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Learning outcomes

In this sixth lecture we will look at CUDA streams and how they can be used to increase performance in GPU computing.
You will learn about:

* Synchronicity between host and device.

* Multiple streams and devices.

* How to use multiple GPUs.
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Synchronicity



Synchronicity

The von Neumann model of a computer
program is synchronous with each
computational step taking place one after
another (because instruction fetch and
data movement share the same
communication bus).

This is an idealisation, and is almost never
true in practice.
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Synchronicity

Compilers will generate code with
overlapped instructions (pipelining — see
lecture one), re-arrange execution order
and avoid redundant computations to
produce more optimal code.

As a programmer we don’t normally
worry about this and think of execution
sequentially when working out whether
a program gives the correct result.
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Synchronicity

However, when things become asynchronous, the
programmer has to think very carefully about what is
happening and in what order!
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Synchronicity - GPUs

When writing code for GPUs we have to think even more
carefully, because:

Our host code executes on the CPU(s)

Our kernel code executes on the GPU(s)

... but when (in time) do the different bits take place?
... can we get better performance by being clever?

... might we get the wrong results?

Sequential Version

H2D Engine | Stream 0
Kernel Engine 0

D2H Engine 0

The most important thing is to try to get a clear idea
of what is going on, and when — then you can work
out the consequences...
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Blocking and non-blocking calls



Host code — blocking calls

Most CUDA calls are synchronous (often called “blocking”).

cudaMalloc (&d data, size);

An example of a blocking call is cudaMemcpy () . float *h data = (float*)malloc (size):

1. Host call starts the copy (HostToDevice / DeviceToHost).

. o cudaMemcpy ( d _data, h data, size, H2D ) ;
2. Host waits until it the copy has finished. kernel 1 <<< grid, block >>> ( .. )

cudaMemcpy ( .., D2H );

.
4

3. Host continues with the next instruction in the host
code once the copy has completed.

Lecture 6



Host code — blocking calls

Why do this???

This mode of operation ensures correct
execution.

For example it ensures that data is present
if the next instruction needs to read from
the data that has been copied...
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Host code — blocking calls

Host Thread
So the control flow for our code looks something like... %
Default
Stream
\ 4
cudaMalloc (&d data, size); /, \\
float *h data = (float*)malloc(size);
:
cudaMemcpy ( d data, h data, size, H2D ) ; =
kernel 1 <<< grid, block >>> ( .. ) ;
cudaMemcpy ( .., D2H );
Na I /
Note that, within the stream, execution is synchronous — v %
the second cudaMemcpy waits for the completion of Kernel 1 Host Thread
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Host code — non-blocking calls Host Thread

?

Default

In CUDA, kernel launches are asynchronous Stream
(often called “non-blocking”).

An example of kernel execution from host
perspective:

Time

1. Host call starts the kernel execution.

CPU
function A

2. Host does not wait for kernel execution to
finish.

3. Host moves onto the next instruction.

Host Thread
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Host code — non-blocking calls Host Thread

?

The “crazy code” for our last control flow Default
diagram might look like... Stream
cudaMalloc (&d data, size);
float *h data = (float*)malloc(size);

]

£

= CPU
cudaMemcpy ( d data, h data, size, H2D ) ; function A
kernel 1 <<< grid, block >>> ( .. ) ;
CPU function A( .. );
cudaMemcpy ( .., D2H );

Host Thread
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kernel( *xd_a, offset)

A Si m ple exam ple fost Thread dali) <1+ offsets ' .

% main(

. Default n =

Here is an example of Stream size = )i
execution on the GPU followed by xd_a, *h_a;:
CPU v cudaMallocManaged(&d_a, size);

. ( \ h_a = ( *x)malloc(size);
Note: I've used managed memory start = clock();
only to reduce the size of my code so o et =
it fits onto a single slide. £

= kernel<<<n/ , >>>(d_a, offset);
CPU
1. We execute “kernel” on the GPU function A cudaDeviceSynchronize();
( i=0; i<n; i++) {
2. We call cudaDeviceSynchronise(); h_ali]l = h_a[i] + offset;
3. We execute a for loop on the CPU - l / stop = clock():
\ 4
elapsed = (( ) (stop - start)) /
printf( , elapsed);

Host Thread cudaFree(d_a);
free(h_a);




kernel( *xd_a, offset)

A Si m ple exam ple fost Thread dali) <1+ offsets ' .

