler the variable may change at any time, so not to re-use a 
value which may have been loaded earlier and apparently not  changed 
since.

This can sometimes be important when using shared memory because the 
compiler can optimize locations in shared memory by locating them in 
registers (but register scope is specific to a single thread), for any thread.

Loose ends - Compilation
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Compiling:

The Makefile for first few practicals uses nvcc to compile 
both the host and the device code. 

Internally nvcc uses gcc for the host code (at least by default). 
The device code compiler is based on the open source LLVM 
compiler.

It often makes sense to use different compilers, for example 
icc which is for host code which does not have kernel 
launches. 

To do this you must use the -fPIC flag to produce position-
independent-code (this just generates machine code that will 
execute properly, independent of where it’s held in memory).

https://developer.nvidia.com/cuda-llvm-compiler



Loose ends - Compilation
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Loose ends - Compilation
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Loose ends - Compilation
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Other useful compiler options:

-arch=sm_80

This specifies GPU architecture (in this case sm_80 is for 
Ampere A100).

-maxrregcount=n

This asks the compiler to generate code using at most n 
registers; the compiler may ignore this if it’s not possible, but it 
may also increase register usage up to this limit.

This is less important now since threads can have up to 255 
registers, but can be useful in some instances to reduce register 
pressure and enable more thread blocks to run. 

or

Loose ends – Compilation
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Launch bounds (10.36):

-maxrregcount is given as an argument to the compiler (nvcc) and modifies the default for all 
kernels.

A per kernel approach can be taken by using the __launch_bounds__ qualifier:

__global__ void 

__launch_bounds__(maxThreadsPerBlock,minBlocksPerMultiprocessor)

MyKernel(...) {

…

}



Summary
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This lecture has discussed a number of 
more advanced topics. As a beginner, 
you can ignore almost all of them As you 
get more experienced, you will probably 
want to start using some of them to get 
the very best performance.