% main(

Default n =
size = n * );
: Stream
Here is an example of synchronous xd_a, *h_a;:
. daMalloch d(&d_a, size);
execution on the GPU followed by - v ~ hoa = (loaieomallocCodze)s
CPU.
start = clock();
On my laptop execution takes about o offset =
640 milliseconds. £
= kernel<<<n/ , >>>(d_a, offset);
CPU
function A cudaDeviceSynchronize();
$ ./test && ./test && ./test § C iz0: 4<n: itd) {
Elapsed time: 661.366000 ms h_a[i] = h_a[i] + offset;
Elapsed time: 634.194000 ms
Elapsed time: 651.963000 ms
Elapsed time: 622.979000 ms \ J
Elapsed i : 613.481000 ms stgp = c'[_gck();
Elapsed time: 679.147000 ms l
Elapsed time: 621.406000 ms v
Elapsed time: 451000 elapsed = (( ) (stop - start)) /
printf( , elapsed);

Host Thread cudaFree(d_a);
free(h_a);




kernel( *d_a, offset)
A SI m p I e exa m p I e Host Thread d_a[i]: =1+ o-F-F;:tJ;r . .

% main(

Default n =

Here is an example of asynchronous size . );
execution on the GPU followed by Stream e o
CPU. \ cudaMall;cManaaed(&d_a, size);

/ \ h_a = ( *)malloc(size);

Note: I've used m.anaged memory ctart = clock():
only to reduce the size of my code so
o ) ) CU CPU offset = 10;
it fits onto a single slide. c :
= function A
kernel<<<n/128, >>>(d_a, offset);

1. We execute “kernel” on the GPU
2 \We eall ElIdaDE‘"IEES“HEhFGH.ISE()' ( i=0; i<n; i++) {

’ ’ h_a[i] = h_a[i] + offset;
3. We execute a for loop on the \ J

CPU l stop = clock();

% elapsed = (( ) (stop - start)) /

printf( , elapsed);

Host Thread

cudaFree(d_a);
free(h_a);




A simple example

Here is an example of asynchronous
execution on the GPU followed by
CPU.

On my laptop execution now takes
about 520 milliseconds.

:~$ . /test && ./test && ./t

: 541.461000 ms
: 534.683000 ms
: 475.033000 ms
: 508.959000 ms
: 519.161000 ms
: 532.170000 ms
: 515.032000 ms
: 525.524000 ms
: 508.968000 ms

So the synchronous code is
about 1.25x slower than the
asynchronous code!!

Host Thread

?

function A

7

Host Thread

kernel( *d_a, offset)
1 = X+ . X% .X;
d_a[i] = i + offset;
main( )

n = ;
size = n * ( ))e

*d_a, *h_a;;

cudaMallocManaged(&d_a, size);
h_a = ( *)malloc(size);

start = clock();

offset = ;
kernel<<<n/128, >>>(d_a, offset);

( i=0; 4i<n; i++) {

h_al[i] = h_a[i] + offset;
}

stop = clock();
elapsed = (( ) (stop - start)) /

printf( , elapsed);

cudaFree(d_a);
free(h_a);



Host code — non-blocking calls

Another example of a non-blocking call is
cudaMemcpyAsync ().

This function starts the copy but doesn’t wait for ASyHcironous yerston i

completion. H2D Engine I 2 3 4
kernelEngne  [DON[ = | 3 | 4 ]
Synchronisation is performed through a “stream”. D2H Engine I 2 3 4

You must use page-locked memory (also known as
pinned memory) — see Documentation.

The benefit of using streams is that you can improve
performance (in some cases, not all) by overlapping

In both of our examples, the host eventually waits communication and compute, or CPU and GPU execution.

when at (for example) a
cudaDeviceSynchronize () call.
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Asynchronous host code

When using asynchronous calls, things to watch out for,
and things that can go wrong are:

* Kernel timing — need to make sure it’s finished.

* Could be a problem if the host uses data which
is read/written directly by kernel, or transferred
by cudaMemcpyAsync ().

* cudaDeviceSynchronize () can be used

to ensure correctness (similar to
syncthreads () for kernel code).

Lecture 6
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Simple host code

The basic / simple / default behaviour in CUDA is that we have:
1x CPU.

1x GPU.

1x thread on CPU (i.e. scalar code).

1x “stream” on GPU (called the “default stream”).

The default stream is what we have been working with...
Until now...
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CUDA Streams

Quoting from section 3.2.8.5 in the CUDA
Programming Guide:

Applications manage concurrency through streams.

A stream is a sequence of commands (possibly
issued by different host threads) that execute in
order (serialised).

Different streams, on the other hand, may execute
their commands out of order with respect to one
another or concurrently.

Host Thread

?

Stream 1 Stream 2

Time

cudaDeviceSynchronize ()

7

Host Thread

http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
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Multiple CUDA Streams

When using streams in CUDA, you must supply a
“stream” variable as an argument to:

e kernel launch

* cudaMemcpyAsync () cudaStream t streaml;

cudaStreamCreate (&streaml) ;
my kernel one<<<blocks, threads, 0, streaml>>>(..);

Which is created using cudaStreamCreate () ; cudaStreamDestroy (streaml) ;

As shown over the last couple of slides:
e Operations within the same stream are ordered - An example of launching a kernel in a
(i.e. FIFO —first in, first out) — they cant overlap. stream that isn’t the “default stream”.

e Operations in different streams are unordered wrt
each other and can overlap.
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Page-locked / Pinned memory

Section 3.2.6 of the cuda programming guide: Pageable Diita Transfor

* To achieve asynchronous behaviour you must use Device
page-locked memory with cudaMemcpyAsync () ; m

Pinned Data Transfer

* Host memory is usually paged, so run-time system keeps

Device

track of where each page is located. Host

* For higher performance, pages can be fixed (fixed address SRy, MSHTIORY,

space, always in RAM), but means less memory available for
everything else.

Host

Pinned
Memory

Pinned memory is used as a staging area for transfers
from the device to the host. We can avoid the cost of

* CUDA uses this for better host <—> GPU bandwidth, and also
to hold “device” arrays in host memory.

* Can provide up to 100% improvement in bandwidth

* Page-locked memory is allocated using cudaHostAlloc (), or

the transfer between pageable and pinned host arrays
by directly allocating our host arrays in pinned
memory.

https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/

registered by cudaHostRegister ();
Lecture 6
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Example use

Use multiple streams to increase performance by overlapping memory communication with compute:

Sequential Version
H2D Engine Stream 0
Kernel Engine 0
D2H Engine 0

Asynchronous Version |
H2D Engine | 2 3 4

Kernel Engine | 2 3 4
D2H Engine I 2 3 4
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kernel( offset)

set + 5 LX*

Example use

main( argc, **argv)
blockSize = 7
n = * * blockSize;
bytes = n * ( J;
Sequential Version
H2D Engine | Stream 0 *a, *d_a;
cudaMallocHost (( *%)&a, bytes);
Kernel E ' ;
nel Engine g cudaMalloc(( **)&d_a, bytes);
D2H Engine 0

milliseconds;

cudaEvent_t startEvent, stopEvent;
cudaEventCreate(&startEvent);
cudaEventCreate(&stopEvent);

memset(a, ©, bytes);

cudaEventRecord(startEvent, o)

cudaMemcpy(d_a, a, bytes, )3
kernel<<<n/blockSize, blockSize>>>(d_a, ©);

cudaMemcpy(a, d_a, bytes, );
cudaEventRecord(stopEvent, ©);
cudaEventSynchronize(stopEvent);
cudaEventElapsedTime(&milliseconds, startEvent, stopEvent);
printf(

Time for sequential transfer and execute (ms): 43.706047

Time for sequential transfer and execute (ms): 43.709023
Time for sequential transfer and execute (ms): 43.828545

cudaEventDestroy(startEvent);
cudaEventDestroy(stopEvent);
cudaFree(d_a);
cudaFreeHost(a);

, milliseconds);




offset)

X

Example use

main( argc, **argv)
blockSize = , nStreams = atoi(argv[1]);
n = * * blockSize;
streamSize = n / nStreams;
streamBytes = streamSize * DE
bytes = n * It );
. *a, *d_a;
AsynChronous vers,on ’ cudaMallocHost(( **)&a, bytes);

H2D Engine I | 2 3 4 cudaMalloc(( *%x)&d_a, bytes)

Kernel Engine [ 2 3 4 milliseconds;

D2H Engine | 2 3 4

cudaEvent_t startEvent, stopEvent;
cudaStream_t stream[nStreams];
cudaEventCreate(&startEvent);
cudaEventCreate(&stopEvent);
¢ i=0; i < nStreams; ++i)
cudaStreamCreate(&stream[i]);

memset(a, ©, bytes);
cudaEventRecord(startEvent,);
¢ i=0; i < nStreams; ++i) {
offset = i * streamSize;
cudaMemcpyAsync(&d_a[offset], &aloffset],
streamBytes,
stream[i]);
kernel<<<streamSize/blockSize, blockSize, ©, stream[il>>>(d_a, offset);
cudaMemcpyAsync(&aloffset], &d_aloffset],
streamBytes, .
stream[i]);

$ ./test 1 ./test 2 ./test 4 ./test 8 \
> ./test 16 ./test 32 ./test 64 ./test 128 ./test 256
Time for asynchronous transfer and execute (ms): 43.503616
Time for asynchronous transfer and execute (ms): 35.928062
Time for asynchronous transfer and execute (ms): 32.003071
Time for asynchronous transfer and execute (ms): 30.224384
Time for asynchronous transfer and execute (ms): 28.522495
Time for asynchronous transfer and execute (ms): 26.265600
Time for asynchronous transfer and execute ( : 25.830303
(
(

}

cudaEventRecord(stopEvent, ©);

cudaEventSynchronize(stopEvent);

cudaEventElapsedTime(&milliseconds, startEvent, stopEvent);

printf( , milliseconds);

Time for asynchronous transfer and execute 26.091488
26.097664

Time for asynchronous transfer and execute

cudaEventDestroy(startEvent);
cudaEventDestroy(stopEvent);
C i = 0; i < nStreams; ++i)
cudaStreamDestroy(stream[i]);
cudaFree(d_a);

cudaFreeHost(a);




The default stream

The way the default stream behaves in relation to others
depends on a compiler flag:

no flag, or --default-stream legacy

This forces old (bad) behaviour in which a cudaMemcpy or
kernel launch on the default stream blocks/synchronizes with

other streams.

Or --default-stream per-thread

This forces new (good) behaviour in which the default stream

doesn’t affect the others.

For more info see the nvcc documentation:

https://docs.nvidia.com/cuda/cuda-compiler-driver-
nvce/index.html#options-for-steering-cuda-compilation

Lecture 6

|=| Streams

- Default

- Stream 13
L Stream 14
- Stream 15
L Stream 16
- Stream 17
L Stream 18
. Stream 19
L Stream 20

|—| Streams
L Stream 13
- Stream 14
L Stream 15
- Stream 16
L Stream 17
L Stream 18
I Stream 19
- Stream 20
L Stream 21

kernel(float*, int)

kernel(float*, int)
kernel(float*, int)
kernel(float*, int)
kernel(float*, int)
kernel(float*, int)
kernel(float*, int)
kernel(float*, int)

https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/

28


https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#options-for-steering-cuda-compilation
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/

Practical 11

An example is given in practical 11 for those interested, try with the two different flags:

cudaStream_t streams|[8];
float xdatal[8];

for (int i = 0; i < 8; i++) {
cudaStreamCreate (&streams[i]) ;
cudaMalloc (&datal[i]l, N * sizeof (float));

// launch one worker kernel per stream
kernel<<<l, 64, 0, streams[i]>>>(datalil], N);

// do a Memcpy and launch a dummy kernel on default stream
cudaMemcpy (d_data,h_data, sizeof (float),
cudaMemcpyHostToDevice) ;
kernel<<<l, 1>>>(d_data, 0);
}

cudaDeviceSynchronize () ;

Lecture 6
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The default stream

The second (most useful?) effect of the flag omp_set_num_threads (8) ;
comes when using multiple threads (e.g. OpenMP float xdatal8];
or POSIX multithreading).
for (int 1 = 0; 1 < 8; i++)
In this case the effect of the flag is to create cudaMalloc(sdatali], N * sizeof(float));
separate independent (i.e. non-interacting)
default streams for each thread. #pragma omp parallel for
for (int i = 0; 1 < 8; i++) {

. . : intf(" thread ID = %d \n", t_thread ;
Using multiple default streams, one per thread, is printt( red \n", omp_get_thread_num())

a useful alternative to using “proper” streams.
// launch one worker kernel per thread

. kernel<<<l 64>>> (datali N) ;
wev within cu v
However “proper” streams within cuda are ver ! ( 1], N5

versatile and fully featured, so might be worth the

time and complexity investment. _ ,
cudaDeviceSynchronize () ;
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Stream commands

As previously shown, each stream executes a sequence of cuda calls. However to get the most out of
your heterogeneous computer you might also want to do something on the host.

There are at least two ways of coordinating this:

Use a separate thread for each stream
* It can wait for the completion of all pending tasks, then do what’s needed on the host.

Use just one thread for everything
* For each stream, add a callback function to be executed (by a new thread) when the pending
tasks are completed.
* It can do what’s needed on the host, and then launch new kernels (with a possible new
callback) if wanted.

Lecture 6
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Stream commands

Some useful stream commands are:

cudaStreamCreate (&stream)
Creates a stream and returns an opaque “handle” —the
“stream variable”.

cudaStreamSynchronize (stream)
Waits until all preceding commands have completed.

cudaStreamQuery (stream)
Checks whether all preceding commands have completed.

cudaStreamAddCallback ()
Adds a callback function to be executed on the host once
all preceding commands have completed.

http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
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Stream commands

Functions useful for synchronisation and timing between streams:

cudakEventCreate (event)
Creates an “event”.

cudaEventRecord (event, stream)
Puts an event into a stream (by default, stream 0).

cudaEventSynchronize (event)
CPU waits until event occurs.

cudaStreamWaitEvent (stream, event)
Stream waits until event occurs (doesn’t block the host).

cudaEventQuery (event)
Check whether event has occurred.

cudaEventElapsedTime (time, eventl, event?2)
Times between eventl and event2.

Lecture 6
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Multi-GPU computing



Multiple devices

What happens if there are multiple GPUs?

CUDA devices within the system are numbered, not always in order of
decreasing performance!

* By default a CUDA application uses the lowest number device which is “visible”
and available (this might not be what you want).

* Visibility controlled by environment variable CUDA VISIBLE DEVICES.
* The current device can be chosen/set by using cudaSetDevice ()
* cudaGetDeviceProperties () does what it says, and is very useful.

* Each stream is associated with a particular device, which is the “current” device
for a kernel launch or a memory copy.

* seesimpleMultiGPU example in SDK or section 6.2.9 for more information.

x
-
L)
w
o
o
[}
('8
w
L)

GEFORCE GTX

GEFORCE GTX

GEFORCE GTX

https://www.flickr.com/photos/ebastian/8804000077
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Multiple devices

NVIDIA" NVLink™
a5
If a user is running on multiple GPUs, data can go directly
between GPUs (peer — peer), it doesn’t have to go via CPU.

"

> |

This is the premise of the NVlink interconnect, which is much
faster than PCle (900GB/s P2P on Hopper).

cudaMemcpy () can do direct copy from one GPU’s memory to

CPU CPU

another. — B — .

I7y Ivs
A kernel on one GPU can also read directly from an array in D D D
another GPU’s memory, or write to it. PCle Switches Pele Switches
This even includes the ability to do atomic operations with
remote GPU memory. i 5 o il

For more information see Section 6.13, “Peer Device Memory
Access” in CUDA Runtime APl documentation:
https://docs.nvidia.com/cuda/cuda-runtime-api/

Vo0 V100 V100 vioo
GPU GPU GPU GPU

https://fuse.wikichip.org/news/1224/a-look-at-nvidias-nvlink-interconnect-and-the-nvswitch/

NVLink PCle aPl
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Multi-GPU computing

Multi-GPU computing exists at all scales, from cheaper workstations
using PCle, to more expensive Quadro / Titan products using fewer
NVLink, to high-end NVIDIA DGX servers.

Single workstation / server:
* abigenclosure for good cooling!

* up to 4 high-end cards in 16x PCle v4 slots — up to 16GB/s interconnect.

* 2x high-end CPUs.
* 2-3kW power consumption — not one for the office!

NVIDIA DGX H100 Deep Learning server:
* 8 NVIDIA GH100 GPUs, each with 80GB HBM2.
* 2x 56-core Intel Xeons (Platinum 8480C 2.0 GHz).
* 2TB RAM memory, 8x 3.84TB NVMe.
*  900GB/s NVlink interconnect between the GPUs.
 ~£379,0007?7?

Lecture 6
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Multi-GPU computing

How do you use these machines?
This depends on hardware choice:

* For single machines, use shared-memory multithreaded
host application.

* For DGX products you must use the NVIDIA Collective
Communications Library (NCCL).

* For clusters / supercomputers, use distributed-memory
MPI message-passing (NVSHMEM).

https://devblogs.nvidia.com/fast-multi-gpu-collectives-nccl/

Lecture 6
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kernel( *d_1input, offset)

1 = threadIdx.x + blockIdx.x*blockDim.x;
d anut[lj—w
for ( 1 =053 < ; J++) {
d_input[i] += offset

Multi-GPU Example

n * 51zeof(
offset = 10;

In the example on the right, we launch two kernels on two *d_a, *d_b;;
different GPUs, GPU 0 and GPU 1.

start = clock();

We use cudaSetDevice() to choose which GPU we are cudaSetDevice(0);
. . cudaMallocManaged(&d_a, size);
working with. kernel<<<n/256, 256>>>(d_a, offset);

cudaSetDevice(1);
cudaMallocManaged(&d_b, size);
kernel<<<n/256, 256>>>(d_b, offset);

Elapsed time: 1105.097000
Passed Varification!!

cudaDeviceSynchronize();

stop = clock();

Elapsed time: 1103.599000

Passed Varification!! elapsed = (( ) (stop - start)) / CLOCKS_PER_SEC * 1000;

printf("\nElapsed time: %f ms", elapsed);

Elapsed time: 1105.509000
Passed Varification!!

for ( 1=0; 1<n; i++) {
if (d_a[1] - d_b[l] 1= 0) {
printf("\nMulti GPU failed at index
exit(-1);

Elapsed time: 1109.698000
Passed Varification!!

}

printf(” assed Varification!!\n"

cudaFree(d_a);
cudaFree(d_b);

Lecture 6 -
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kernel( *d_1input, offset)

1 = threadIdx.x + blockIdx.x*blockDim.x;
d_input[i1]=0;
for ( ] =
d_input[i] += offset;

Multi-GPU Example |

size = n * sizeof(
offset = 10;

Now, let’s change the code so that we launch both kernels on *d_a, *d_b;;
the same GPU.

start = clock();

We see that the execution time approximately doubles. As cudaSetDevice(0);
i i daMallocM d(&d_a, size);
we would expect for code that is dominated by the kernel ﬁgrﬁe?«iﬁ/?!gf’egée>§§(df;feiffset);

execution time.

cudaSetDevice(0);
cudaMallocManaged(&d_b, size);
kernel<<<n/256, 256>>>(d_b, offset);

Elapsed time: 1912.208000
Passed Varification!!

cudaDeviceSynchronize();

stop = clock();
Elapsed time: 1898.162000

Passed Varification!!

elapsed (

= )} (stop - start)) / CLOCKS_PER_SE(
printf("\nElapsed

(
time: %f ms", elapsed);

Elapsed time: 1902.591000
Passed Varification!!

for ( 1=0; 1<n; 1++) {
if (d_a[i] - d_b[i] != 0) {
printf("\nMulti GPU failed at index:
exit(-1);

}

Elapsed time: 1902.241000
Passed Varification!!

}

printf("\nPassed Varification!!\

cudaFree(d_a);
cudaFree(d_b);
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GPUDirect

What is GPUDirect
* |t enhances data movement and access for NVIDIA GPUs.

Key Features of GPUDirect

* GPUDirect Storage: Provides a direct data path between local or remote storage, such as NVMe or NVMe over
Fabric (NVMe-oF).

* GPUDirect RDMA: Enables peripheral PCle devices direct access to GPU memory.

* GPUDirect Peer to Peer (P2P): Allows for direct communication between NVIDIA GPUs in remote systems.

Benefits of GPUDirect

* Eliminates unnecessary memory copies.

e Decreases CPU overheads.

* Reduces latency.

* Results in significant performance improvements.
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kernel( *d_a, offset)

1 = threadIdx.x + blockIdx.x*blockDim.x;
d a[i] = i+ offset;

Simple GPUDirect Example [

*)malloc(size);

Here we use cudaSetDevice() to pick which GPU we are {=0; i<n; i++) {
. 1 i ffset;
working on. T onTee

1. Initialise some values, vector length, offset, etc. FEIAS S EEEIU

0
. cudaSetDevice(0);
2. malloc n x sizeof(float) on the host (h_a). cudaMallocManaged(&d_a, size);
1 . cudaSetDevice(1); )
3- Set values Of h_a[l] =1+ Offset- kernel<<<n/256, 256>>>(d_a, offset);
cudaDeviceSynchronize( );
for {( 1i=0; 1<n; 4+) {

4. Start a clock i Thoari] et 1= )
printf("\nMulti GPU failed at index:\t%d", 1i);
exit(-1);

5. Allocate managed memory on GPU 0 }

s
printf("\nPassed Varification!!");
6. Perform kernel computation on GPU 1
stop = clock();

7. Check to see if our GPU and CPU results are the same. e e
elapsed = (( ) (stop - start)) / CLOCKS_PER_SEC * 1000;
printf("Elapsed time: %f ms\n", elapsed);

8. Print the time taken. cudaFree(d_a);
free(h_a);

Lecture 6 i
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kernel( *d_a, offset)

1 = threadIdx.x + blockIdx.x*blockDim.x;
d a[i] = i+ offset;

Simple GPUDirect Example [

*)malloc(size);
For the code to complete correctly, the runtime environment {=0; 1<n; i++) {
i i ffset;
needs to move data GPU 0 to GPU 1. tTonee

start = clock();

0
cudaSetDevice(0);
cudaMallocManaged(&d_a, size);

Passed Varification!!Elapsed time: 288.554000

cudaSetDevice(1);

N _ . kernel<<<n/256, 256>>>(d_a, offset);
X : ' N ,

Passed Varification!!Elapsed time: 273.861000 cudaDeviceSynchronize();

for ( i=0; 1<n; ++) {

Passed Varification!!Elapsed time: 271.562000 _ , ; )
if (h_a[i] - d_a[i] !'= ©

{

)

printf("\nMulti GPU failed at index:\t%d", 1i);
exit(-1);

Passed Varification!!Elapsed time: 272.309000

}
by

printf("\nPassed Varification!!");

Passed Varification!!Elapsed time: 270.529000

stop = clock();

elapsed = (( ) (stop - start)) / CLOCKS_PER_SEC * 1000;
printf("Elapsed time: %f ms\n", elapsed);

cudaFree(d_a);
free(h_a);
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kernel( *d_a, offset)

1 = threadIdx.x + blockIdx.x*blockDim.x;
d_a[i] = 1+ offset;

Simple GPUDirect Example [t

size = n * sizeof(
offset = 10;

*d_a, *h_a;;
*)malloc(size);

Here we work only on GPU 0. We have exactly the same code L= 0; i<n; ise) {
but this time we pass cudaSetDevice() 0 in both calls. U+ offset;

start = clock();

cudaSetDevice(0);
cudaMallocManaged(&d_a, size);

Passed Varification!!Elapsed tume: 185.163000

cudaSetDevice(0);
P : : . kernel<<<n/256, 256>>>(d a, offset);
11 i 3
Passed Varification!!Elapsed tume: 179.100000 cudaDeviceSynchronize():
for ( 1=0; 1L<n; #+) {
if (h_a[i1] - d_a[i] !'= 0) {
printf("\nMulti GPU failed at
exit(-1);

Passed Varification!!Elapsed time: 178.624000

Passed Varification!!Elapsed time: 177.794000

Passed Varification!!Elapsed time: 177.354000

stop = clock();

elapsed = (( ) (stop - start)) / CLOCKS_PER
printf("Elapsed time: %f ms\n", elapsed);

SEC * 1000;

cudaFree(d_a);
free(h_a);
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MPI approach

In the MPI approach:
* One GPU per MPI process (nice and simple).

* Distributed-memory message passing between MPI processes (tedious
but not difficult).

* Scales well to very large applications.
* Main difficulty is that the user has to partition their problem (break it up
into separate large pieces for each process) and then explicitly manage

the communication.

* Note: should investigate GPU Direct for maximum performance in
message passing.
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NVSHMEM

Based on OpenSHMEM.

MPI orchestrates data transfers using the
CPU.

In contrast, NVSHMEM uses asynchronous,
GPU-initiated data transfers.

Interconnect

nvshmem_put

Efficient Strong-Scaling on Sierra Supercomputer

B NVSHMEM 1 MPI

2 GPUs
4 GPUs
8 GPUs
16 GPUs

32 GPUs

0 1X X 33X 4X 5% 6X X 8x
Speedup

https://developer.nvidia.com/nvshmem
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Multi-user support

What if different processes try to use the same device?

The behaviour of the device depends on the system compute mode setting
(section 3.4):

In “default” mode, each process uses the fastest device:
* Thisis good when one very fast card, and one very slow card.
* But not very useful when you have two identical fast GPUs (one sits idle).

In “exclusive” mode, each process is assigned to first unused device;
However code will return an error if none are available.

cudaGetDeviceProperties () reports the mode setting

The mode can be changed by a user account with sys-admin privileges using the
nvidia-smi command line utility.
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Summary

This lecture has discussed a number of
more advanced topics. As a beginner,
you can ignore almost all of them As you
get more experienced, you will probably
want to start using some of them to get
the very best performance.
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Handout for 2024
Some tips and tricks



Loose ends — Loop unrolling

Section 10.37 (of the programming guide):
loop unrolling, If you have a loop:

for (int k=0; k<4; k++) al[i] += bl[i];

Then nvcc will automatically unroll this to give:

al0] += b[0];
all] += b[1];
al2] += bl2];
al[3] += b[3];

This is a standard compiler trick to avoid the cost of incrementing and looping.

The pragma

#fpragma unroll 5
will also force unrolling for loops that do not have explicit limits.

Lecture 6
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Loose ends —const __restrict__

Section 10.2.6 (of the programming guide):

restrict  keyword

The qualifier asserts that there is no overlap (in memory
space) between a, b, ¢, for example we do not have:

(you have no pointer aliasing) so the compiler can
perform more optimisations.

The following blog post demonstrates how this can
achieve a good speed increase:

https://devblogs.nvidia.com/cuda-pro-tip-optimize-pointer-aliasing/#disqus thread

Lecture 6

void foo(const float*  restrict a,
const float*  restrict Db,
float™ restrict  c)

for (i=1; 1i<N; i++) {
ali] = b[i] + c[i];
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Loose ends - volatile

Section 17.5.3.3 (of the programming guide):
volatile keyword

Tells the compiler the variable may change at any time, so not to re-use a
value which may have been loaded earlier and apparently not changed
since.

This can sometimes be important when using shared memory because the

compiler can optimize locations in shared memory by locating them in
registers (but register scope is specific to a single thread), for any thread.
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Loose ends - Compilation

Compiling:

The Makefile for first few practicals uses nvcc to compile
both the host and the device code.

Internally nvcc uses gcc for the host code (at least by default).
The device code compiler is based on the open source LLVM
compiler.

CUDA New Language
C, C++, Fortran SHBBEH

LLVIM Compiler

For CUDA

NVIDIA x86
- GPUs CPUs

It often makes sense to use different compilers, for example
icc which is for host code which does not have kernel
launches.

To do this you must use the -£p1c flag to produce position-
independent-code (this just generates machine code that will
execute properly, independent of where it’s held in memory).

https://developer.nvidia.com/cuda-llvm-compiler
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Loose ends - Compilation

Prac 6 Makefile:

INC := —IS$(CUDA_HOME) /include -I.
LIB := —-LS$ (CUDA_HOME) /1lib64 -1lcudart
FLAGS := —-ptxas-options=-v —--use_fast_math

main.o: main.cpp
g++ —c —fPIC -0 main.o main.cpp

pracb6.o: pracb.cu
nvcc pracb6t.cu —-c —-o prac6.o $(INC) $(FLAGS)

prac6: main.o pracb.o
g++ —fPIC -0 prac6t main.o pracé6.o $(LIB)
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Loose ends - Compilation

Prac 6 Makefile to create a library:

INC := —IS$(CUDA) /include -I.
LIB := —-LS(CUDA) /11b64 —-1lcudart
FLAGS := —-ptxas-options=-v —--use_fast_math

main.o: malin.cpp
g++ —-c —-fPIC -0 main.o main.cpp

pracb.a: pracéb.cu
nvcc pracé6.cu —-lib —-o pracé6.a $(INC) $(FLAGS)

pracba: main.o pracb.a
g+t+ —-fPIC -0 pracba main.o pracb6b.a $(LIB)
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Loose ends - Compilation

Other useful compiler options:

—arch=sm 80
This specifies GPU architecture (in this case sm_80 is for
Ampere A100).

—-maxrregcount=n

This asks the compiler to generate code using at most n
registers; the compiler may ignore this if it’s not possible, but it
may also increase register usage up to this limit.

This is less important now since threads can have up to 255

registers, but can be useful in some instances to reduce register
pressure and enable more thread blocks to run.
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Loose ends — Compilation

Launch bounds (10.36):

-maxrregcount is given as an argument to the compiler (nvcc) and modifies the default for all

kernels.

A per kernel approach can be taken by usingthe  launch bounds  qualifier:

__global  wvoid
launch bounds (maxThreadsPerBlock,minBlocksPerMultiprocessor)

M§KernelT...) {

}
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